0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-05-19 11:51:17 +03:00

Removed obsolete handler classes and restored InstructionHandlerFactory

This commit is contained in:
bird_egop 2025-04-12 20:25:29 +03:00
parent 1442fd7060
commit dbc9b42007
4 changed files with 3 additions and 571 deletions

View File

@ -17,3 +17,5 @@ never use terminal commands to edit code. In case of a failure, write it to user
never address compiler warnings yourself. If you see a warning, suggest to address it.
when working with RVA variables, always add that to variable name, e.g. "nameRVA".
always build only affected project, not full solution.

View File

@ -1,126 +0,0 @@
namespace X86Disassembler.X86.Handlers;
/// <summary>
/// Handler for arithmetic and logical instructions (ADD, SUB, AND, OR, XOR, etc.)
/// </summary>
public class ArithmeticHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the ArithmeticHandler class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to decode</param>
/// <param name="decoder">The instruction decoder that owns this handler</param>
/// <param name="length">The length of the buffer</param>
public ArithmeticHandler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// XOR instructions
if (opcode >= 0x30 && opcode <= 0x35)
{
return true;
}
return false;
}
/// <summary>
/// Decodes an arithmetic or logical instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Set the mnemonic based on the opcode
instruction.Mnemonic = OpcodeMap.GetMnemonic(opcode);
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
switch (opcode)
{
case 0x30: // XOR r/m8, r8
case 0x31: // XOR r/m32, r32
{
// Read the ModR/M byte
var (mod, reg, rm, destOperand) = ModRMDecoder.ReadModRM();
// Determine the source register
string sourceReg;
if (opcode == 0x30) // 8-bit registers
{
sourceReg = ModRMDecoder.GetRegister8(reg);
}
else // 32-bit registers
{
sourceReg = ModRMDecoder.GetRegister32(reg);
}
// Set the operands
instruction.Operands = $"{destOperand}, {sourceReg}";
return true;
}
case 0x32: // XOR r8, r/m8
case 0x33: // XOR r32, r/m32
{
// Read the ModR/M byte
var (mod, reg, rm, srcOperand) = ModRMDecoder.ReadModRM();
// Determine the destination register
string destReg;
if (opcode == 0x32) // 8-bit registers
{
destReg = ModRMDecoder.GetRegister8(reg);
}
else // 32-bit registers
{
destReg = ModRMDecoder.GetRegister32(reg);
}
// Set the operands
instruction.Operands = $"{destReg}, {srcOperand}";
return true;
}
case 0x34: // XOR AL, imm8
{
if (position < Length)
{
byte imm8 = CodeBuffer[position];
Decoder.SetPosition(position + 1);
instruction.Operands = $"al, 0x{imm8:X2}";
return true;
}
break;
}
case 0x35: // XOR EAX, imm32
{
if (position + 3 < Length)
{
uint imm32 = BitConverter.ToUInt32(CodeBuffer, position);
Decoder.SetPosition(position + 4);
instruction.Operands = $"eax, 0x{imm32:X8}";
return true;
}
break;
}
}
return false;
}
}

