fparkan/vendor/tiff/tests/encode_images.rs
Valentin Popov 1b6a04ca55
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
2024-01-08 01:21:28 +04:00

530 lines
17 KiB
Rust

extern crate tiff;
use tiff::decoder::{ifd, Decoder, DecodingResult};
use tiff::encoder::{colortype, Ifd, Ifd8, SRational, TiffEncoder};
use tiff::tags::Tag;
use tiff::ColorType;
use std::fs::File;
use std::io::{Cursor, Seek, SeekFrom};
use std::path::PathBuf;
#[test]
fn encode_decode() {
let mut image_data = Vec::new();
for x in 0..100 {
for y in 0..100u8 {
let val = x + y;
image_data.push(val);
image_data.push(val);
image_data.push(val);
}
}
let mut file = Cursor::new(Vec::new());
{
let mut tiff = TiffEncoder::new(&mut file).unwrap();
let mut image = tiff.new_image::<colortype::RGB8>(100, 100).unwrap();
image
.encoder()
.write_tag(Tag::Artist, "Image-tiff")
.unwrap();
image.write_data(&image_data).unwrap();
}
{
file.seek(SeekFrom::Start(0)).unwrap();
let mut decoder = Decoder::new(&mut file).unwrap();
assert_eq!(decoder.colortype().unwrap(), ColorType::RGB(8));
assert_eq!(decoder.dimensions().unwrap(), (100, 100));
assert_eq!(
decoder.get_tag(Tag::Artist).unwrap(),
ifd::Value::Ascii("Image-tiff".into())
);
if let DecodingResult::U8(img_res) = decoder.read_image().unwrap() {
assert_eq!(image_data, img_res);
} else {
panic!("Wrong data type");
}
}
}
#[test]
fn encode_decode_big() {
let mut image_data = Vec::new();
for x in 0..100 {
for y in 0..100u8 {
let val = x + y;
image_data.push(val);
image_data.push(val);
image_data.push(val);
}
}
let mut file = Cursor::new(Vec::new());
{
let mut tiff = TiffEncoder::new_big(&mut file).unwrap();
let mut image = tiff.new_image::<colortype::RGB8>(100, 100).unwrap();
image
.encoder()
.write_tag(Tag::Artist, "Image-tiff")
.unwrap();
image.write_data(&image_data).unwrap();
}
{
file.seek(SeekFrom::Start(0)).unwrap();
let mut decoder = Decoder::new(&mut file).unwrap();
assert_eq!(decoder.colortype().unwrap(), ColorType::RGB(8));
assert_eq!(decoder.dimensions().unwrap(), (100, 100));
assert_eq!(
decoder.get_tag(Tag::Artist).unwrap(),
ifd::Value::Ascii("Image-tiff".into())
);
if let DecodingResult::U8(img_res) = decoder.read_image().unwrap() {
assert_eq!(image_data, img_res);
} else {
panic!("Wrong data type");
}
}
}
#[test]
fn test_encode_ifd() {
let mut data = Cursor::new(Vec::new());
{
let mut tiff = TiffEncoder::new(&mut data).unwrap();
let mut image_encoder = tiff.new_image::<colortype::Gray8>(1, 1).unwrap();
image_encoder.write_strip(&[1]).unwrap();
let encoder = image_encoder.encoder();
// Use the "reusable" tags section as per the TIFF6 spec
encoder.write_tag(Tag::Unknown(65000), Ifd(42u32)).unwrap();
encoder
.write_tag(Tag::Unknown(65001), &[Ifd(100u32)][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65002), &[Ifd(1u32), Ifd(2u32), Ifd(3u32)][..])
.unwrap();
encoder.write_tag(Tag::Unknown(65010), Ifd8(43u64)).unwrap();
encoder
.write_tag(Tag::Unknown(65011), &[Ifd8(100u64)][..])
