0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-05-19 11:51:17 +03:00

123 lines
4.0 KiB
C#
Raw Normal View History

using X86Disassembler.X86.Operands;
2025-04-12 23:24:42 +03:00
namespace X86Disassembler.X86.Handlers.FloatingPoint;
/// <summary>
/// Handler for floating-point operations on float32 (D8 opcode)
/// </summary>
2025-04-13 23:06:52 +03:00
public class Float32OperationHandler : InstructionHandler
2025-04-12 23:24:42 +03:00
{
// D8 opcode - operations on float32
private static readonly string[] Mnemonics =
[
"fadd",
"fmul",
"fcom",
"fcomp",
"fsub",
"fsubr",
"fdiv",
"fdivr"
];
// Corresponding instruction types for each mnemonic
private static readonly InstructionType[] InstructionTypes =
[
InstructionType.Fadd,
InstructionType.Fmul,
InstructionType.Fcom,
InstructionType.Fcomp,
InstructionType.Fsub,
InstructionType.Fsubr,
InstructionType.Fdiv,
InstructionType.Fdivr
];
2025-04-12 23:24:42 +03:00
/// <summary>
/// Initializes a new instance of the Float32OperationHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public Float32OperationHandler(InstructionDecoder decoder)
: base(decoder)
2025-04-12 23:24:42 +03:00
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
return opcode == 0xD8;
}
/// <summary>
/// Decodes a floating-point instruction for float32 operations
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
2025-04-14 01:08:14 +03:00
if (!Decoder.CanReadByte())
2025-04-12 23:24:42 +03:00
{
return false;
}
// Read the ModR/M byte
2025-04-16 18:30:17 +03:00
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
2025-04-12 23:24:42 +03:00
// Set the instruction type based on the reg field
instruction.Type = InstructionTypes[(int)reg];
2025-04-12 23:24:42 +03:00
// For memory operands, set the operand
if (mod != 3) // Memory operand
{
2025-04-16 18:30:17 +03:00
// Create a new memory operand with 32-bit size using the appropriate factory method
Operand operand;
if (rawOperand is DirectMemoryOperand directMemory)
{
operand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 32);
}
else if (rawOperand is BaseRegisterMemoryOperand baseRegMemory)
{
operand = OperandFactory.CreateBaseRegisterMemoryOperand(baseRegMemory.BaseRegister, 32);
}
else if (rawOperand is DisplacementMemoryOperand dispMemory)
{
operand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 32);
}
else if (rawOperand is ScaledIndexMemoryOperand scaledMemory)
{
operand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 32);
}
else
{
operand = rawOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
operand
];
2025-04-12 23:24:42 +03:00
}
else // Register operand (ST(i))
{
// For register operands, we need to handle the stack registers
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0); // ST(0)
var stiOperand = OperandFactory.CreateFPURegisterOperand((FpuRegisterIndex)rm); // ST(i)
// Set the structured operands
instruction.StructuredOperands =
[
st0Operand,
stiOperand
];
2025-04-12 23:24:42 +03:00
}
return true;
}
}