Initial vendor packages

Signed-off-by: Valentin Popov <valentin@popov.link>
This commit is contained in:
2024-01-08 01:21:28 +04:00
parent 5ecd8cf2cb
commit 1b6a04ca55
7309 changed files with 2160054 additions and 0 deletions

4
vendor/backtrace/src/android-api.c vendored Normal file
View File

@@ -0,0 +1,4 @@
// Used from the build script to detect the value of the `__ANDROID_API__`
// builtin #define
APIVERSION __ANDROID_API__

View File

@@ -0,0 +1,257 @@
//! Backtrace strategy for MSVC platforms.
//!
//! This module contains the ability to generate a backtrace on MSVC using one
//! of two possible methods. The `StackWalkEx` function is primarily used if
//! possible, but not all systems have that. Failing that the `StackWalk64`
//! function is used instead. Note that `StackWalkEx` is favored because it
//! handles debuginfo internally and returns inline frame information.
//!
//! Note that all dbghelp support is loaded dynamically, see `src/dbghelp.rs`
//! for more information about that.
#![allow(bad_style)]
use super::super::{dbghelp, windows::*};
use core::ffi::c_void;
use core::mem;
#[derive(Clone, Copy)]
pub enum StackFrame {
New(STACKFRAME_EX),
Old(STACKFRAME64),
}
#[derive(Clone, Copy)]
pub struct Frame {
pub(crate) stack_frame: StackFrame,
base_address: *mut c_void,
}
// we're just sending around raw pointers and reading them, never interpreting
// them so this should be safe to both send and share across threads.
unsafe impl Send for Frame {}
unsafe impl Sync for Frame {}
impl Frame {
pub fn ip(&self) -> *mut c_void {
self.addr_pc().Offset as *mut _
}
pub fn sp(&self) -> *mut c_void {
self.addr_stack().Offset as *mut _
}
pub fn symbol_address(&self) -> *mut c_void {
self.ip()
}
pub fn module_base_address(&self) -> Option<*mut c_void> {
Some(self.base_address)
}
fn addr_pc(&self) -> &ADDRESS64 {
match self.stack_frame {
StackFrame::New(ref new) => &new.AddrPC,
StackFrame::Old(ref old) => &old.AddrPC,
}
}
fn addr_pc_mut(&mut self) -> &mut ADDRESS64 {
match self.stack_frame {
StackFrame::New(ref mut new) => &mut new.AddrPC,
StackFrame::Old(ref mut old) => &mut old.AddrPC,
}
}
fn addr_frame_mut(&mut self) -> &mut ADDRESS64 {
match self.stack_frame {
StackFrame::New(ref mut new) => &mut new.AddrFrame,
StackFrame::Old(ref mut old) => &mut old.AddrFrame,
}
}
fn addr_stack(&self) -> &ADDRESS64 {
match self.stack_frame {
StackFrame::New(ref new) => &new.AddrStack,
StackFrame::Old(ref old) => &old.AddrStack,
}
}
fn addr_stack_mut(&mut self) -> &mut ADDRESS64 {
match self.stack_frame {
StackFrame::New(ref mut new) => &mut new.AddrStack,
StackFrame::Old(ref mut old) => &mut old.AddrStack,
}
}
}
#[repr(C, align(16))] // required by `CONTEXT`, is a FIXME in winapi right now
struct MyContext(CONTEXT);
#[inline(always)]
pub unsafe fn trace(cb: &mut dyn FnMut(&super::Frame) -> bool) {
// Allocate necessary structures for doing the stack walk
let process = GetCurrentProcess();
let thread = GetCurrentThread();
let mut context = mem::zeroed::<MyContext>();
RtlCaptureContext(&mut context.0);
// Ensure this process's symbols are initialized
let dbghelp = match dbghelp::init() {
Ok(dbghelp) => dbghelp,
Err(()) => return, // oh well...
};
// On x86_64 and ARM64 we opt to not use the default `Sym*` functions from
// dbghelp for getting the function table and module base. Instead we use
// the `RtlLookupFunctionEntry` function in kernel32 which will account for
// JIT compiler frames as well. These should be equivalent, but using
// `Rtl*` allows us to backtrace through JIT frames.
//
// Note that `RtlLookupFunctionEntry` only works for in-process backtraces,
// but that's all we support anyway, so it all lines up well.
cfg_if::cfg_if! {
if #[cfg(target_pointer_width = "64")] {
use core::ptr;
unsafe extern "system" fn function_table_access(_process: HANDLE, addr: DWORD64) -> PVOID {
let mut base = 0;
RtlLookupFunctionEntry(addr, &mut base, ptr::null_mut()).cast()
}
unsafe extern "system" fn get_module_base(_process: HANDLE, addr: DWORD64) -> DWORD64 {
let mut base = 0;
RtlLookupFunctionEntry(addr, &mut base, ptr::null_mut());
base
}
} else {
let function_table_access = dbghelp.SymFunctionTableAccess64();
let get_module_base = dbghelp.SymGetModuleBase64();
}
}
let process_handle = GetCurrentProcess();
// Attempt to use `StackWalkEx` if we can, but fall back to `StackWalk64`
// since it's in theory supported on more systems.
match (*dbghelp.dbghelp()).StackWalkEx() {
Some(StackWalkEx) => {
let mut inner: STACKFRAME_EX = mem::zeroed();
inner.StackFrameSize = mem::size_of::<STACKFRAME_EX>() as DWORD;
let mut frame = super::Frame {
inner: Frame {
stack_frame: StackFrame::New(inner),
base_address: 0 as _,
},
};
let image = init_frame(&mut frame.inner, &context.0);
let frame_ptr = match &mut frame.inner.stack_frame {
StackFrame::New(ptr) => ptr as *mut STACKFRAME_EX,
_ => unreachable!(),
};
while StackWalkEx(
image as DWORD,
process,
thread,
frame_ptr,
&mut context.0 as *mut CONTEXT as *mut _,
None,
Some(function_table_access),
Some(get_module_base),
None,
0,
) == TRUE
{
frame.inner.base_address = get_module_base(process_handle, frame.ip() as _) as _;
if !cb(&frame) {
break;
}
}
}
None => {
let mut frame = super::Frame {
inner: Frame {
stack_frame: StackFrame::Old(mem::zeroed()),
base_address: 0 as _,
},
};
let image = init_frame(&mut frame.inner, &context.0);
let frame_ptr = match &mut frame.inner.stack_frame {
StackFrame::Old(ptr) => ptr as *mut STACKFRAME64,
_ => unreachable!(),
};
while dbghelp.StackWalk64()(
image as DWORD,
process,
thread,
frame_ptr,
&mut context.0 as *mut CONTEXT as *mut _,
None,
Some(function_table_access),
Some(get_module_base),
None,
) == TRUE
{
frame.inner.base_address = get_module_base(process_handle, frame.ip() as _) as _;
if !cb(&frame) {
break;
}
}
}
}
}
#[cfg(target_arch = "x86_64")]
fn init_frame(frame: &mut Frame, ctx: &CONTEXT) -> WORD {
frame.addr_pc_mut().Offset = ctx.Rip as u64;
frame.addr_pc_mut().Mode = AddrModeFlat;
frame.addr_stack_mut().Offset = ctx.Rsp as u64;
frame.addr_stack_mut().Mode = AddrModeFlat;
frame.addr_frame_mut().Offset = ctx.Rbp as u64;
frame.addr_frame_mut().Mode = AddrModeFlat;
IMAGE_FILE_MACHINE_AMD64
}
#[cfg(target_arch = "x86")]
fn init_frame(frame: &mut Frame, ctx: &CONTEXT) -> WORD {
frame.addr_pc_mut().Offset = ctx.Eip as u64;
frame.addr_pc_mut().Mode = AddrModeFlat;
frame.addr_stack_mut().Offset = ctx.Esp as u64;
frame.addr_stack_mut().Mode = AddrModeFlat;
frame.addr_frame_mut().Offset = ctx.Ebp as u64;
frame.addr_frame_mut().Mode = AddrModeFlat;
IMAGE_FILE_MACHINE_I386
}
#[cfg(target_arch = "aarch64")]
fn init_frame(frame: &mut Frame, ctx: &CONTEXT) -> WORD {
frame.addr_pc_mut().Offset = ctx.Pc as u64;
frame.addr_pc_mut().Mode = AddrModeFlat;
frame.addr_stack_mut().Offset = ctx.Sp as u64;
frame.addr_stack_mut().Mode = AddrModeFlat;
unsafe {
frame.addr_frame_mut().Offset = ctx.u.s().Fp as u64;
}
frame.addr_frame_mut().Mode = AddrModeFlat;
IMAGE_FILE_MACHINE_ARM64
}
#[cfg(target_arch = "arm")]
fn init_frame(frame: &mut Frame, ctx: &CONTEXT) -> WORD {
frame.addr_pc_mut().Offset = ctx.Pc as u64;
frame.addr_pc_mut().Mode = AddrModeFlat;
frame.addr_stack_mut().Offset = ctx.Sp as u64;
frame.addr_stack_mut().Mode = AddrModeFlat;
unsafe {
frame.addr_frame_mut().Offset = ctx.R11 as u64;
}
frame.addr_frame_mut().Mode = AddrModeFlat;
IMAGE_FILE_MACHINE_ARMNT
}