.unwrap();
encoder
.write_tag(
Tag::Unknown(65012),
&[Ifd8(1u64), Ifd8(2u64), Ifd8(3u64)][..],
)
.unwrap();
}
// Rewind the cursor for reading
data.set_position(0);
{
let mut decoder = Decoder::new(&mut data).unwrap();
assert_eq!(decoder.assert_tag_u32(65000), 42);
assert_eq!(decoder.assert_tag_u32_vec(65000), [42]);
assert_eq!(decoder.assert_tag_u32_vec(65001), [100]);
assert_eq!(decoder.assert_tag_u32_vec(65002), [1, 2, 3]);
assert_eq!(decoder.assert_tag_u64(65010), 43);
assert_eq!(decoder.assert_tag_u64_vec(65010), [43]);
assert_eq!(decoder.assert_tag_u64_vec(65011), [100]);
assert_eq!(decoder.assert_tag_u64_vec(65012), [1, 2, 3]);
}
}
#[test]
/// Test that attempting to encode when the input buffer is undersized returns
/// an error rather than panicking.
/// See: https://github.com/PistonDevelopers/image-tiff/issues/35
fn test_encode_undersized_buffer() {
let input_data = vec![1, 2, 3];
let output = Vec::new();
let mut output_stream = Cursor::new(output);
if let Ok(mut tiff) = TiffEncoder::new(&mut output_stream) {
let res = tiff.write_image::<colortype::RGB8>(50, 50, &input_data);
assert!(res.is_err());
}
}
const TEST_IMAGE_DIR: &str = "./tests/images/";
macro_rules! test_roundtrip {
($name:ident, $buffer:ident, $buffer_ty:ty) => {
fn $name<C: colortype::ColorType<Inner = $buffer_ty>>(
file: &str,
expected_type: ColorType,
) {
let path = PathBuf::from(TEST_IMAGE_DIR).join(file);
let img_file = File::open(path).expect("Cannot find test image!");
let mut decoder = Decoder::new(img_file).expect("Cannot create decoder");
assert_eq!(decoder.colortype().unwrap(), expected_type);
let image_data = match decoder.read_image().unwrap() {
DecodingResult::$buffer(res) => res,
_ => panic!("Wrong data type"),
};
let mut file = Cursor::new(Vec::new());
{
let mut tiff = TiffEncoder::new(&mut file).unwrap();
let (width, height) = decoder.dimensions().unwrap();
tiff.write_image::<C>(width, height, &image_data).unwrap();
}
file.seek(SeekFrom::Start(0)).unwrap();
{
let mut decoder = Decoder::new(&mut file).unwrap();
if let DecodingResult::$buffer(img_res) = decoder.read_image().unwrap() {
assert_eq!(image_data, img_res);
} else {
panic!("Wrong data type");
}
}
}
};
}
test_roundtrip!(test_u8_roundtrip, U8, u8);
test_roundtrip!(test_u16_roundtrip, U16, u16);
test_roundtrip!(test_u32_roundtrip, U32, u32);
test_roundtrip!(test_u64_roundtrip, U64, u64);
test_roundtrip!(test_f32_roundtrip, F32, f32);
test_roundtrip!(test_f64_roundtrip, F64, f64);
#[test]
fn test_gray_u8_roundtrip() {
test_u8_roundtrip::<colortype::Gray8>("minisblack-1c-8b.tiff", ColorType::Gray(8));
}
#[test]
fn test_rgb_u8_roundtrip() {
test_u8_roundtrip::<colortype::RGB8>("rgb-3c-8b.tiff", ColorType::RGB(8));
}
#[test]
fn test_cmyk_u8_roundtrip() {
test_u8_roundtrip::<colortype::CMYK8>("cmyk-3c-8b.tiff", ColorType::CMYK(8));
}
#[test]
fn test_gray_u16_roundtrip() {
test_u16_roundtrip::<colortype::Gray16>("minisblack-1c-16b.tiff", ColorType::Gray(16));
}
#[test]
fn test_rgb_u16_roundtrip() {
test_u16_roundtrip::<colortype::RGB16>("rgb-3c-16b.tiff", ColorType::RGB(16));
}
#[test]
fn test_cmyk_u16_roundtrip() {
test_u16_roundtrip::<colortype::CMYK16>("cmyk-3c-16b.tiff", ColorType::CMYK(16));
}
#[test]
fn test_gray_u32_roundtrip() {