View File

@ -1,343 +0,0 @@
namespace X86Disassembler.X86.Handlers;
/// <summary>
/// Handler for control flow instructions (JMP, CALL, RET, etc.)
/// </summary>
public class ControlFlowHandler : InstructionHandler
{
// Condition codes for conditional jumps
private static readonly string[] ConditionCodes = {
"o", "no", "b", "ae", "e", "ne", "be", "a",
"s", "ns", "p", "np", "l", "ge", "le", "g"
};
/// <summary>
/// Initializes a new instance of the ControlFlowHandler class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to decode</param>
/// <param name="decoder">The instruction decoder that owns this handler</param>
/// <param name="length">The length of the buffer</param>
public ControlFlowHandler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// Two-byte opcodes (0F prefix)
if (opcode == 0x0F)
{
int position = Decoder.GetPosition();
if (position < Length)
{
byte secondByte = CodeBuffer[position];
// Two-byte conditional jumps (0F 80-0F 8F)
if (secondByte >= 0x80 && secondByte <= 0x8F)
{
return true;
}
}
return false;
}
// RET instruction
if (opcode == 0xC3 || opcode == 0xC2)
{
return true;
}
// CALL instruction
if (opcode == 0xE8)
{
return true;
}
// JMP instructions
if (opcode == 0xE9 || opcode == 0xEB)
{
return true;
}
// Conditional jumps
if (opcode >= 0x70 && opcode <= 0x7F)
{
return true;
}
// INT instructions
if (opcode == 0xCC || opcode == 0xCD)
{
return true;
}
// JECXZ instruction
if (opcode == 0xE3)
{
return true;
}
return false;
}
/// <summary>
/// Decodes a control flow instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
// Handle two-byte opcodes (0F prefix)
if (opcode == 0x0F)
{
int position = Decoder.GetPosition();
if (position < Length)
{
byte secondByte = CodeBuffer[position];
Decoder.SetPosition(position + 1);
// Two-byte conditional jumps (0F 80-0F 8F)
if (secondByte >= 0x80 && secondByte <= 0x8F)
{
// Set mnemonic (j + condition code)
int condIndex = secondByte - 0x80;
instruction.Mnemonic = "j" + ConditionCodes[condIndex];
// Decode 32-bit relative jump
return DecodeTwoByteConditionalJump(instruction);
}
}
return false;
}
// Set the mnemonic based on the opcode
instruction.Mnemonic = OpcodeMap.GetMnemonic(opcode);
// Handle different types of control flow instructions
if (opcode == 0xC3) // RET
{
// No operands for RET
instruction.Operands = string.Empty;
return true;
}
else if (opcode == 0xC2) // RET imm16
{
return DecodeRETImm16(instruction);
}
else if (opcode == 0xE8) // CALL rel32
{
return DecodeCALLRel32(instruction);
}
else if (opcode == 0xE9) // JMP rel32
{
return DecodeJMPRel32(instruction);
}
else if (opcode == 0xEB) // JMP rel8
{
return DecodeJMPRel8(instruction);
}
else if (opcode >= 0x70 && opcode <= 0x7F) // Conditional jumps
{
return DecodeConditionalJump(opcode, instruction);
}
else if (opcode == 0xCC) // INT3
{
// No operands for INT3
instruction.Operands = string.Empty;
return true;
}
else if (opcode == 0xCD) // INT imm8
{
return DecodeINTImm8(instruction);
}
else if (opcode == 0xE3) // JECXZ rel8
{
return DecodeJECXZRel8(instruction);
}
return false;
}
/// <summary>
/// Decodes a RET instruction with 16-bit immediate operand
/// </summary>
private bool DecodeRETImm16(Instruction instruction)
{
int position = Decoder.GetPosition();
if (position + 2 > Length)
{
return false;
}
// Read the immediate value
ushort imm16 = BitConverter.ToUInt16(CodeBuffer, position);
Decoder.SetPosition(position + 2);
instruction.Operands = $"0x{imm16:X4}";
return true;
}
/// <summary>
/// Decodes a CALL instruction with 32-bit relative offset
/// </summary>
private bool DecodeCALLRel32(Instruction instruction)
{
int position = Decoder.GetPosition();
if (position + 4 > Length)
{
return false;
}
// Read the relative offset
int offset = BitConverter.ToInt32(CodeBuffer, position);
Decoder.SetPosition(position + 4);
// Calculate the target address (relative to the next instruction)
uint targetAddress = (uint)(position + offset + 4); // +4 because the offset is relative to the next instruction
instruction.Operands = $"0x{targetAddress:X8}";
return true;
}
/// <summary>
/// Decodes a JMP instruction with 32-bit relative offset
/// </summary>
private bool DecodeJMPRel32(Instruction instruction)
{
int position = Decoder.GetPosition();
if (position + 4 > Length)
{
return false;
}
// Read the relative offset
int offset = BitConverter.ToInt32(CodeBuffer, position);
Decoder.SetPosition(position + 4);
// Calculate the target address (relative to the next instruction)
uint targetAddress = (uint)(position + offset + 4); // +4 because the offset is relative to the next instruction
instruction.Operands = $"0x{targetAddress:X8}";
return true;
}
/// <summary>
/// Decodes a JMP instruction with 8-bit relative offset
/// </summary>
private bool DecodeJMPRel8(Instruction instruction)
{
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Read the relative offset
sbyte offset = (sbyte)CodeBuffer[position];
Decoder.SetPosition(position + 1);
// Calculate the target address (relative to the next instruction)
uint targetAddress = (uint)(position + offset + 1); // +1 because the offset is relative to the next instruction
instruction.Operands = $"0x{targetAddress:X8}";
return true;
}
/// <summary>
/// Decodes a conditional jump instruction
/// </summary>
private bool DecodeConditionalJump(byte opcode, Instruction instruction)
{
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Read the relative offset
sbyte offset = (sbyte)CodeBuffer[position];
Decoder.SetPosition(position + 1);
// Calculate the target address (relative to the next instruction)
uint targetAddress = (uint)(position + offset + 1); // +1 because the offset is relative to the next instruction
instruction.Operands = $"0x{targetAddress:X8}";
return true;
}
/// <summary>
/// Decodes a two-byte conditional jump instruction with 32-bit relative offset
/// </summary>
private bool DecodeTwoByteConditionalJump(Instruction instruction)
{
int position = Decoder.GetPosition();
if (position + 4 > Length)
{
return false;
}
// Read the relative offset
int offset = BitConverter.ToInt32(CodeBuffer, position);
Decoder.SetPosition(position + 4);
// Calculate the target address (relative to the next instruction)
uint targetAddress = (uint)(position + offset + 4); // +4 because the offset is relative to the next instruction
instruction.Operands = $"0x{targetAddress:X8}";
return true;
}
/// <summary>
/// Decodes an INT instruction with 8-bit immediate operand
/// </summary>
private bool DecodeINTImm8(Instruction instruction)
{
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Read the immediate value
byte imm8 = CodeBuffer[position];
Decoder.SetPosition(position + 1);
instruction.Operands = $"0x{imm8:X2}";
return true;
}
/// <summary>
/// Decodes a JECXZ instruction with 8-bit relative offset
/// </summary>
private bool DecodeJECXZRel8(Instruction instruction)
{
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Read the relative offset
sbyte offset = (sbyte)CodeBuffer[position];
Decoder.SetPosition(position + 1);
// Calculate the target address (relative to the next instruction)
uint targetAddress = (uint)(position + offset + 1); // +1 because the offset is relative to the next instruction
instruction.Operands = $"0x{targetAddress:X8}";
return true;
}
}