View File

@@ -0,0 +1,268 @@
//! Backtrace support using libunwind/gcc_s/etc APIs.
//!
//! This module contains the ability to unwind the stack using libunwind-style
//! APIs. Note that there's a whole bunch of implementations of the
//! libunwind-like API, and this is just trying to be compatible with most of
//! them all at once instead of being picky.
//!
//! The libunwind API is powered by `_Unwind_Backtrace` and is in practice very
//! reliable at generating a backtrace. It's not entirely clear how it does it
//! (frame pointers? eh_frame info? both?) but it seems to work!
//!
//! Most of the complexity of this module is handling the various platform
//! differences across libunwind implementations. Otherwise this is a pretty
//! straightforward Rust binding to the libunwind APIs.
//!
//! This is the default unwinding API for all non-Windows platforms currently.
use super::super::Bomb;
use core::ffi::c_void;
pub enum Frame {
Raw(*mut uw::_Unwind_Context),
Cloned {
ip: *mut c_void,
sp: *mut c_void,
symbol_address: *mut c_void,
},
}
// With a raw libunwind pointer it should only ever be access in a readonly
// threadsafe fashion, so it's `Sync`. When sending to other threads via `Clone`
// we always switch to a version which doesn't retain interior pointers, so we
// should be `Send` as well.
unsafe impl Send for Frame {}
unsafe impl Sync for Frame {}
impl Frame {
pub fn ip(&self) -> *mut c_void {
let ctx = match *self {
Frame::Raw(ctx) => ctx,
Frame::Cloned { ip, .. } => return ip,
};
unsafe { uw::_Unwind_GetIP(ctx) as *mut c_void }
}
pub fn sp(&self) -> *mut c_void {
match *self {
Frame::Raw(ctx) => unsafe { uw::get_sp(ctx) as *mut c_void },
Frame::Cloned { sp, .. } => sp,
}
}
pub fn symbol_address(&self) -> *mut c_void {
if let Frame::Cloned { symbol_address, .. } = *self {
return symbol_address;
}
// The macOS linker emits a "compact" unwind table that only includes an
// entry for a function if that function either has an LSDA or its
// encoding differs from that of the previous entry. Consequently, on
// macOS, `_Unwind_FindEnclosingFunction` is unreliable (it can return a
// pointer to some totally unrelated function). Instead, we just always
// return the ip.
//
// https://github.com/rust-lang/rust/issues/74771#issuecomment-664056788
//
// Note the `skip_inner_frames.rs` test is skipped on macOS due to this
// clause, and if this is fixed that test in theory can be run on macOS!
if cfg!(target_vendor = "apple") {
self.ip()
} else {
unsafe { uw::_Unwind_FindEnclosingFunction(self.ip()) }
}
}
pub fn module_base_address(&self) -> Option<*mut c_void> {
None
}
}
impl Clone for Frame {
fn clone(&self) -> Frame {
Frame::Cloned {
ip: self.ip(),
sp: self.sp(),
symbol_address: self.symbol_address(),
}
}
}
#[inline(always)]
pub unsafe fn trace(mut cb: &mut dyn FnMut(&super::Frame) -> bool) {
uw::_Unwind_Backtrace(trace_fn, &mut cb as *mut _ as *mut _);
extern "C" fn trace_fn(
ctx: *mut uw::_Unwind_Context,
arg: *mut c_void,
) -> uw::_Unwind_Reason_Code {
let cb = unsafe { &mut *(arg as *mut &mut dyn FnMut(&super::Frame) -> bool) };
let cx = super::Frame {
inner: Frame::Raw(ctx),
};
let mut bomb = Bomb { enabled: true };
let keep_going = cb(&cx);
bomb.enabled = false;
if keep_going {
uw::_URC_NO_REASON
} else {
uw::_URC_FAILURE
}
}
}
/// Unwind library interface used for backtraces
///
/// Note that dead code is allowed as here are just bindings
/// iOS doesn't use all of them it but adding more
/// platform-specific configs pollutes the code too much
#[allow(non_camel_case_types)]
#[allow(non_snake_case)]
#[allow(dead_code)]
mod uw {
pub use self::_Unwind_Reason_Code::*;
use core::ffi::c_void;
#[repr(C)]
pub enum _Unwind_Reason_Code {
_URC_NO_REASON = 0,
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
_URC_FATAL_PHASE2_ERROR = 2,
_URC_FATAL_PHASE1_ERROR = 3,
_URC_NORMAL_STOP = 4,
_URC_END_OF_STACK = 5,
_URC_HANDLER_FOUND = 6,
_URC_INSTALL_CONTEXT = 7,
_URC_CONTINUE_UNWIND = 8,
_URC_FAILURE = 9, // used only by ARM EABI
}
pub enum _Unwind_Context {}
pub type _Unwind_Trace_Fn =
extern "C" fn(ctx: *mut _Unwind_Context, arg: *mut c_void) -> _Unwind_Reason_Code;
extern "C" {
pub fn _Unwind_Backtrace(
trace: _Unwind_Trace_Fn,
trace_argument: *mut c_void,
) -> _Unwind_Reason_Code;
}
cfg_if::cfg_if! {
// available since GCC 4.2.0, should be fine for our purpose
if #[cfg(all(
not(all(target_os = "android", target_arch = "arm")),
not(all(target_os = "freebsd", target_arch = "arm")),
not(all(target_os = "linux", target_arch = "arm")),
not(all(target_os = "horizon", target_arch = "arm")),
not(all(target_os = "vita", target_arch = "arm")),
))] {
extern "C" {
pub fn _Unwind_GetIP(ctx: *mut _Unwind_Context) -> libc::uintptr_t;
pub fn _Unwind_FindEnclosingFunction(pc: *mut c_void) -> *mut c_void;
#[cfg(not(all(target_os = "linux", target_arch = "s390x")))]
// This function is a misnomer: rather than getting this frame's
// Canonical Frame Address (aka the caller frame's SP) it
// returns this frame's SP.
//
// https://github.com/libunwind/libunwind/blob/d32956507cf29d9b1a98a8bce53c78623908f4fe/src/unwind/GetCFA.c#L28-L35
#[link_name = "_Unwind_GetCFA"]
pub fn get_sp(ctx: *mut _Unwind_Context) -> libc::uintptr_t;
}
// s390x uses a biased CFA value, therefore we need to use
// _Unwind_GetGR to get the stack pointer register (%r15)
// instead of relying on _Unwind_GetCFA.
#[cfg(all(target_os = "linux", target_arch = "s390x"))]
pub unsafe fn get_sp(ctx: *mut _Unwind_Context) -> libc::uintptr_t {
extern "C" {
pub fn _Unwind_GetGR(ctx: *mut _Unwind_Context, index: libc::c_int) -> libc::uintptr_t;
}
_Unwind_GetGR(ctx, 15)
}
} else {
// On android and arm, the function `_Unwind_GetIP` and a bunch of
// others are macros, so we define functions containing the
// expansion of the macros.
//
// TODO: link to the header file that defines these macros, if you
// can find it. (I, fitzgen, cannot find the header file that some
// of these macro expansions were originally borrowed from.)
#[repr(C)]
enum _Unwind_VRS_Result {
_UVRSR_OK = 0,
_UVRSR_NOT_IMPLEMENTED = 1,
_UVRSR_FAILED = 2,
}
#[repr(C)]
enum _Unwind_VRS_RegClass {
_UVRSC_CORE = 0,
_UVRSC_VFP = 1,
_UVRSC_FPA = 2,
_UVRSC_WMMXD = 3,
_UVRSC_WMMXC = 4,
}
#[repr(C)]
enum _Unwind_VRS_DataRepresentation {
_UVRSD_UINT32 = 0,
_UVRSD_VFPX = 1,
_UVRSD_FPAX = 2,
_UVRSD_UINT64 = 3,
_UVRSD_FLOAT = 4,
_UVRSD_DOUBLE = 5,
}
type _Unwind_Word = libc::c_uint;
extern "C" {
fn _Unwind_VRS_Get(
ctx: *mut _Unwind_Context,
klass: _Unwind_VRS_RegClass,
word: _Unwind_Word,
repr: _Unwind_VRS_DataRepresentation,
data: *mut c_void,
) -> _Unwind_VRS_Result;
}
pub unsafe fn _Unwind_GetIP(ctx: *mut _Unwind_Context) -> libc::uintptr_t {
let mut val: _Unwind_Word = 0;
let ptr = &mut val as *mut _Unwind_Word;
let _ = _Unwind_VRS_Get(
ctx,
_Unwind_VRS_RegClass::_UVRSC_CORE,
15,
_Unwind_VRS_DataRepresentation::_UVRSD_UINT32,
ptr as *mut c_void,
);
(val & !1) as libc::uintptr_t
}
// R13 is the stack pointer on arm.
const SP: _Unwind_Word = 13;
pub unsafe fn get_sp(ctx: *mut _Unwind_Context) -> libc::uintptr_t {
let mut val: _Unwind_Word = 0;
let ptr = &mut val as *mut _Unwind_Word;
let _ = _Unwind_VRS_Get(
ctx,
_Unwind_VRS_RegClass::_UVRSC_CORE,
SP,
_Unwind_VRS_DataRepresentation::_UVRSD_UINT32,
ptr as *mut c_void,
);
val as libc::uintptr_t
}
// This function also doesn't exist on Android or ARM/Linux, so make it
// a no-op.
pub unsafe fn _Unwind_FindEnclosingFunction(pc: *mut c_void) -> *mut c_void {
pc
}
}
}
}

109
vendor/backtrace/src/backtrace/miri.rs vendored Normal file
View File

@@ -0,0 +1,109 @@
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::ffi::c_void;
extern "Rust" {
fn miri_backtrace_size(flags: u64) -> usize;
fn miri_get_backtrace(flags: u64, buf: *mut *mut ());
fn miri_resolve_frame(ptr: *mut (), flags: u64) -> MiriFrame;
fn miri_resolve_frame_names(ptr: *mut (), flags: u64, name_buf: *mut u8, filename_buf: *mut u8);
}
#[repr(C)]
pub struct MiriFrame {
pub name_len: usize,
pub filename_len: usize,
pub lineno: u32,
pub colno: u32,
pub fn_ptr: *mut c_void,
}
#[derive(Clone, Debug)]
pub struct FullMiriFrame {
pub name: Box<[u8]>,
pub filename: Box<[u8]>,
pub lineno: u32,
pub colno: u32,
pub fn_ptr: *mut c_void,
}
#[derive(Debug, Clone)]
pub struct Frame {
pub addr: *mut c_void,
pub inner: FullMiriFrame,
}
// SAFETY: Miri guarantees that the returned pointer
// can be used from any thread.
unsafe impl Send for Frame {}
unsafe impl Sync for Frame {}
impl Frame {
pub fn ip(&self) -> *mut c_void {
self.addr
}
pub fn sp(&self) -> *mut c_void {
core::ptr::null_mut()
}
pub fn symbol_address(&self) -> *mut c_void {
self.inner.fn_ptr
}
pub fn module_base_address(&self) -> Option<*mut c_void> {
None
}
}
pub fn trace<F: FnMut(&super::Frame) -> bool>(cb: F) {
// SAFETY: Miri guarantees that the backtrace API functions
// can be called from any thread.
unsafe { trace_unsynchronized(cb) };
}
pub fn resolve_addr(ptr: *mut c_void) -> Frame {
// SAFETY: Miri will stop execution with an error if this pointer
// is invalid.
let frame = unsafe { miri_resolve_frame(ptr as *mut (), 1) };
let mut name = Vec::with_capacity(frame.name_len);
let mut filename = Vec::with_capacity(frame.filename_len);
// SAFETY: name and filename have been allocated with the amount
// of memory miri has asked for, and miri guarantees it will initialize it
unsafe {
miri_resolve_frame_names(ptr as *mut (), 0, name.as_mut_ptr(), filename.as_mut_ptr());
name.set_len(frame.name_len);
filename.set_len(frame.filename_len);
}
Frame {
addr: ptr,
inner: FullMiriFrame {
name: name.into(),
filename: filename.into(),
lineno: frame.lineno,
colno: frame.colno,
fn_ptr: frame.fn_ptr,
},
}
}
unsafe fn trace_unsynchronized<F: FnMut(&super::Frame) -> bool>(mut cb: F) {
let len = miri_backtrace_size(0);
let mut frames = Vec::with_capacity(len);
miri_get_backtrace(1, frames.as_mut_ptr());
frames.set_len(len);
for ptr in frames.iter() {
let frame = resolve_addr(*ptr as *mut c_void);
if !cb(&super::Frame { inner: frame }) {
return;
}
}
}