test_u32_roundtrip::<colortype::Gray32>("gradient-1c-32b.tiff", ColorType::Gray(32));
}
#[test]
fn test_rgb_u32_roundtrip() {
test_u32_roundtrip::<colortype::RGB32>("gradient-3c-32b.tiff", ColorType::RGB(32));
}
#[test]
fn test_gray_u64_roundtrip() {
test_u64_roundtrip::<colortype::Gray64>("gradient-1c-64b.tiff", ColorType::Gray(64));
}
#[test]
fn test_rgb_u64_roundtrip() {
test_u64_roundtrip::<colortype::RGB64>("gradient-3c-64b.tiff", ColorType::RGB(64));
}
#[test]
fn test_gray_f32_roundtrip() {
test_f32_roundtrip::<colortype::Gray32Float>("gradient-1c-32b-float.tiff", ColorType::Gray(32));
}
#[test]
fn test_rgb_f32_roundtrip() {
test_f32_roundtrip::<colortype::RGB32Float>("gradient-3c-32b-float.tiff", ColorType::RGB(32));
}
#[test]
fn test_cmyk_f32_roundtrip() {
test_f32_roundtrip::<colortype::CMYK32Float>("cmyk-3c-32b-float.tiff", ColorType::CMYK(32));
}
#[test]
fn test_gray_f64_roundtrip() {
test_f64_roundtrip::<colortype::Gray64Float>("gradient-1c-64b-float.tiff", ColorType::Gray(64));
}
#[test]
fn test_ycbcr_u8_roundtrip() {
test_u8_roundtrip::<colortype::YCbCr8>("tiled-jpeg-ycbcr.tif", ColorType::YCbCr(8));
}
trait AssertDecode {
fn assert_tag_u32(&mut self, tag: u16) -> u32;
fn assert_tag_u32_vec(&mut self, tag: u16) -> Vec<u32>;
fn assert_tag_i32(&mut self, tag: u16) -> i32;
fn assert_tag_i32_vec(&mut self, tag: u16) -> Vec<i32>;
fn assert_tag_u64(&mut self, tag: u16) -> u64;
fn assert_tag_u64_vec(&mut self, tag: u16) -> Vec<u64>;
fn assert_tag_i64(&mut self, tag: u16) -> i64;
fn assert_tag_i64_vec(&mut self, tag: u16) -> Vec<i64>;
}
impl<R: std::io::Read + std::io::Seek> AssertDecode for Decoder<R> {
fn assert_tag_u32(&mut self, tag: u16) -> u32 {
self.get_tag(Tag::Unknown(tag)).unwrap().into_u32().unwrap()
}
fn assert_tag_u32_vec(&mut self, tag: u16) -> Vec<u32> {
self.get_tag(Tag::Unknown(tag))
.unwrap()
.into_u32_vec()
.unwrap()
}
fn assert_tag_i32(&mut self, tag: u16) -> i32 {
self.get_tag(Tag::Unknown(tag)).unwrap().into_i32().unwrap()
}
fn assert_tag_i32_vec(&mut self, tag: u16) -> Vec<i32> {
self.get_tag(Tag::Unknown(tag))
.unwrap()
.into_i32_vec()
.unwrap()
}
fn assert_tag_u64(&mut self, tag: u16) -> u64 {
self.get_tag(Tag::Unknown(tag)).unwrap().into_u64().unwrap()
}
fn assert_tag_u64_vec(&mut self, tag: u16) -> Vec<u64> {
self.get_tag(Tag::Unknown(tag))
.unwrap()
.into_u64_vec()
.unwrap()
}
fn assert_tag_i64(&mut self, tag: u16) -> i64 {
self.get_tag(Tag::Unknown(tag)).unwrap().into_i64().unwrap()
}
fn assert_tag_i64_vec(&mut self, tag: u16) -> Vec<i64> {
self.get_tag(Tag::Unknown(tag))
.unwrap()
.into_i64_vec()
.unwrap()
}
}
#[test]
fn test_multiple_byte() {
let mut data = Cursor::new(Vec::new());
{
let mut tiff = TiffEncoder::new(&mut data).unwrap();
let mut image_encoder = tiff.new_image::<colortype::Gray8>(1, 1).unwrap();
image_encoder.write_strip(&[1]).unwrap();
let encoder = image_encoder.encoder();
encoder.write_tag(Tag::Unknown(65000), &[1_u8][..]).unwrap();
encoder
.write_tag(Tag::Unknown(65001), &[1_u8, 2][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65002), &[1_u8, 2, 3][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65003), &[1_u8, 2, 3, 4][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65004), &[1_u8, 2, 3, 4, 5][..])