View File

@ -1,101 +0,0 @@
namespace X86Disassembler.X86.Handlers;
/// <summary>
/// Handler for TEST instructions
/// </summary>
public class TestHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the TestHandler class
/// </summary>
/// <param name="codeBuffer">The buffer containing the code to decode</param>
/// <param name="decoder">The instruction decoder that owns this handler</param>
/// <param name="length">The length of the buffer</param>
public TestHandler(byte[] codeBuffer, InstructionDecoder decoder, int length)
: base(codeBuffer, decoder, length)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
return opcode == 0x84 || opcode == 0x85 || opcode == 0xA8 || opcode == 0xA9;
}
/// <summary>
/// Decodes a TEST instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
int position = Decoder.GetPosition();
if (position >= Length)
{
return false;
}
// Set the mnemonic
instruction.Mnemonic = "test";
switch (opcode)
{
case 0x84: // TEST r/m8, r8
case 0x85: // TEST r/m32, r32
// Read the ModR/M byte
var (mod, reg, rm, destOperand) = ModRMDecoder.ReadModRM();
// Determine the source register
string sourceReg;
if (opcode == 0x84) // 8-bit registers
{
sourceReg = ModRMDecoder.GetRegister8(reg);
}
else // 32-bit registers
{
sourceReg = ModRMDecoder.GetRegister32(reg);
}
// Set the operands
instruction.Operands = $"{destOperand}, {sourceReg}";
break;
case 0xA8: // TEST AL, imm8
if (position < Length)
{
byte imm8 = CodeBuffer[position];
Decoder.SetPosition(position + 1);
instruction.Operands = $"al, 0x{imm8:X2}";
}
else
{
instruction.Operands = "al, ???";
}
break;
case 0xA9: // TEST EAX, imm32
if (position + 3 < Length)
{
uint imm32 = BitConverter.ToUInt32(CodeBuffer, position);
Decoder.SetPosition(position + 4);
instruction.Operands = $"eax, 0x{imm32:X8}";
}
else
{
instruction.Operands = "eax, ???";
}
break;
default:
return false;
}
return true;
}
}