163
vendor/backtrace/src/backtrace/mod.rs vendored Normal file
View File

@@ -0,0 +1,163 @@
use core::ffi::c_void;
use core::fmt;
/// Inspects the current call-stack, passing all active frames into the closure
/// provided to calculate a stack trace.
///
/// This function is the workhorse of this library in calculating the stack
/// traces for a program. The given closure `cb` is yielded instances of a
/// `Frame` which represent information about that call frame on the stack. The
/// closure is yielded frames in a top-down fashion (most recently called
/// functions first).
///
/// The closure's return value is an indication of whether the backtrace should
/// continue. A return value of `false` will terminate the backtrace and return
/// immediately.
///
/// Once a `Frame` is acquired you will likely want to call `backtrace::resolve`
/// to convert the `ip` (instruction pointer) or symbol address to a `Symbol`
/// through which the name and/or filename/line number can be learned.
///
/// Note that this is a relatively low-level function and if you'd like to, for
/// example, capture a backtrace to be inspected later, then the `Backtrace`
/// type may be more appropriate.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
///
/// # Panics
///
/// This function strives to never panic, but if the `cb` provided panics then
/// some platforms will force a double panic to abort the process. Some
/// platforms use a C library which internally uses callbacks which cannot be
/// unwound through, so panicking from `cb` may trigger a process abort.
///
/// # Example
///
/// ```
/// extern crate backtrace;
///
/// fn main() {
/// backtrace::trace(|frame| {
/// // ...
///
/// true // continue the backtrace
/// });
/// }
/// ```
#[cfg(feature = "std")]
pub fn trace<F: FnMut(&Frame) -> bool>(cb: F) {
let _guard = crate::lock::lock();
unsafe { trace_unsynchronized(cb) }
}
/// Same as `trace`, only unsafe as it's unsynchronized.
///
/// This function does not have synchronization guarantees but is available
/// when the `std` feature of this crate isn't compiled in. See the `trace`
/// function for more documentation and examples.
///
/// # Panics
///
/// See information on `trace` for caveats on `cb` panicking.
pub unsafe fn trace_unsynchronized<F: FnMut(&Frame) -> bool>(mut cb: F) {
trace_imp(&mut cb)
}
/// A trait representing one frame of a backtrace, yielded to the `trace`
/// function of this crate.
///
/// The tracing function's closure will be yielded frames, and the frame is
/// virtually dispatched as the underlying implementation is not always known
/// until runtime.
#[derive(Clone)]
pub struct Frame {
pub(crate) inner: FrameImp,
}
impl Frame {
/// Returns the current instruction pointer of this frame.
///
/// This is normally the next instruction to execute in the frame, but not
/// all implementations list this with 100% accuracy (but it's generally
/// pretty close).
///
/// It is recommended to pass this value to `backtrace::resolve` to turn it
/// into a symbol name.
pub fn ip(&self) -> *mut c_void {
self.inner.ip()
}
/// Returns the current stack pointer of this frame.
///
/// In the case that a backend cannot recover the stack pointer for this
/// frame, a null pointer is returned.
pub fn sp(&self) -> *mut c_void {
self.inner.sp()
}
/// Returns the starting symbol address of the frame of this function.
///
/// This will attempt to rewind the instruction pointer returned by `ip` to
/// the start of the function, returning that value. In some cases, however,
/// backends will just return `ip` from this function.
///
/// The returned value can sometimes be used if `backtrace::resolve` failed
/// on the `ip` given above.
pub fn symbol_address(&self) -> *mut c_void {
self.inner.symbol_address()
}
/// Returns the base address of the module to which the frame belongs.
pub fn module_base_address(&self) -> Option<*mut c_void> {
self.inner.module_base_address()
}
}
impl fmt::Debug for Frame {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Frame")
.field("ip", &self.ip())
.field("symbol_address", &self.symbol_address())
.finish()
}
}
cfg_if::cfg_if! {
// This needs to come first, to ensure that
// Miri takes priority over the host platform
if #[cfg(miri)] {
pub(crate) mod miri;
use self::miri::trace as trace_imp;
pub(crate) use self::miri::Frame as FrameImp;
} else if #[cfg(
any(
all(
unix,
not(target_os = "emscripten"),
not(all(target_os = "ios", target_arch = "arm")),
not(all(target_os = "nto", target_env = "nto70")),
),
all(
target_env = "sgx",
target_vendor = "fortanix",
),
)
)] {
mod libunwind;
use self::libunwind::trace as trace_imp;
pub(crate) use self::libunwind::Frame as FrameImp;
} else if #[cfg(all(windows, not(target_vendor = "uwp")))] {
mod dbghelp;
use self::dbghelp::trace as trace_imp;
pub(crate) use self::dbghelp::Frame as FrameImp;
#[cfg(target_env = "msvc")] // only used in dbghelp symbolize
pub(crate) use self::dbghelp::StackFrame;
} else {
mod noop;
use self::noop::trace as trace_imp;
pub(crate) use self::noop::Frame as FrameImp;
}
}

28
vendor/backtrace/src/backtrace/noop.rs vendored Normal file
View File

@@ -0,0 +1,28 @@
//! Empty implementation of unwinding used when no other implementation is
//! appropriate.
use core::ffi::c_void;
#[inline(always)]
pub fn trace(_cb: &mut dyn FnMut(&super::Frame) -> bool) {}
#[derive(Clone)]
pub struct Frame;
impl Frame {
pub fn ip(&self) -> *mut c_void {
0 as *mut _
}
pub fn sp(&self) -> *mut c_void {
0 as *mut _
}
pub fn symbol_address(&self) -> *mut c_void {
0 as *mut _
}
pub fn module_base_address(&self) -> Option<*mut c_void> {
None
}
}

555
vendor/backtrace/src/capture.rs vendored Normal file
View File

@@ -0,0 +1,555 @@
use crate::PrintFmt;
use crate::{resolve, resolve_frame, trace, BacktraceFmt, Symbol, SymbolName};
use std::ffi::c_void;
use std::fmt;
use std::path::{Path, PathBuf};
use std::prelude::v1::*;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// Representation of an owned and self-contained backtrace.
///
/// This structure can be used to capture a backtrace at various points in a
/// program and later used to inspect what the backtrace was at that time.
///
/// `Backtrace` supports pretty-printing of backtraces through its `Debug`
/// implementation.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[derive(Clone)]
#[cfg_attr(feature = "serialize-rustc", derive(RustcDecodable, RustcEncodable))]
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
pub struct Backtrace {
// Frames here are listed from top-to-bottom of the stack
frames: Vec<BacktraceFrame>,
// The index we believe is the actual start of the backtrace, omitting
// frames like `Backtrace::new` and `backtrace::trace`.
actual_start_index: usize,
}
fn _assert_send_sync() {
fn _assert<T: Send + Sync>() {}
_assert::<Backtrace>();
}
/// Captured version of a frame in a backtrace.
///
/// This type is returned as a list from `Backtrace::frames` and represents one
/// stack frame in a captured backtrace.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[derive(Clone)]
pub struct BacktraceFrame {
frame: Frame,
symbols: Option<Vec<BacktraceSymbol>>,
}
#[derive(Clone)]
enum Frame {
Raw(crate::Frame),
#[allow(dead_code)]
Deserialized {
ip: usize,
symbol_address: usize,
module_base_address: Option<usize>,
},
}
impl Frame {
fn ip(&self) -> *mut c_void {
match *self {
Frame::Raw(ref f) => f.ip(),
Frame::Deserialized { ip, .. } => ip as *mut c_void,
}
}
fn symbol_address(&self) -> *mut c_void {
match *self {
Frame::Raw(ref f) => f.symbol_address(),
Frame::Deserialized { symbol_address, .. } => symbol_address as *mut c_void,
}
}
fn module_base_address(&self) -> Option<*mut c_void> {
match *self {
Frame::Raw(ref f) => f.module_base_address(),
Frame::Deserialized {
module_base_address,
..
} => module_base_address.map(|addr| addr as *mut c_void),
}
}
}
/// Captured version of a symbol in a backtrace.
///
/// This type is returned as a list from `BacktraceFrame::symbols` and
/// represents the metadata for a symbol in a backtrace.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[derive(Clone)]
#[cfg_attr(feature = "serialize-rustc", derive(RustcDecodable, RustcEncodable))]
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
pub struct BacktraceSymbol {
name: Option<Vec<u8>>,
addr: Option<usize>,
filename: Option<PathBuf>,
lineno: Option<u32>,
colno: Option<u32>,
}
impl Backtrace {
/// Captures a backtrace at the callsite of this function, returning an
/// owned representation.
///
/// This function is useful for representing a backtrace as an object in
/// Rust. This returned value can be sent across threads and printed
/// elsewhere, and the purpose of this value is to be entirely self
/// contained.
///
/// Note that on some platforms acquiring a full backtrace and resolving it
/// can be extremely expensive. If the cost is too much for your application
/// it's recommended to instead use `Backtrace::new_unresolved()` which
/// avoids the symbol resolution step (which typically takes the longest)
/// and allows deferring that to a later date.
///
/// # Examples
///
/// ```
/// use backtrace::Backtrace;
///
/// let current_backtrace = Backtrace::new();
/// ```
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[inline(never)] // want to make sure there's a frame here to remove
pub fn new() -> Backtrace {
let mut bt = Self::create(Self::new as usize);
bt.resolve();
bt
}
/// Similar to `new` except that this does not resolve any symbols, this
/// simply captures the backtrace as a list of addresses.
///
/// At a later time the `resolve` function can be called to resolve this
/// backtrace's symbols into readable names. This function exists because
/// the resolution process can sometimes take a significant amount of time
/// whereas any one backtrace may only be rarely printed.
///
/// # Examples
///
/// ```
/// use backtrace::Backtrace;
///
/// let mut current_backtrace = Backtrace::new_unresolved();
/// println!("{:?}", current_backtrace); // no symbol names
/// current_backtrace.resolve();
/// println!("{:?}", current_backtrace); // symbol names now present
/// ```
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[inline(never)] // want to make sure there's a frame here to remove
pub fn new_unresolved() -> Backtrace {
Self::create(Self::new_unresolved as usize)
}
fn create(ip: usize) -> Backtrace {
let mut frames = Vec::new();
let mut actual_start_index = None;
trace(|frame| {
frames.push(BacktraceFrame {
frame: Frame::Raw(frame.clone()),
symbols: None,
});
if frame.symbol_address() as usize == ip && actual_start_index.is_none() {
actual_start_index = Some(frames.len());
}
true
});
Backtrace {
frames,
actual_start_index: actual_start_index.unwrap_or(0),
}
}
/// Returns the frames from when this backtrace was captured.
///
/// The first entry of this slice is likely the function `Backtrace::new`,
/// and the last frame is likely something about how this thread or the main
/// function started.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn frames(&self) -> &[BacktraceFrame] {
&self.frames[self.actual_start_index..]
}
/// If this backtrace was created from `new_unresolved` then this function
/// will resolve all addresses in the backtrace to their symbolic names.
///
/// If this backtrace has been previously resolved or was created through
/// `new`, this function does nothing.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn resolve(&mut self) {
for frame in self.frames.iter_mut().filter(|f| f.symbols.is_none()) {
let mut symbols = Vec::new();
{
let sym = |symbol: &Symbol| {
symbols.push(BacktraceSymbol {
name: symbol.name().map(|m| m.as_bytes().to_vec()),
addr: symbol.addr().map(|a| a as usize),
filename: symbol.filename().map(|m| m.to_owned()),
lineno: symbol.lineno(),
colno: symbol.colno(),
});
};
match frame.frame {
Frame::Raw(ref f) => resolve_frame(f, sym),
Frame::Deserialized { ip, .. } => {
resolve(ip as *mut c_void, sym);
}
}
}
frame.symbols = Some(symbols);
}
}
}
impl From<Vec<BacktraceFrame>> for Backtrace {
fn from(frames: Vec<BacktraceFrame>) -> Self {
Backtrace {
frames,
actual_start_index: 0,
}
}
}
impl From<crate::Frame> for BacktraceFrame {
fn from(frame: crate::Frame) -> BacktraceFrame {
BacktraceFrame {
frame: Frame::Raw(frame),
symbols: None,
}
}
}
impl Into<Vec<BacktraceFrame>> for Backtrace {
fn into(self) -> Vec<BacktraceFrame> {
self.frames
}
}
impl BacktraceFrame {
/// Same as `Frame::ip`
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn ip(&self) -> *mut c_void {
self.frame.ip() as *mut c_void
}
/// Same as `Frame::symbol_address`
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn symbol_address(&self) -> *mut c_void {
self.frame.symbol_address() as *mut c_void
}
/// Same as `Frame::module_base_address`
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn module_base_address(&self) -> Option<*mut c_void> {
self.frame
.module_base_address()
.map(|addr| addr as *mut c_void)
}
/// Returns the list of symbols that this frame corresponds to.
///
/// Normally there is only one symbol per frame, but sometimes if a number
/// of functions are inlined into one frame then multiple symbols will be
/// returned. The first symbol listed is the "innermost function", whereas
/// the last symbol is the outermost (last caller).
///
/// Note that if this frame came from an unresolved backtrace then this will
/// return an empty list.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn symbols(&self) -> &[BacktraceSymbol] {
self.symbols.as_ref().map(|s| &s[..]).unwrap_or(&[])
}
}
impl BacktraceSymbol {
/// Same as `Symbol::name`
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn name(&self) -> Option<SymbolName<'_>> {
self.name.as_ref().map(|s| SymbolName::new(s))
}
/// Same as `Symbol::addr`
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn addr(&self) -> Option<*mut c_void> {
self.addr.map(|s| s as *mut c_void)
}
/// Same as `Symbol::filename`
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn filename(&self) -> Option<&Path> {
self.filename.as_ref().map(|p| &**p)
}
/// Same as `Symbol::lineno`
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn lineno(&self) -> Option<u32> {
self.lineno
}
/// Same as `Symbol::colno`
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn colno(&self) -> Option<u32> {
self.colno
}
}
impl fmt::Debug for Backtrace {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let full = fmt.alternate();
let (frames, style) = if full {
(&self.frames[..], PrintFmt::Full)
} else {
(&self.frames[self.actual_start_index..], PrintFmt::Short)
};
// When printing paths we try to strip the cwd if it exists, otherwise
// we just print the path as-is. Note that we also only do this for the
// short format, because if it's full we presumably want to print
// everything.
let cwd = std::env::current_dir();
let mut print_path =
move |fmt: &mut fmt::Formatter<'_>, path: crate::BytesOrWideString<'_>| {
let path = path.into_path_buf();
if !full {
if let Ok(cwd) = &cwd {
if let Ok(suffix) = path.strip_prefix(cwd) {
return fmt::Display::fmt(&suffix.display(), fmt);
}
}
}
fmt::Display::fmt(&path.display(), fmt)
};
let mut f = BacktraceFmt::new(fmt, style, &mut print_path);
f.add_context()?;
for frame in frames {
f.frame().backtrace_frame(frame)?;
}
f.finish()?;
Ok(())
}
}
impl Default for Backtrace {
fn default() -> Backtrace {
Backtrace::new()
}
}
impl fmt::Debug for BacktraceFrame {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("BacktraceFrame")
.field("ip", &self.ip())
.field("symbol_address", &self.symbol_address())
.finish()
}
}
impl fmt::Debug for BacktraceSymbol {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("BacktraceSymbol")
.field("name", &self.name())
.field("addr", &self.addr())
.field("filename", &self.filename())
.field("lineno", &self.lineno())
.field("colno", &self.colno())
.finish()
}
}
#[cfg(feature = "serialize-rustc")]
mod rustc_serialize_impls {
use super::*;
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
#[derive(RustcEncodable, RustcDecodable)]
struct SerializedFrame {
ip: usize,
symbol_address: usize,
module_base_address: Option<usize>,
symbols: Option<Vec<BacktraceSymbol>>,
}
impl Decodable for BacktraceFrame {
fn decode<D>(d: &mut D) -> Result<Self, D::Error>
where
D: Decoder,
{
let frame: SerializedFrame = SerializedFrame::decode(d)?;
Ok(BacktraceFrame {
frame: Frame::Deserialized {
ip: frame.ip,
symbol_address: frame.symbol_address,
module_base_address: frame.module_base_address,
},
symbols: frame.symbols,
})
}
}
impl Encodable for BacktraceFrame {
fn encode<E>(&self, e: &mut E) -> Result<(), E::Error>
where
E: Encoder,
{
let BacktraceFrame { frame, symbols } = self;
SerializedFrame {
ip: frame.ip() as usize,
symbol_address: frame.symbol_address() as usize,
module_base_address: frame.module_base_address().map(|addr| addr as usize),
symbols: symbols.clone(),
}
.encode(e)
}
}
}
#[cfg(feature = "serde")]
mod serde_impls {
use super::*;
use serde::de::Deserializer;
use serde::ser::Serializer;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize)]
struct SerializedFrame {
ip: usize,
symbol_address: usize,
module_base_address: Option<usize>,
symbols: Option<Vec<BacktraceSymbol>>,
}
impl Serialize for BacktraceFrame {
fn serialize<S>(&self, s: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let BacktraceFrame { frame, symbols } = self;
SerializedFrame {
ip: frame.ip() as usize,
symbol_address: frame.symbol_address() as usize,
module_base_address: frame.module_base_address().map(|addr| addr as usize),
symbols: symbols.clone(),
}
.serialize(s)
}
}
impl<'a> Deserialize<'a> for BacktraceFrame {
fn deserialize<D>(d: D) -> Result<Self, D::Error>
where
D: Deserializer<'a>,
{
let frame: SerializedFrame = SerializedFrame::deserialize(d)?;
Ok(BacktraceFrame {
frame: Frame::Deserialized {
ip: frame.ip,
symbol_address: frame.symbol_address,
module_base_address: frame.module_base_address,
},
symbols: frame.symbols,
})
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_frame_conversion() {
let mut frames = vec![];
crate::trace(|frame| {
let converted = BacktraceFrame::from(frame.clone());
frames.push(converted);
true
});
let mut manual = Backtrace::from(frames);
manual.resolve();
let frames = manual.frames();
for frame in frames {
println!("{:?}", frame.ip());
println!("{:?}", frame.symbol_address());
println!("{:?}", frame.module_base_address());
println!("{:?}", frame.symbols());
}
}
}

