fparkan/vendor/object/tests/round_trip/elf.rs
Valentin Popov 1b6a04ca55
Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
2024-01-08 01:21:28 +04:00

290 lines
10 KiB
Rust

use object::read::elf::{FileHeader, SectionHeader};
use object::read::{Object, ObjectSection, ObjectSymbol};
use object::{
elf, read, write, Architecture, BinaryFormat, Endianness, LittleEndian, SectionIndex,
SectionKind, SymbolFlags, SymbolKind, SymbolScope, SymbolSection, U32,
};
use std::io::Write;
#[test]
fn symtab_shndx() {
let mut object =
write::Object::new(BinaryFormat::Elf, Architecture::X86_64, Endianness::Little);
for i in 0..0x10000 {
let name = format!("func{}", i).into_bytes();
let (section, offset) =
object.add_subsection(write::StandardSection::Text, &name, &[0xcc], 1);
object.add_symbol(write::Symbol {
name,
value: offset,
size: 1,
kind: SymbolKind::Text,
scope: SymbolScope::Linkage,
weak: false,
section: write::SymbolSection::Section(section),
flags: SymbolFlags::None,
});
}
let bytes = object.write().unwrap();
//std::fs::write(&"symtab_shndx.o", &bytes).unwrap();
let object = read::File::parse(&*bytes).unwrap();
assert_eq!(object.format(), BinaryFormat::Elf);
assert_eq!(object.architecture(), Architecture::X86_64);
for symbol in object.symbols().skip(1) {
assert_eq!(
symbol.section(),
SymbolSection::Section(SectionIndex(symbol.index().0))
);
}
}
#[test]
fn aligned_sections() {
let mut object =
write::Object::new(BinaryFormat::Elf, Architecture::X86_64, Endianness::Little);
let text_section_id = object.add_section(vec![], b".text".to_vec(), SectionKind::Text);
let text_section = object.section_mut(text_section_id);
text_section.set_data(&[][..], 4096);
let data_section_id = object.add_section(vec![], b".data".to_vec(), SectionKind::Data);
let data_section = object.section_mut(data_section_id);
data_section.set_data(&b"1234"[..], 16);
let bytes = object.write().unwrap();
let object = read::File::parse(&*bytes).unwrap();
assert_eq!(object.format(), BinaryFormat::Elf);
assert_eq!(object.architecture(), Architecture::X86_64);
let mut sections = object.sections();
let _ = sections.next().unwrap();
let section = sections.next().unwrap();
assert_eq!(section.name(), Ok(".text"));
assert_eq!(section.file_range(), Some((4096, 0)));
let section = sections.next().unwrap();
assert_eq!(section.name(), Ok(".data"));
assert_eq!(section.file_range(), Some((4096, 4)));
}
#[cfg(feature = "compression")]
#[test]
fn compression_zlib() {
use object::read::ObjectSection;
use object::LittleEndian as LE;
let data = b"test data data data";
let len = data.len() as u64;
let mut ch = object::elf::CompressionHeader64::<LE>::default();
ch.ch_type.set(LE, object::elf::ELFCOMPRESS_ZLIB);
ch.ch_size.set(LE, len);
ch.ch_addralign.set(LE, 1);
let mut buf = Vec::new();
buf.write(object::bytes_of(&ch)).unwrap();
let mut encoder = flate2::write::ZlibEncoder::new(buf, flate2::Compression::default());
encoder.write_all(data).unwrap();
let compressed = encoder.finish().unwrap();
let mut object =
write::Object::new(BinaryFormat::Elf, Architecture::X86_64, Endianness::Little);
let section = object.add_section(
Vec::new(),
b".debug_info".to_vec(),
object::SectionKind::Other,
);
object.section_mut(section).set_data(compressed, 1);
object.section_mut(section).flags = object::SectionFlags::Elf {
sh_flags: object::elf::SHF_COMPRESSED.into(),
};
let bytes = object.write().unwrap();
//std::fs::write(&"compression.o", &bytes).unwrap();
let object = read::File::parse(&*bytes).unwrap();
assert_eq!(object.format(), BinaryFormat::Elf);
assert_eq!(object.architecture(), Architecture::X86_64);
let section = object.section_by_name(".debug_info").unwrap();
let uncompressed = section.uncompressed_data().unwrap();
assert_eq!(data, &*uncompressed);
}
#[cfg(feature = "compression")]
#[test]
fn compression_gnu() {
use object::read::ObjectSection;
use std::io::Write;
let data = b"test data data data";
let len = data.len() as u32;
let mut buf = Vec::new();
buf.write_all(b"ZLIB\0\0\0\0").unwrap();
buf.write_all(&len.to_be_bytes()).unwrap();
let mut encoder = flate2::write::ZlibEncoder::new(buf, flate2::Compression::default());
encoder.write_all(data).unwrap();
let compressed = encoder.finish().unwrap();
let mut object =
write::Object::new(BinaryFormat::Elf, Architecture::X86_64, Endianness::Little);
let section = object.add_section(
Vec::new(),
b".zdebug_info".to_vec(),
object::SectionKind::Other,
);
object.section_mut(section).set_data(compressed, 1);
let bytes = object.write().unwrap();
//std::fs::write(&"compression.o", &bytes).unwrap();
let object = read::File::parse(&*bytes).unwrap();
assert_eq!(object.format(), BinaryFormat::Elf);
assert_eq!(object.architecture(), Architecture::X86_64);
let section = object.section_by_name(".zdebug_info").unwrap();
let uncompressed = section.uncompressed_data().unwrap();
assert_eq!(data, &*uncompressed);
}
#[test]
fn note() {
let endian = Endianness::Little;
let mut object = write::Object::new(BinaryFormat::Elf, Architecture::X86_64, endian);
// Add note section with align = 4.
