fparkan/vendor/num-integer/benches/gcd.rs
Valentin Popov 1b6a04ca55
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
2024-01-08 01:21:28 +04:00

177 lines
4.8 KiB
Rust

//! Benchmark comparing the current GCD implemtation against an older one.
#![feature(test)]
extern crate num_integer;
extern crate num_traits;
extern crate test;
use num_integer::Integer;
use num_traits::{AsPrimitive, Bounded, Signed};
use test::{black_box, Bencher};
trait GcdOld: Integer {
fn gcd_old(&self, other: &Self) -> Self;
}
macro_rules! impl_gcd_old_for_isize {
($T:ty) => {
impl GcdOld for $T {
/// Calculates the Greatest Common Divisor (GCD) of the number and
/// `other`. The result is always positive.
#[inline]
fn gcd_old(&self, other: &Self) -> Self {
// Use Stein's algorithm
let mut m = *self;
let mut n = *other;
if m == 0 || n == 0 {
return (m | n).abs();
}
// find common factors of 2
let shift = (m | n).trailing_zeros();
// The algorithm needs positive numbers, but the minimum value
// can't be represented as a positive one.
// It's also a power of two, so the gcd can be
// calculated by bitshifting in that case
// Assuming two's complement, the number created by the shift
// is positive for all numbers except gcd = abs(min value)
// The call to .abs() causes a panic in debug mode
if m == Self::min_value() || n == Self::min_value() {
return (1 << shift).abs();
}
// guaranteed to be positive now, rest like unsigned algorithm
m = m.abs();
n = n.abs();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m {
std::mem::swap(&mut n, &mut m)
}
m -= n;
}
n << shift
}
}
};
}
impl_gcd_old_for_isize!(i8);
impl_gcd_old_for_isize!(i16);
impl_gcd_old_for_isize!(i32);
impl_gcd_old_for_isize!(i64);
impl_gcd_old_for_isize!(isize);
impl_gcd_old_for_isize!(i128);
macro_rules! impl_gcd_old_for_usize {
($T:ty) => {
impl GcdOld for $T {
/// Calculates the Greatest Common Divisor (GCD) of the number and
/// `other`. The result is always positive.
#[inline]
fn gcd_old(&self, other: &Self) -> Self {
// Use Stein's algorithm
let mut m = *self;
let mut n = *other;
if m == 0 || n == 0 {
return m | n;
}
// find common factors of 2
let shift = (m | n).trailing_zeros();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m {
std::mem::swap(&mut n, &mut m)
}
m -= n;
}
n << shift
}
}
};
}
impl_gcd_old_for_usize!(u8);
impl_gcd_old_for_usize!(u16);
impl_gcd_old_for_usize!(u32);
impl_gcd_old_for_usize!(u64);
impl_gcd_old_for_usize!(usize);
impl_gcd_old_for_usize!(u128);
/// Return an iterator that yields all Fibonacci numbers fitting into a u128.
fn fibonacci() -> impl Iterator<Item = u128> {
(0..185).scan((0, 1), |&mut (ref mut a, ref mut b), _| {
let tmp = *a;
*a = *b;
*b += tmp;
Some(*b)
})
}
fn run_bench<T: Integer + Bounded + Copy + 'static>(b: &mut Bencher, gcd: fn(&T, &T) -> T)
where
T: AsPrimitive<u128>,
u128: AsPrimitive<T>,
{
let max_value: u128 = T::max_value().as_();
let pairs: Vec<(T, T)> = fibonacci()
.collect::<Vec<_>>()
.windows(2)
.filter(|&pair| pair[0] <= max_value && pair[1] <= max_value)
.map(|pair| (pair[0].as_(), pair[1].as_()))
.collect();
b.iter(|| {
for &(ref m, ref n) in &pairs {
black_box(gcd(m, n));
}
});
}
macro_rules! bench_gcd {
($T:ident) => {
mod $T {
use crate::{run_bench, GcdOld};
use num_integer::Integer;
use test::Bencher;
#[bench]
fn bench_gcd(b: &mut Bencher) {
run_bench(b, $T::gcd);
}
#[bench]
fn bench_gcd_old(b: &mut Bencher) {
run_bench(b, $T::gcd_old);
}
}
};
}
bench_gcd!(u8);
bench_gcd!(u16);
bench_gcd!(u32);
bench_gcd!(u64);
bench_gcd!(u128);
bench_gcd!(i8);
bench_gcd!(i16);
bench_gcd!(i32);
bench_gcd!(i64);
bench_gcd!(i128);