365
vendor/backtrace/src/dbghelp.rs vendored Normal file
View File

@@ -0,0 +1,365 @@
//! A module to assist in managing dbghelp bindings on Windows
//!
//! Backtraces on Windows (at least for MSVC) are largely powered through
//! `dbghelp.dll` and the various functions that it contains. These functions
//! are currently loaded *dynamically* rather than linking to `dbghelp.dll`
//! statically. This is currently done by the standard library (and is in theory
//! required there), but is an effort to help reduce the static dll dependencies
//! of a library since backtraces are typically pretty optional. That being
//! said, `dbghelp.dll` almost always successfully loads on Windows.
//!
//! Note though that since we're loading all this support dynamically we can't
//! actually use the raw definitions in `winapi`, but rather we need to define
//! the function pointer types ourselves and use that. We don't really want to
//! be in the business of duplicating winapi, so we have a Cargo feature
//! `verify-winapi` which asserts that all bindings match those in winapi and
//! this feature is enabled on CI.
//!
//! Finally, you'll note here that the dll for `dbghelp.dll` is never unloaded,
//! and that's currently intentional. The thinking is that we can globally cache
//! it and use it between calls to the API, avoiding expensive loads/unloads. If
//! this is a problem for leak detectors or something like that we can cross the
//! bridge when we get there.
#![allow(non_snake_case)]
use super::windows::*;
use core::mem;
use core::ptr;
// Work around `SymGetOptions` and `SymSetOptions` not being present in winapi
// itself. Otherwise this is only used when we're double-checking types against
// winapi.
#[cfg(feature = "verify-winapi")]
mod dbghelp {
use crate::windows::*;
pub use winapi::um::dbghelp::{
StackWalk64, StackWalkEx, SymCleanup, SymFromAddrW, SymFunctionTableAccess64,
SymGetLineFromAddrW64, SymGetModuleBase64, SymGetOptions, SymInitializeW, SymSetOptions,
};
extern "system" {
// Not defined in winapi yet
pub fn SymFromInlineContextW(
hProcess: HANDLE,
Address: DWORD64,
InlineContext: ULONG,
Displacement: PDWORD64,
Symbol: PSYMBOL_INFOW,
) -> BOOL;
pub fn SymGetLineFromInlineContextW(
hProcess: HANDLE,
dwAddr: DWORD64,
InlineContext: ULONG,
qwModuleBaseAddress: DWORD64,
pdwDisplacement: PDWORD,
Line: PIMAGEHLP_LINEW64,
) -> BOOL;
}
pub fn assert_equal_types<T>(a: T, _b: T) -> T {
a
}
}
// This macro is used to define a `Dbghelp` structure which internally contains
// all the function pointers that we might load.
macro_rules! dbghelp {
(extern "system" {
$(fn $name:ident($($arg:ident: $argty:ty),*) -> $ret: ty;)*
}) => (
pub struct Dbghelp {
/// The loaded DLL for `dbghelp.dll`
dll: HMODULE,
// Each function pointer for each function we might use
$($name: usize,)*
}
static mut DBGHELP: Dbghelp = Dbghelp {
// Initially we haven't loaded the DLL
dll: 0 as *mut _,
// Initially all functions are set to zero to say they need to be
// dynamically loaded.
$($name: 0,)*
};
// Convenience typedef for each function type.
$(pub type $name = unsafe extern "system" fn($($argty),*) -> $ret;)*
impl Dbghelp {
/// Attempts to open `dbghelp.dll`. Returns success if it works or
/// error if `LoadLibraryW` fails.
///
/// Panics if library is already loaded.
fn ensure_open(&mut self) -> Result<(), ()> {
if !self.dll.is_null() {
return Ok(())
}
let lib = b"dbghelp.dll\0";
unsafe {
self.dll = LoadLibraryA(lib.as_ptr() as *const i8);
if self.dll.is_null() {
Err(())
} else {
Ok(())
}
}
}
// Function for each method we'd like to use. When called it will
// either read the cached function pointer or load it and return the
// loaded value. Loads are asserted to succeed.
$(pub fn $name(&mut self) -> Option<$name> {
unsafe {
if self.$name == 0 {
let name = concat!(stringify!($name), "\0");
self.$name = self.symbol(name.as_bytes())?;
}
let ret = mem::transmute::<usize, $name>(self.$name);
#[cfg(feature = "verify-winapi")]
dbghelp::assert_equal_types(ret, dbghelp::$name);
Some(ret)
}
})*
fn symbol(&self, symbol: &[u8]) -> Option<usize> {
unsafe {
match GetProcAddress(self.dll, symbol.as_ptr() as *const _) as usize {
0 => None,
n => Some(n),
}
}
}
}
// Convenience proxy to use the cleanup locks to reference dbghelp
// functions.
#[allow(dead_code)]
impl Init {
$(pub fn $name(&self) -> $name {
unsafe {
DBGHELP.$name().unwrap()
}
})*
pub fn dbghelp(&self) -> *mut Dbghelp {
unsafe {
&mut DBGHELP
}
}
}
)
}
const SYMOPT_DEFERRED_LOADS: DWORD = 0x00000004;
dbghelp! {
extern "system" {
fn SymGetOptions() -> DWORD;
fn SymSetOptions(options: DWORD) -> DWORD;
fn SymInitializeW(
handle: HANDLE,
path: PCWSTR,
invade: BOOL
) -> BOOL;
fn SymCleanup(handle: HANDLE) -> BOOL;
fn StackWalk64(
MachineType: DWORD,
hProcess: HANDLE,
hThread: HANDLE,
StackFrame: LPSTACKFRAME64,
ContextRecord: PVOID,
ReadMemoryRoutine: PREAD_PROCESS_MEMORY_ROUTINE64,
FunctionTableAccessRoutine: PFUNCTION_TABLE_ACCESS_ROUTINE64,
GetModuleBaseRoutine: PGET_MODULE_BASE_ROUTINE64,
TranslateAddress: PTRANSLATE_ADDRESS_ROUTINE64
) -> BOOL;
fn SymFunctionTableAccess64(
hProcess: HANDLE,
AddrBase: DWORD64
) -> PVOID;
fn SymGetModuleBase64(
hProcess: HANDLE,
AddrBase: DWORD64
) -> DWORD64;
fn SymFromAddrW(
hProcess: HANDLE,
Address: DWORD64,
Displacement: PDWORD64,
Symbol: PSYMBOL_INFOW
) -> BOOL;
fn SymGetLineFromAddrW64(
hProcess: HANDLE,
dwAddr: DWORD64,
pdwDisplacement: PDWORD,
Line: PIMAGEHLP_LINEW64
) -> BOOL;
fn StackWalkEx(
MachineType: DWORD,
hProcess: HANDLE,
hThread: HANDLE,
StackFrame: LPSTACKFRAME_EX,
ContextRecord: PVOID,
ReadMemoryRoutine: PREAD_PROCESS_MEMORY_ROUTINE64,
FunctionTableAccessRoutine: PFUNCTION_TABLE_ACCESS_ROUTINE64,
GetModuleBaseRoutine: PGET_MODULE_BASE_ROUTINE64,
TranslateAddress: PTRANSLATE_ADDRESS_ROUTINE64,
Flags: DWORD
) -> BOOL;
fn SymFromInlineContextW(
hProcess: HANDLE,
Address: DWORD64,
InlineContext: ULONG,
Displacement: PDWORD64,
Symbol: PSYMBOL_INFOW
) -> BOOL;
fn SymGetLineFromInlineContextW(
hProcess: HANDLE,
dwAddr: DWORD64,
InlineContext: ULONG,
qwModuleBaseAddress: DWORD64,
pdwDisplacement: PDWORD,
Line: PIMAGEHLP_LINEW64
) -> BOOL;
}
}
pub struct Init {
lock: HANDLE,
}
/// Initialize all support necessary to access `dbghelp` API functions from this
/// crate.
///
/// Note that this function is **safe**, it internally has its own
/// synchronization. Also note that it is safe to call this function multiple
/// times recursively.
pub fn init() -> Result<Init, ()> {
use core::sync::atomic::{AtomicUsize, Ordering::SeqCst};
// Helper function for generating a name that's unique to the process.
fn mutex_name() -> [u8; 33] {
let mut name: [u8; 33] = *b"Local\\RustBacktraceMutex00000000\0";
let mut id = unsafe { GetCurrentProcessId() };
// Quick and dirty no alloc u32 to hex.
let mut index = name.len() - 1;
while id > 0 {
name[index - 1] = match (id & 0xF) as u8 {
h @ 0..=9 => b'0' + h,
h => b'A' + (h - 10),
};
id >>= 4;
index -= 1;
}
name
}
unsafe {
// First thing we need to do is to synchronize this function. This can
// be called concurrently from other threads or recursively within one
// thread. Note that it's trickier than that though because what we're
// using here, `dbghelp`, *also* needs to be synchronized with all other
// callers to `dbghelp` in this process.
//
// Typically there aren't really that many calls to `dbghelp` within the
// same process and we can probably safely assume that we're the only
// ones accessing it. There is, however, one primary other user we have
// to worry about which is ironically ourselves, but in the standard
// library. The Rust standard library depends on this crate for
// backtrace support, and this crate also exists on crates.io. This
// means that if the standard library is printing a panic backtrace it
// may race with this crate coming from crates.io, causing segfaults.
//
// To help solve this synchronization problem we employ a
// Windows-specific trick here (it is, after all, a Windows-specific
// restriction about synchronization). We create a *session-local* named
// mutex to protect this call. The intention here is that the standard
// library and this crate don't have to share Rust-level APIs to
// synchronize here but can instead work behind the scenes to make sure
// they're synchronizing with one another. That way when this function
// is called through the standard library or through crates.io we can be
// sure that the same mutex is being acquired.
//
// So all of that is to say that the first thing we do here is we
// atomically create a `HANDLE` which is a named mutex on Windows. We
// synchronize a bit with other threads sharing this function
// specifically and ensure that only one handle is created per instance