.unwrap();
}
data.set_position(0);
{
let mut decoder = Decoder::new(&mut data).unwrap();
assert_eq!(decoder.assert_tag_u32_vec(65000), [1]);
assert_eq!(decoder.assert_tag_u32_vec(65001), [1, 2]);
assert_eq!(decoder.assert_tag_u32_vec(65002), [1, 2, 3]);
assert_eq!(decoder.assert_tag_u32_vec(65003), [1, 2, 3, 4]);
assert_eq!(decoder.assert_tag_u32_vec(65004), [1, 2, 3, 4, 5]);
}
}
#[test]
/// Test writing signed tags from TIFF 6.0
fn test_signed() {
let mut data = Cursor::new(Vec::new());
fn make_srational(i: i32) -> SRational {
SRational { n: i, d: 100 }
}
{
let mut tiff = TiffEncoder::new(&mut data).unwrap();
let mut image_encoder = tiff.new_image::<colortype::Gray8>(1, 1).unwrap();
image_encoder.write_strip(&[1]).unwrap();
let encoder = image_encoder.encoder();
//Use the "reusable" tags section as per the TIFF6 spec
encoder.write_tag(Tag::Unknown(65000), -1_i8).unwrap();
encoder
.write_tag(Tag::Unknown(65001), &[-1_i8][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65002), &[-1_i8, 2][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65003), &[-1_i8, 2, -3][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65004), &[-1_i8, 2, -3, 4][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65005), &[-1_i8, 2, -3, 4, -5][..])
.unwrap();
encoder.write_tag(Tag::Unknown(65010), -1_i16).unwrap();
encoder.write_tag(Tag::Unknown(65011), -1_i16).unwrap();
encoder
.write_tag(Tag::Unknown(65012), &[-1_i16, 2][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65013), &[-1_i16, 2, -3][..])
.unwrap();
encoder.write_tag(Tag::Unknown(65020), -1_i32).unwrap();
encoder
.write_tag(Tag::Unknown(65021), &[-1_i32][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65022), &[-1_i32, 2][..])
.unwrap();
encoder.write_tag(Tag::Unknown(65030), -1_i64).unwrap();
encoder
.write_tag(Tag::Unknown(65031), &[-1_i64][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65032), &[-1_i64, 2][..])