let mut buffer = Vec::new();
buffer
.write(object::bytes_of(&elf::NoteHeader32 {
n_namesz: U32::new(endian, 6),
n_descsz: U32::new(endian, 11),
n_type: U32::new(endian, 1),
}))
.unwrap();
buffer.write(b"name1\0\0\0").unwrap();
buffer.write(b"descriptor\0\0").unwrap();
buffer
.write(object::bytes_of(&elf::NoteHeader32 {
n_namesz: U32::new(endian, 6),
n_descsz: U32::new(endian, 11),
n_type: U32::new(endian, 2),
}))
.unwrap();
buffer.write(b"name2\0\0\0").unwrap();
buffer.write(b"descriptor\0\0").unwrap();
let section = object.add_section(Vec::new(), b".note4".to_vec(), SectionKind::Note);
object.section_mut(section).set_data(buffer, 4);
// Add note section with align = 8.
let mut buffer = Vec::new();
buffer
.write(object::bytes_of(&elf::NoteHeader32 {
n_namesz: U32::new(endian, 6),
n_descsz: U32::new(endian, 11),
n_type: U32::new(endian, 1),
}))
.unwrap();
buffer.write(b"name1\0\0\0\0\0\0\0").unwrap();
buffer.write(b"descriptor\0\0\0\0\0\0").unwrap();
buffer
.write(object::bytes_of(&elf::NoteHeader32 {
n_namesz: U32::new(endian, 4),
n_descsz: U32::new(endian, 11),
n_type: U32::new(endian, 2),
}))
.unwrap();
buffer.write(b"abc\0").unwrap();
buffer.write(b"descriptor\0\0\0\0\0\0").unwrap();
let section = object.add_section(Vec::new(), b".note8".to_vec(), SectionKind::Note);
object.section_mut(section).set_data(buffer, 8);
let bytes = &*object.write().unwrap();
//std::fs::write(&"note.o", &bytes).unwrap();
let header = elf::FileHeader64::parse(bytes).unwrap();
let endian: LittleEndian = header.endian().unwrap();
let sections = header.sections(endian, bytes).unwrap();
let section = sections.section(SectionIndex(1)).unwrap();
assert_eq!(sections.section_name(endian, section).unwrap(), b".note4");
assert_eq!(section.sh_addralign(endian), 4);
let mut notes = section.notes(endian, bytes).unwrap().unwrap();
let note = notes.next().unwrap().unwrap();
assert_eq!(note.name(), b"name1");
assert_eq!(note.desc(), b"descriptor\0");
assert_eq!(note.n_type(endian), 1);
let note = notes.next().unwrap().unwrap();
assert_eq!(note.name(), b"name2");
assert_eq!(note.desc(), b"descriptor\0");
assert_eq!(note.n_type(endian), 2);
assert!(notes.next().unwrap().is_none());
let section = sections.section(SectionIndex(2)).unwrap();
assert_eq!(sections.section_name(endian, section).unwrap(), b".note8");
assert_eq!(section.sh_addralign(endian), 8);
let mut notes = section.notes(endian, bytes).unwrap().unwrap();
let note = notes.next().unwrap().unwrap();
assert_eq!(note.name(), b"name1");
assert_eq!(note.desc(), b"descriptor\0");
assert_eq!(note.n_type(endian), 1);
let note = notes.next().unwrap().unwrap();
assert_eq!(note.name(), b"abc");
assert_eq!(note.desc(), b"descriptor\0");
assert_eq!(note.n_type(endian), 2);
assert!(notes.next().unwrap().is_none());
}
#[test]
fn gnu_property() {
gnu_property_inner::<elf::FileHeader32<Endianness>>(Architecture::I386);
gnu_property_inner::<elf::FileHeader64<Endianness>>(Architecture::X86_64);
}
fn gnu_property_inner<Elf: FileHeader<Endian = Endianness>>(architecture: Architecture) {
let endian = Endianness::Little;
let mut object = write::Object::new(BinaryFormat::Elf, architecture, endian);
object.add_elf_gnu_property_u32(
elf::GNU_PROPERTY_X86_FEATURE_1_AND,
elf::GNU_PROPERTY_X86_FEATURE_1_IBT | elf::GNU_PROPERTY_X86_FEATURE_1_SHSTK,
);
let bytes = &*object.write().unwrap();
//std::fs::write(&"note.o", &bytes).unwrap();
let header = Elf::parse(bytes).unwrap();
assert_eq!(header.endian().unwrap(), endian);
let sections = header.sections(endian, bytes).unwrap();
let section = sections.section(SectionIndex(1)).unwrap();
assert_eq!(
sections.section_name(endian, section).unwrap(),
b".note.gnu.property"
);
assert_eq!(section.sh_flags(endian).into(), u64::from(elf::SHF_ALLOC));
let mut notes = section.notes(endian, bytes).unwrap().unwrap();
let note = notes.next().unwrap().unwrap();
let mut props = note.gnu_properties(endian).unwrap();
let prop = props.next().unwrap().unwrap();
assert_eq!(prop.pr_type(), elf::GNU_PROPERTY_X86_FEATURE_1_AND);
assert_eq!(
prop.data_u32(endian).unwrap(),
elf::GNU_PROPERTY_X86_FEATURE_1_IBT | elf::GNU_PROPERTY_X86_FEATURE_1_SHSTK
);
assert!(props.next().unwrap().is_none());
assert!(notes.next().unwrap().is_none());
}