// of this function. Note that the handle is never closed once it's
// stored in the global.
//
// After we've actually go the lock we simply acquire it, and our `Init`
// handle we hand out will be responsible for dropping it eventually.
static LOCK: AtomicUsize = AtomicUsize::new(0);
let mut lock = LOCK.load(SeqCst);
if lock == 0 {
let name = mutex_name();
lock = CreateMutexA(ptr::null_mut(), 0, name.as_ptr().cast::<i8>()) as usize;
if lock == 0 {
return Err(());
}
if let Err(other) = LOCK.compare_exchange(0, lock, SeqCst, SeqCst) {
debug_assert!(other != 0);
CloseHandle(lock as HANDLE);
lock = other;
}
}
debug_assert!(lock != 0);
let lock = lock as HANDLE;
let r = WaitForSingleObjectEx(lock, INFINITE, FALSE);
debug_assert_eq!(r, 0);
let ret = Init { lock };
// Ok, phew! Now that we're all safely synchronized, let's actually
// start processing everything. First up we need to ensure that
// `dbghelp.dll` is actually loaded in this process. We do this
// dynamically to avoid a static dependency. This has historically been
// done to work around weird linking issues and is intended at making
// binaries a bit more portable since this is largely just a debugging
// utility.
//
// Once we've opened `dbghelp.dll` we need to call some initialization
// functions in it, and that's detailed more below. We only do this
// once, though, so we've got a global boolean indicating whether we're
// done yet or not.
DBGHELP.ensure_open()?;
static mut INITIALIZED: bool = false;
if INITIALIZED {
return Ok(ret);
}
let orig = DBGHELP.SymGetOptions().unwrap()();
// Ensure that the `SYMOPT_DEFERRED_LOADS` flag is set, because
// according to MSVC's own docs about this: "This is the fastest, most
// efficient way to use the symbol handler.", so let's do that!
DBGHELP.SymSetOptions().unwrap()(orig | SYMOPT_DEFERRED_LOADS);
// Actually initialize symbols with MSVC. Note that this can fail, but we
// ignore it. There's not a ton of prior art for this per se, but LLVM
// internally seems to ignore the return value here and one of the
// sanitizer libraries in LLVM prints a scary warning if this fails but
// basically ignores it in the long run.
//
// One case this comes up a lot for Rust is that the standard library and
// this crate on crates.io both want to compete for `SymInitializeW`. The
// standard library historically wanted to initialize then cleanup most of
// the time, but now that it's using this crate it means that someone will
// get to initialization first and the other will pick up that
// initialization.
DBGHELP.SymInitializeW().unwrap()(GetCurrentProcess(), ptr::null_mut(), TRUE);
INITIALIZED = true;
Ok(ret)
}
}
impl Drop for Init {
fn drop(&mut self) {
unsafe {
let r = ReleaseMutex(self.lock);
debug_assert!(r != 0);
}
}
}

192
vendor/backtrace/src/lib.rs vendored Normal file
View File

@@ -0,0 +1,192 @@
//! A library for acquiring a backtrace at runtime
//!
//! This library is meant to supplement the `RUST_BACKTRACE=1` support of the
//! standard library by allowing an acquisition of a backtrace at runtime
//! programmatically. The backtraces generated by this library do not need to be
//! parsed, for example, and expose the functionality of multiple backend
//! implementations.
//!
//! # Usage
//!
//! First, add this to your Cargo.toml
//!
//! ```toml
//! [dependencies]
//! backtrace = "0.3"
//! ```
//!
//! Next:
//!
//! ```
//! fn main() {
//! # // Unsafe here so test passes on no_std.
//! # #[cfg(feature = "std")] {
//! backtrace::trace(|frame| {
//! let ip = frame.ip();
//! let symbol_address = frame.symbol_address();
//!
//! // Resolve this instruction pointer to a symbol name
//! backtrace::resolve_frame(frame, |symbol| {
//! if let Some(name) = symbol.name() {
//! // ...
//! }
//! if let Some(filename) = symbol.filename() {
//! // ...
//! }
//! });
//!
//! true // keep going to the next frame
//! });
//! }
//! # }
//! ```
//!
//! # Backtrace accuracy
//!
//! This crate implements best-effort attempts to get the native backtrace. This
//! is not always guaranteed to work, and some platforms don't return any
//! backtrace at all. If your application requires accurate backtraces then it's
//! recommended to closely evaluate this crate to see whether it's suitable
//! for your use case on your target platforms.
//!
//! Even on supported platforms, there's a number of reasons that backtraces may
//! be less-than-accurate, including but not limited to:
//!
//! * Unwind information may not be available. This crate primarily implements
//! backtraces by unwinding the stack, but not all functions may have
//! unwinding information (e.g. DWARF unwinding information).
//!
//! * Rust code may be compiled without unwinding information for some
//! functions. This can also happen for Rust code compiled with
//! `-Cpanic=abort`. You can remedy this, however, with
//! `-Cforce-unwind-tables` as a compiler option.
//!
//! * Unwind information may be inaccurate or corrupt. In the worst case
//! inaccurate unwind information can lead this library to segfault. In the
//! best case inaccurate information will result in a truncated stack trace.
//!
//! * Backtraces may not report filenames/line numbers correctly due to missing
//! or corrupt debug information. This won't lead to segfaults unlike corrupt
//! unwinding information, but missing or malformed debug information will
//! mean that filenames and line numbers will not be available. This may be
//! because debug information wasn't generated by the compiler, or it's just
//! missing on the filesystem.
//!
//! * Not all platforms are supported. For example there's no way to get a
//! backtrace on WebAssembly at the moment.
//!
//! * Crate features may be disabled. Currently this crate supports using Gimli
//! libbacktrace on non-Windows platforms for reading debuginfo for
//! backtraces. If both crate features are disabled, however, then these
//! platforms will generate a backtrace but be unable to generate symbols for
//! it.
//!
//! In most standard workflows for most standard platforms you generally don't
//! need to worry about these caveats. We'll try to fix ones where we can over
//! time, but otherwise it's important to be aware of the limitations of
//! unwinding-based backtraces!
#![deny(missing_docs)]
#![no_std]
#![cfg_attr(
all(feature = "std", target_env = "sgx", target_vendor = "fortanix"),
feature(sgx_platform)
)]
#![warn(rust_2018_idioms)]
// When we're building as part of libstd, silence all warnings since they're
// irrelevant as this crate is developed out-of-tree.
#![cfg_attr(backtrace_in_libstd, allow(warnings))]
#![cfg_attr(not(feature = "std"), allow(dead_code))]
// We know this is deprecated, it's only here for back-compat reasons.
#![cfg_attr(feature = "rustc-serialize", allow(deprecated))]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
// This is only used for gimli right now, which is only used on some platforms, and miri
// so don't worry if it's unused in other configurations.
#[allow(unused_extern_crates)]
extern crate alloc;
pub use self::backtrace::{trace_unsynchronized, Frame};
mod backtrace;
pub use self::symbolize::resolve_frame_unsynchronized;
pub use self::symbolize::{resolve_unsynchronized, Symbol, SymbolName};
mod symbolize;
pub use self::types::BytesOrWideString;
mod types;
#[cfg(feature = "std")]
pub use self::symbolize::clear_symbol_cache;
mod print;
pub use print::{BacktraceFmt, BacktraceFrameFmt, PrintFmt};
cfg_if::cfg_if! {
if #[cfg(feature = "std")] {
pub use self::backtrace::trace;
pub use self::symbolize::{resolve, resolve_frame};
pub use self::capture::{Backtrace, BacktraceFrame, BacktraceSymbol};
mod capture;
}
}
#[allow(dead_code)]
struct Bomb {
enabled: bool,
}
#[allow(dead_code)]
impl Drop for Bomb {
fn drop(&mut self) {
if self.enabled {
panic!("cannot panic during the backtrace function");
}
}
}
#[allow(dead_code)]
#[cfg(feature = "std")]
mod lock {
use std::boxed::Box;
use std::cell::Cell;
use std::sync::{Mutex, MutexGuard, Once};
pub struct LockGuard(Option<MutexGuard<'static, ()>>);
static mut LOCK: *mut Mutex<()> = 0 as *mut _;
static INIT: Once = Once::new();
thread_local!(static LOCK_HELD: Cell<bool> = Cell::new(false));
impl Drop for LockGuard {
fn drop(&mut self) {
if self.0.is_some() {
LOCK_HELD.with(|slot| {
assert!(slot.get());
slot.set(false);
});
}
}
}
pub fn lock() -> LockGuard {
if LOCK_HELD.with(|l| l.get()) {
return LockGuard(None);
}
LOCK_HELD.with(|s| s.set(true));
unsafe {
INIT.call_once(|| {
LOCK = Box::into_raw(Box::new(Mutex::new(())));
});
LockGuard(Some((*LOCK).lock().unwrap()))
}
}
}
#[cfg(all(windows, not(target_vendor = "uwp")))]
mod dbghelp;
#[cfg(windows)]
mod windows;