.unwrap();
encoder
.write_tag(Tag::Unknown(65040), make_srational(-1))
.unwrap();
encoder
.write_tag(
Tag::Unknown(65041),
&[make_srational(-1), make_srational(2)][..],
)
.unwrap();
}
//Rewind the cursor for reading
data.set_position(0);
{
let mut decoder = Decoder::new(&mut data).unwrap();
assert_eq!(decoder.assert_tag_i32(65000), -1);
assert_eq!(decoder.assert_tag_i32_vec(65001), [-1]);
assert_eq!(decoder.assert_tag_i32_vec(65002), [-1, 2]);
assert_eq!(decoder.assert_tag_i32_vec(65003), [-1, 2, -3]);
assert_eq!(decoder.assert_tag_i32_vec(65004), [-1, 2, -3, 4]);
assert_eq!(decoder.assert_tag_i32_vec(65005), [-1, 2, -3, 4, -5],);
assert_eq!(decoder.assert_tag_i32(65010), -1);
assert_eq!(decoder.assert_tag_i32_vec(65011), [-1]);
assert_eq!(decoder.assert_tag_i32_vec(65012), [-1, 2]);
assert_eq!(decoder.assert_tag_i32_vec(65013), [-1, 2, -3]);
assert_eq!(decoder.assert_tag_i32(65020), -1);
assert_eq!(decoder.assert_tag_i32_vec(65021), [-1]);
assert_eq!(decoder.assert_tag_i32_vec(65022), [-1, 2]);
assert_eq!(decoder.assert_tag_i64(65030), -1);
assert_eq!(decoder.assert_tag_i64_vec(65031), [-1]);
assert_eq!(decoder.assert_tag_i64_vec(65032), [-1, 2]);
assert_eq!(decoder.assert_tag_i32_vec(65040), [-1, 100]);
assert_eq!(decoder.assert_tag_i32_vec(65041), [-1_i32, 100, 2, 100]);
}
}
#[test]
/// check multipage image handling
fn test_multipage_image() {
let mut img_file = Cursor::new(Vec::new());
{
// first create a multipage image with 2 images
let mut img_encoder = TiffEncoder::new(&mut img_file).unwrap();
// write first grayscale image (2x2 16-bit)
let img1: Vec<u16> = [1, 2, 3, 4].to_vec();
img_encoder
.write_image::<colortype::Gray16>(2, 2, &img1[..])
.unwrap();
// write second grayscale image (3x3 8-bit)
let img2: Vec<u8> = [9, 8, 7, 6, 5, 4, 3, 2, 1].to_vec();
img_encoder
.write_image::<colortype::Gray8>(3, 3, &img2[..])
.unwrap();
}
// seek to the beginning of the file, so that it can be decoded
img_file.seek(SeekFrom::Start(0)).unwrap();
{
let mut img_decoder = Decoder::new(&mut img_file).unwrap();
// check the dimensions of the image in the first page
assert_eq!(img_decoder.dimensions().unwrap(), (2, 2));
img_decoder.next_image().unwrap();
// check the dimensions of the image in the second page
assert_eq!(img_decoder.dimensions().unwrap(), (3, 3));
}
}
#[test]
/// verify rows per strip setting
fn test_rows_per_strip() {
let mut file = Cursor::new(Vec::new());
{
let mut img_encoder = TiffEncoder::new(&mut file).unwrap();
let mut image = img_encoder.new_image::<colortype::Gray8>(100, 100).unwrap();
assert_eq!(image.next_strip_sample_count(), 100 * 100);
image.rows_per_strip(2).unwrap();
assert_eq!(image.next_strip_sample_count(), 2 * 100);
let img2: Vec<u8> = vec![0; 2 * 100];
image.write_strip(&img2[..]).unwrap();
assert!(image.rows_per_strip(5).is_err());
for i in 1..50 {
let img2: Vec<u8> = vec![i; 2 * 100];
image.write_strip(&img2[..]).unwrap();
}
assert!(image.write_strip(&img2[..]).is_err());
image.finish().unwrap();
}
file.seek(SeekFrom::Start(0)).unwrap();
{
let mut decoder = Decoder::new(&mut file).unwrap();
assert_eq!(decoder.get_tag_u64(Tag::RowsPerStrip).unwrap(), 2);
assert_eq!(decoder.strip_count().unwrap(), 50);
for i in 0..50 {
let img2 = [i; 2 * 100];
match decoder.read_chunk(i as u32).unwrap() {
DecodingResult::U8(data) => assert_eq!(&img2[..], &data[..]),
other => panic!("Incorrect strip type {:?}", other),
}
}
}
}