320
vendor/backtrace/src/print.rs vendored Normal file
View File

@@ -0,0 +1,320 @@
#[cfg(feature = "std")]
use super::{BacktraceFrame, BacktraceSymbol};
use super::{BytesOrWideString, Frame, SymbolName};
use core::ffi::c_void;
use core::fmt;
const HEX_WIDTH: usize = 2 + 2 * core::mem::size_of::<usize>();
#[cfg(target_os = "fuchsia")]
mod fuchsia;
/// A formatter for backtraces.
///
/// This type can be used to print a backtrace regardless of where the backtrace
/// itself comes from. If you have a `Backtrace` type then its `Debug`
/// implementation already uses this printing format.
pub struct BacktraceFmt<'a, 'b> {
fmt: &'a mut fmt::Formatter<'b>,
frame_index: usize,
format: PrintFmt,
print_path:
&'a mut (dyn FnMut(&mut fmt::Formatter<'_>, BytesOrWideString<'_>) -> fmt::Result + 'b),
}
/// The styles of printing that we can print
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum PrintFmt {
/// Prints a terser backtrace which ideally only contains relevant information
Short,
/// Prints a backtrace that contains all possible information
Full,
#[doc(hidden)]
__Nonexhaustive,
}
impl<'a, 'b> BacktraceFmt<'a, 'b> {
/// Create a new `BacktraceFmt` which will write output to the provided
/// `fmt`.
///
/// The `format` argument will control the style in which the backtrace is
/// printed, and the `print_path` argument will be used to print the
/// `BytesOrWideString` instances of filenames. This type itself doesn't do
/// any printing of filenames, but this callback is required to do so.
pub fn new(
fmt: &'a mut fmt::Formatter<'b>,
format: PrintFmt,
print_path: &'a mut (dyn FnMut(&mut fmt::Formatter<'_>, BytesOrWideString<'_>) -> fmt::Result
+ 'b),
) -> Self {
BacktraceFmt {
fmt,
frame_index: 0,
format,
print_path,
}
}
/// Prints a preamble for the backtrace about to be printed.
///
/// This is required on some platforms for backtraces to be fully
/// symbolicated later, and otherwise this should just be the first method
/// you call after creating a `BacktraceFmt`.
pub fn add_context(&mut self) -> fmt::Result {
#[cfg(target_os = "fuchsia")]
fuchsia::print_dso_context(self.fmt)?;
Ok(())
}
/// Adds a frame to the backtrace output.
///
/// This commit returns an RAII instance of a `BacktraceFrameFmt` which can be used
/// to actually print a frame, and on destruction it will increment the
/// frame counter.
pub fn frame(&mut self) -> BacktraceFrameFmt<'_, 'a, 'b> {
BacktraceFrameFmt {
fmt: self,
symbol_index: 0,
}
}
/// Completes the backtrace output.
///
/// This is currently a no-op but is added for future compatibility with
/// backtrace formats.
pub fn finish(&mut self) -> fmt::Result {
#[cfg(target_os = "fuchsia")]
fuchsia::finish_context(self.fmt)?;
Ok(())
}
/// Inserts a message in the backtrace output.
///
/// This allows information to be inserted between frames,
/// and won't increment the `frame_index` unlike the `frame`
/// method.
pub fn message(&mut self, msg: &str) -> fmt::Result {
self.fmt.write_str(msg)
}
/// Return the inner formatter.
///
/// This is used for writing custom information between frames with `write!` and `writeln!`,
/// and won't increment the `frame_index` unlike the `frame` method.
pub fn formatter(&mut self) -> &mut fmt::Formatter<'b> {
self.fmt
}
}
/// A formatter for just one frame of a backtrace.
///
/// This type is created by the `BacktraceFmt::frame` function.
pub struct BacktraceFrameFmt<'fmt, 'a, 'b> {
fmt: &'fmt mut BacktraceFmt<'a, 'b>,
symbol_index: usize,
}
impl BacktraceFrameFmt<'_, '_, '_> {
/// Prints a `BacktraceFrame` with this frame formatter.
///
/// This will recursively print all `BacktraceSymbol` instances within the
/// `BacktraceFrame`.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[cfg(feature = "std")]
pub fn backtrace_frame(&mut self, frame: &BacktraceFrame) -> fmt::Result {
let symbols = frame.symbols();
for symbol in symbols {
self.backtrace_symbol(frame, symbol)?;
}
if symbols.is_empty() {
self.print_raw(frame.ip(), None, None, None)?;
}
Ok(())
}
/// Prints a `BacktraceSymbol` within a `BacktraceFrame`.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[cfg(feature = "std")]
pub fn backtrace_symbol(
&mut self,
frame: &BacktraceFrame,
symbol: &BacktraceSymbol,
) -> fmt::Result {
self.print_raw_with_column(
frame.ip(),
symbol.name(),
// TODO: this isn't great that we don't end up printing anything
// with non-utf8 filenames. Thankfully almost everything is utf8 so
// this shouldn't be too bad.
symbol
.filename()
.and_then(|p| Some(BytesOrWideString::Bytes(p.to_str()?.as_bytes()))),
symbol.lineno(),
symbol.colno(),
)?;
Ok(())
}
/// Prints a raw traced `Frame` and `Symbol`, typically from within the raw
/// callbacks of this crate.
pub fn symbol(&mut self, frame: &Frame, symbol: &super::Symbol) -> fmt::Result {
self.print_raw_with_column(
frame.ip(),
symbol.name(),
symbol.filename_raw(),
symbol.lineno(),
symbol.colno(),
)?;
Ok(())
}
/// Adds a raw frame to the backtrace output.
///
/// This method, unlike the previous, takes the raw arguments in case
/// they're being source from different locations. Note that this may be
/// called multiple times for one frame.
pub fn print_raw(
&mut self,
frame_ip: *mut c_void,
symbol_name: Option<SymbolName<'_>>,
filename: Option<BytesOrWideString<'_>>,
lineno: Option<u32>,
) -> fmt::Result {
self.print_raw_with_column(frame_ip, symbol_name, filename, lineno, None)
}
/// Adds a raw frame to the backtrace output, including column information.
///
/// This method, like the previous, takes the raw arguments in case
/// they're being source from different locations. Note that this may be
/// called multiple times for one frame.
pub fn print_raw_with_column(
&mut self,
frame_ip: *mut c_void,
symbol_name: Option<SymbolName<'_>>,
filename: Option<BytesOrWideString<'_>>,
lineno: Option<u32>,
colno: Option<u32>,
) -> fmt::Result {
// Fuchsia is unable to symbolize within a process so it has a special
// format which can be used to symbolize later. Print that instead of
// printing addresses in our own format here.
if cfg!(target_os = "fuchsia") {
self.print_raw_fuchsia(frame_ip)?;
} else {
self.print_raw_generic(frame_ip, symbol_name, filename, lineno, colno)?;
}
self.symbol_index += 1;
Ok(())
}
#[allow(unused_mut)]
fn print_raw_generic(
&mut self,
mut frame_ip: *mut c_void,
symbol_name: Option<SymbolName<'_>>,
filename: Option<BytesOrWideString<'_>>,
lineno: Option<u32>,
colno: Option<u32>,
) -> fmt::Result {
// No need to print "null" frames, it basically just means that the
// system backtrace was a bit eager to trace back super far.
if let PrintFmt::Short = self.fmt.format {
if frame_ip.is_null() {
return Ok(());
}
}
// To reduce TCB size in Sgx enclave, we do not want to implement symbol
// resolution functionality. Rather, we can print the offset of the
// address here, which could be later mapped to correct function.
#[cfg(all(feature = "std", target_env = "sgx", target_vendor = "fortanix"))]
{
let image_base = std::os::fortanix_sgx::mem::image_base();
frame_ip = usize::wrapping_sub(frame_ip as usize, image_base as _) as _;
}
// Print the index of the frame as well as the optional instruction
// pointer of the frame. If we're beyond the first symbol of this frame
// though we just print appropriate whitespace.
if self.symbol_index == 0 {
write!(self.fmt.fmt, "{:4}: ", self.fmt.frame_index)?;
if let PrintFmt::Full = self.fmt.format {
write!(self.fmt.fmt, "{:1$?} - ", frame_ip, HEX_WIDTH)?;
}
} else {
write!(self.fmt.fmt, " ")?;
if let PrintFmt::Full = self.fmt.format {
write!(self.fmt.fmt, "{:1$}", "", HEX_WIDTH + 3)?;
}
}
// Next up write out the symbol name, using the alternate formatting for
// more information if we're a full backtrace. Here we also handle
// symbols which don't have a name,
match (symbol_name, &self.fmt.format) {
(Some(name), PrintFmt::Short) => write!(self.fmt.fmt, "{:#}", name)?,
(Some(name), PrintFmt::Full) => write!(self.fmt.fmt, "{}", name)?,
(None, _) | (_, PrintFmt::__Nonexhaustive) => write!(self.fmt.fmt, "<unknown>")?,
}
self.fmt.fmt.write_str("\n")?;
// And last up, print out the filename/line number if they're available.
if let (Some(file), Some(line)) = (filename, lineno) {
self.print_fileline(file, line, colno)?;
}
Ok(())
}
fn print_fileline(
&mut self,
file: BytesOrWideString<'_>,
line: u32,
colno: Option<u32>,
) -> fmt::Result {
// Filename/line are printed on lines under the symbol name, so print
// some appropriate whitespace to sort of right-align ourselves.
if let PrintFmt::Full = self.fmt.format {
write!(self.fmt.fmt, "{:1$}", "", HEX_WIDTH)?;
}
write!(self.fmt.fmt, " at ")?;
// Delegate to our internal callback to print the filename and then
// print out the line number.
(self.fmt.print_path)(self.fmt.fmt, file)?;
write!(self.fmt.fmt, ":{}", line)?;
// Add column number, if available.
if let Some(colno) = colno {
write!(self.fmt.fmt, ":{}", colno)?;
}
write!(self.fmt.fmt, "\n")?;
Ok(())
}
fn print_raw_fuchsia(&mut self, frame_ip: *mut c_void) -> fmt::Result {
// We only care about the first symbol of a frame
if self.symbol_index == 0 {
self.fmt.fmt.write_str("{{{bt:")?;
write!(self.fmt.fmt, "{}:{:?}", self.fmt.frame_index, frame_ip)?;
self.fmt.fmt.write_str("}}}\n")?;
}
Ok(())
}
}
impl Drop for BacktraceFrameFmt<'_, '_, '_> {
fn drop(&mut self) {
self.fmt.frame_index += 1;
}
}

441
vendor/backtrace/src/print/fuchsia.rs vendored Normal file
View File

@@ -0,0 +1,441 @@
use core::fmt::{self, Write};
use core::mem::{size_of, transmute};
use core::slice::from_raw_parts;
use libc::c_char;
extern "C" {
// dl_iterate_phdr takes a callback that will receive a dl_phdr_info pointer
// for every DSO that has been linked into the process. dl_iterate_phdr also
// ensures that the dynamic linker is locked from start to finish of the
// iteration. If the callback returns a non-zero value the iteration is
// terminated early. 'data' will be passed as the third argument to the
// callback on each call. 'size' gives the size of the dl_phdr_info.
#[allow(improper_ctypes)]
fn dl_iterate_phdr(
f: extern "C" fn(info: &dl_phdr_info, size: usize, data: &mut DsoPrinter<'_, '_>) -> i32,
data: &mut DsoPrinter<'_, '_>,
) -> i32;
}
// We need to parse out the build ID and some basic program header data
// which means that we need a bit of stuff from the ELF spec as well.
const PT_LOAD: u32 = 1;
const PT_NOTE: u32 = 4;
// Now we have to replicate, bit for bit, the structure of the dl_phdr_info
// type used by fuchsia's current dynamic linker. Chromium also has this ABI
// boundary as well as crashpad. Eventually we'd like to move these cases to
// use elf-search but we'd need to provide that in the SDK and that has not
// yet been done. Thus we (and they) are stuck having to use this method
// which incurs a tight coupling with the fuchsia libc.
#[allow(non_camel_case_types)]
#[repr(C)]
struct dl_phdr_info {
addr: *const u8,
name: *const c_char,
phdr: *const Elf_Phdr,
phnum: u16,
adds: u64,
subs: u64,
tls_modid: usize,
tls_data: *const u8,
}
impl dl_phdr_info {
fn program_headers(&self) -> PhdrIter<'_> {
PhdrIter {
phdrs: self.phdr_slice(),
base: self.addr,
}
}
// We have no way of knowing of checking if e_phoff and e_phnum are valid.
// libc should ensure this for us however so it's safe to form a slice here.
fn phdr_slice(&self) -> &[Elf_Phdr] {
unsafe { from_raw_parts(self.phdr, self.phnum as usize) }
}
}
struct PhdrIter<'a> {
phdrs: &'a [Elf_Phdr],
base: *const u8,
}
impl<'a> Iterator for PhdrIter<'a> {
type Item = Phdr<'a>;
fn next(&mut self) -> Option<Self::Item> {
self.phdrs.split_first().map(|(phdr, new_phdrs)| {
self.phdrs = new_phdrs;
Phdr {
phdr,
base: self.base,
}
})
}
}
// Elf_Phdr represents a 64-bit ELF program header in the endianness of the target
// architecture.
#[allow(non_camel_case_types)]
#[derive(Clone, Debug)]
#[repr(C)]
struct Elf_Phdr {
p_type: u32,
p_flags: u32,
p_offset: u64,
p_vaddr: u64,
p_paddr: u64,
p_filesz: u64,
p_memsz: u64,
p_align: u64,
}
// Phdr represents a valid ELF program header and its contents.
struct Phdr<'a> {
phdr: &'a Elf_Phdr,
base: *const u8,
}
impl<'a> Phdr<'a> {
// We have no way of checking if p_addr or p_memsz are valid. Fuchsia's libc
// parses the notes first however so by virtue of being here these headers
// must be valid. NoteIter does not require the underlying data to be valid
// but it does require the bounds to be valid. We trust that libc has ensured
// that this is the case for us here.
fn notes(&self) -> NoteIter<'a> {
unsafe {
NoteIter::new(
self.base.add(self.phdr.p_offset as usize),
self.phdr.p_memsz as usize,
)
}
}
}
// The note type for build IDs.
const NT_GNU_BUILD_ID: u32 = 3;
// Elf_Nhdr represents an ELF note header in the endianness of the target.
#[allow(non_camel_case_types)]
#[repr(C)]
struct Elf_Nhdr {
n_namesz: u32,
n_descsz: u32,
n_type: u32,
}
// Note represents an ELF note (header + contents). The name is left as a u8
// slice because it is not always null terminated and rust makes it easy enough
// to check that the bytes match eitherway.
struct Note<'a> {
name: &'a [u8],
desc: &'a [u8],
tipe: u32,
}
// NoteIter lets you safely iterate over a note segment. It terminates as soon
// as an error occurs or there are no more notes. If you iterate over invalid
// data it will function as though no notes were found.
struct NoteIter<'a> {
base: &'a [u8],
error: bool,
}
impl<'a> NoteIter<'a> {
// It is an invariant of function that the pointer and size given denote a
// valid range of bytes that can all be read. The contents of these bytes
// can be anything but the range must be valid for this to be safe.
unsafe fn new(base: *const u8, size: usize) -> Self {
NoteIter {
base: from_raw_parts(base, size),
error: false,
}
}
}
// align_to aligns 'x' to 'to'-byte alignment assuming 'to' is a power of 2.
// This follows a standard pattern in C/C++ ELF parsing code where
// (x + to - 1) & -to is used. Rust does not let you negate usize so I use
// 2's-complement conversion to recreate that.
fn align_to(x: usize, to: usize) -> usize {
(x + to - 1) & (!to + 1)
}
// take_bytes_align4 consumes num bytes from the slice (if present) and
// additionally ensures that the final slice is properlly aligned. If an
// either the number of bytes requested is too large or the slice can't be
// realigned afterwards due to not enough remaining bytes existing, None is
// returned and the slice is not modified.
fn take_bytes_align4<'a>(num: usize, bytes: &mut &'a [u8]) -> Option<&'a [u8]> {
if bytes.len() < align_to(num, 4) {
return None;
}
let (out, bytes_new) = bytes.split_at(num);
*bytes = &bytes_new[align_to(num, 4) - num..];
Some(out)
}
// This function has no real invariants the caller must uphold other than
// perhaps that 'bytes' should be aligned for performance (and on some
// architectures correctness). The values in the Elf_Nhdr fields might
// be nonsense but this function ensures no such thing.
fn take_nhdr<'a>(bytes: &mut &'a [u8]) -> Option<&'a Elf_Nhdr> {
if size_of::<Elf_Nhdr>() > bytes.len() {
return None;
}
// This is safe as long as there is enough space and we just confirmed that
// in the if statement above so this should not be unsafe.
let out = unsafe { transmute::<*const u8, &'a Elf_Nhdr>(bytes.as_ptr()) };
// Note that sice_of::<Elf_Nhdr>() is always 4-byte aligned.
*bytes = &bytes[size_of::<Elf_Nhdr>()..];
Some(out)
}
impl<'a> Iterator for NoteIter<'a> {
type Item = Note<'a>;
fn next(&mut self) -> Option<Self::Item> {
// Check if we've reached the end.
if self.base.len() == 0 || self.error {
return None;
}
// We transmute out an nhdr but we carefully consider the resulting
// struct. We don't trust the namesz or descsz and we make no unsafe
// decisions based on the type. So even if we get out complete garbage
// we should still be safe.
let nhdr = take_nhdr(&mut self.base)?;
let name = take_bytes_align4(nhdr.n_namesz as usize, &mut self.base)?;
let desc = take_bytes_align4(nhdr.n_descsz as usize, &mut self.base)?;
Some(Note {
name: name,
desc: desc,
tipe: nhdr.n_type,
})
}
}
struct Perm(u32);
/// Indicates that a segment is executable.
const PERM_X: u32 = 0b00000001;
/// Indicates that a segment is writable.
const PERM_W: u32 = 0b00000010;
/// Indicates that a segment is readable.
const PERM_R: u32 = 0b00000100;
impl core::fmt::Display for Perm {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let v = self.0;
if v & PERM_R != 0 {
f.write_char('r')?
}
if v & PERM_W != 0 {
f.write_char('w')?
}
if v & PERM_X != 0 {
f.write_char('x')?
}
Ok(())
}
}
/// Represents an ELF segment at runtime.
struct Segment {
/// Gives the runtime virtual address of this segment's contents.
addr: usize,
/// Gives the memory size of this segment's contents.
size: usize,
/// Gives the module virtual address of this segment with the ELF file.
mod_rel_addr: usize,
/// Gives the permissions found in the ELF file. These permissions are not
/// necessarily the permissions present at runtime however.
flags: Perm,
}
/// Lets one iterate over Segments from a DSO.
struct SegmentIter<'a> {
phdrs: &'a [Elf_Phdr],
base: usize,
}
impl Iterator for SegmentIter<'_> {
type Item = Segment;
fn next(&mut self) -> Option<Self::Item> {
self.phdrs.split_first().and_then(|(phdr, new_phdrs)| {
self.phdrs = new_phdrs;
if phdr.p_type != PT_LOAD {
self.next()
} else {
Some(Segment {
addr: phdr.p_vaddr as usize + self.base,
size: phdr.p_memsz as usize,
mod_rel_addr: phdr.p_vaddr as usize,
flags: Perm(phdr.p_flags),
})
}
})
}
}
/// Represents an ELF DSO (Dynamic Shared Object). This type references
/// the data stored in the actual DSO rather than making its own copy.
struct Dso<'a> {
/// The dynamic linker always gives us a name, even if the name is empty.
/// In the case of the main executable this name will be empty. In the case
/// of a shared object it will be the soname (see DT_SONAME).
name: &'a str,
/// On Fuchsia virtually all binaries have build IDs but this is not a strict
/// requirement. There's no way to match up DSO information with a real ELF
/// file afterwards if there is no build_id so we require that every DSO
/// have one here. DSO's without a build_id are ignored.
build_id: &'a [u8],
base: usize,
phdrs: &'a [Elf_Phdr],
}
impl Dso<'_> {
/// Returns an iterator over Segments in this DSO.
fn segments(&self) -> SegmentIter<'_> {
SegmentIter {
phdrs: self.phdrs.as_ref(),
base: self.base,
}
}
}
struct HexSlice<'a> {
bytes: &'a [u8],
}
impl fmt::Display for HexSlice<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for byte in self.bytes {
write!(f, "{:02x}", byte)?;
}
Ok(())
}
}
fn get_build_id<'a>(info: &'a dl_phdr_info) -> Option<&'a [u8]> {
for phdr in info.program_headers() {
if phdr.phdr.p_type == PT_NOTE {
for note in phdr.notes() {
if note.tipe == NT_GNU_BUILD_ID && (note.name == b"GNU\0" || note.name == b"GNU") {
return Some(note.desc);
}
}
}
}
None
}
/// These errors encode issues that arise while parsing information about
/// each DSO.
enum Error {
/// NameError means that an error occurred while converting a C style string
/// into a rust string.
NameError(core::str::Utf8Error),
/// BuildIDError means that we didn't find a build ID. This could either be
/// because the DSO had no build ID or because the segment containing the
/// build ID was malformed.
BuildIDError,
}
/// Calls either 'dso' or 'error' for each DSO linked into the process by the
/// dynamic linker.
///
/// # Arguments
///
/// * `visitor` - A DsoPrinter that will have one of eats methods called foreach DSO.
fn for_each_dso(mut visitor: &mut DsoPrinter<'_, '_>) {
extern "C" fn callback(
info: &dl_phdr_info,
_size: usize,
visitor: &mut DsoPrinter<'_, '_>,
) -> i32 {
// dl_iterate_phdr ensures that info.name will point to a valid
// location.
let name_len = unsafe { libc::strlen(info.name) };
let name_slice: &[u8] =
unsafe { core::slice::from_raw_parts(info.name as *const u8, name_len) };
let name = match core::str::from_utf8(name_slice) {
Ok(name) => name,
Err(err) => {
return visitor.error(Error::NameError(err)) as i32;
}
};
let build_id = match get_build_id(info) {
Some(build_id) => build_id,
None => {
return visitor.error(Error::BuildIDError) as i32;
}
};
visitor.dso(Dso {
name: name,
build_id: build_id,
phdrs: info.phdr_slice(),
base: info.addr as usize,
}) as i32
}
unsafe { dl_iterate_phdr(callback, &mut visitor) };
}
struct DsoPrinter<'a, 'b> {
writer: &'a mut core::fmt::Formatter<'b>,
module_count: usize,
error: core::fmt::Result,
}
impl DsoPrinter<'_, '_> {
fn dso(&mut self, dso: Dso<'_>) -> bool {
let mut write = || {
write!(
self.writer,
"{{{{{{module:{:#x}:{}:elf:{}}}}}}}\n",
self.module_count,
dso.name,
HexSlice {
bytes: dso.build_id.as_ref()
}
)?;
for seg in dso.segments() {
write!(
self.writer,
"{{{{{{mmap:{:#x}:{:#x}:load:{:#x}:{}:{:#x}}}}}}}\n",
seg.addr, seg.size, self.module_count, seg.flags, seg.mod_rel_addr
)?;
}
self.module_count += 1;
Ok(())
};
match write() {
Ok(()) => false,
Err(err) => {
self.error = Err(err);
true
}
}
}
fn error(&mut self, _error: Error) -> bool {
false
}
}
/// This function prints the Fuchsia symbolizer markup for all information contained in a DSO.
pub fn print_dso_context(out: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
out.write_str("{{{reset:begin}}}\n")?;
let mut visitor = DsoPrinter {
writer: out,
module_count: 0,
error: Ok(()),
};
for_each_dso(&mut visitor);
visitor.error
}
/// This function prints the Fuchsia symbolizer markup to end the backtrace.
pub fn finish_context(out: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
out.write_str("{{{reset:end}}}\n")
}

View File

@@ -0,0 +1,218 @@
//! Symbolication strategy using `dbghelp.dll` on Windows, only used for MSVC
//!
//! This symbolication strategy, like with backtraces, uses dynamically loaded
//! information from `dbghelp.dll`. (see `src/dbghelp.rs` for info about why
//! it's dynamically loaded).
//!
//! This API selects its resolution strategy based on the frame provided or the
//! information we have at hand. If a frame from `StackWalkEx` is given to us
//! then we use similar APIs to generate correct information about inlined
//! functions. Otherwise if all we have is an address or an older stack frame
//! from `StackWalk64` we use the older APIs for symbolication.
//!
//! There's a good deal of support in this module, but a good chunk of it is
//! converting back and forth between Windows types and Rust types. For example
//! symbols come to us as wide strings which we then convert to utf-8 strings if
//! we can.
#![allow(bad_style)]
use super::super::{backtrace::StackFrame, dbghelp, windows::*};
use super::{BytesOrWideString, ResolveWhat, SymbolName};
use core::char;
use core::ffi::c_void;
use core::marker;
use core::mem;
use core::slice;
// Store an OsString on std so we can provide the symbol name and filename.
pub struct Symbol<'a> {
name: *const [u8],
addr: *mut c_void,
line: Option<u32>,
filename: Option<*const [u16]>,
#[cfg(feature = "std")]
_filename_cache: Option<::std::ffi::OsString>,
#[cfg(not(feature = "std"))]
_filename_cache: (),
_marker: marker::PhantomData<&'a i32>,
}
impl Symbol<'_> {
pub fn name(&self) -> Option<SymbolName<'_>> {
Some(SymbolName::new(unsafe { &*self.name }))
}
pub fn addr(&self) -> Option<*mut c_void> {
Some(self.addr as *mut _)
}
pub fn filename_raw(&self) -> Option<BytesOrWideString<'_>> {
self.filename
.map(|slice| unsafe { BytesOrWideString::Wide(&*slice) })
}
pub fn colno(&self) -> Option<u32> {
None
}
pub fn lineno(&self) -> Option<u32> {
self.line
}
#[cfg(feature = "std")]
pub fn filename(&self) -> Option<&::std::path::Path> {
use std::path::Path;
self._filename_cache.as_ref().map(Path::new)
}
}
#[repr(C, align(8))]
struct Aligned8<T>(T);
pub unsafe fn resolve(what: ResolveWhat<'_>, cb: &mut dyn FnMut(&super::Symbol)) {
// Ensure this process's symbols are initialized
let dbghelp = match dbghelp::init() {
Ok(dbghelp) => dbghelp,
Err(()) => return, // oh well...
};
match what {
ResolveWhat::Address(_) => resolve_without_inline(&dbghelp, what.address_or_ip(), cb),
ResolveWhat::Frame(frame) => match &frame.inner.stack_frame {
StackFrame::New(frame) => resolve_with_inline(&dbghelp, frame, cb),
StackFrame::Old(_) => resolve_without_inline(&dbghelp, frame.ip(), cb),
},
}
}
unsafe fn resolve_with_inline(
dbghelp: &dbghelp::Init,
frame: &STACKFRAME_EX,
cb: &mut dyn FnMut(&super::Symbol),
) {
do_resolve(
|info| {
dbghelp.SymFromInlineContextW()(
GetCurrentProcess(),
super::adjust_ip(frame.AddrPC.Offset as *mut _) as u64,
frame.InlineFrameContext,
&mut 0,
info,
)
},
|line| {
dbghelp.SymGetLineFromInlineContextW()(
GetCurrentProcess(),
super::adjust_ip(frame.AddrPC.Offset as *mut _) as u64,
frame.InlineFrameContext,
0,
&mut 0,
line,
)
},
cb,
)
}
unsafe fn resolve_without_inline(
dbghelp: &dbghelp::Init,
addr: *mut c_void,
cb: &mut dyn FnMut(&super::Symbol),
) {
do_resolve(
|info| dbghelp.SymFromAddrW()(GetCurrentProcess(), addr as DWORD64, &mut 0, info),
|line| dbghelp.SymGetLineFromAddrW64()(GetCurrentProcess(), addr as DWORD64, &mut 0, line),
cb,
)
}
unsafe fn do_resolve(
sym_from_addr: impl FnOnce(*mut SYMBOL_INFOW) -> BOOL,
get_line_from_addr: impl FnOnce(&mut IMAGEHLP_LINEW64) -> BOOL,
cb: &mut dyn FnMut(&super::Symbol),
) {
const SIZE: usize = 2 * MAX_SYM_NAME + mem::size_of::<SYMBOL_INFOW>();
let mut data = Aligned8([0u8; SIZE]);
let data = &mut data.0;
let info = &mut *(data.as_mut_ptr() as *mut SYMBOL_INFOW);
info.MaxNameLen = MAX_SYM_NAME as ULONG;
// the struct size in C. the value is different to
// `size_of::<SYMBOL_INFOW>() - MAX_SYM_NAME + 1` (== 81)
// due to struct alignment.
info.SizeOfStruct = 88;
if sym_from_addr(info) != TRUE {
return;
}
// If the symbol name is greater than MaxNameLen, SymFromAddrW will
// give a buffer of (MaxNameLen - 1) characters and set NameLen to
// the real value.
let name_len = ::core::cmp::min(info.NameLen as usize, info.MaxNameLen as usize - 1);
let name_ptr = info.Name.as_ptr() as *const u16;
let name = slice::from_raw_parts(name_ptr, name_len);
// Reencode the utf-16 symbol to utf-8 so we can use `SymbolName::new` like
// all other platforms
let mut name_len = 0;
let mut name_buffer = [0; 256];
{
let mut remaining = &mut name_buffer[..];
for c in char::decode_utf16(name.iter().cloned()) {
let c = c.unwrap_or(char::REPLACEMENT_CHARACTER);
let len = c.len_utf8();
if len < remaining.len() {
c.encode_utf8(remaining);
let tmp = remaining;
remaining = &mut tmp[len..];
name_len += len;
} else {
break;
}
}
}
let name = &name_buffer[..name_len] as *const [u8];
let mut line = mem::zeroed::<IMAGEHLP_LINEW64>();
line.SizeOfStruct = mem::size_of::<IMAGEHLP_LINEW64>() as DWORD;
let mut filename = None;
let mut lineno = None;
if get_line_from_addr(&mut line) == TRUE {
lineno = Some(line.LineNumber as u32);
let base = line.FileName;
let mut len = 0;
while *base.offset(len) != 0 {
len += 1;
}
let len = len as usize;
filename = Some(slice::from_raw_parts(base, len) as *const [u16]);
}
cb(&super::Symbol {
inner: Symbol {
name,
addr: info.Address as *mut _,
line: lineno,
filename,
_filename_cache: cache(filename),
_marker: marker::PhantomData,
},
})
}
#[cfg(feature = "std")]
unsafe fn cache(filename: Option<*const [u16]>) -> Option<::std::ffi::OsString> {
use std::os::windows::ffi::OsStringExt;
filename.map(|f| ::std::ffi::OsString::from_wide(&*f))
}
#[cfg(not(feature = "std"))]
unsafe fn cache(_filename: Option<*const [u16]>) {}
pub unsafe fn clear_symbol_cache() {}

511
vendor/backtrace/src/symbolize/gimli.rs vendored Normal file
View File

@@ -0,0 +1,511 @@
//! Support for symbolication using the `gimli` crate on crates.io
//!
//! This is the default symbolication implementation for Rust.
use self::gimli::read::EndianSlice;
use self::gimli::NativeEndian as Endian;
use self::mmap::Mmap;
use self::stash::Stash;
use super::BytesOrWideString;
use super::ResolveWhat;
use super::SymbolName;
use addr2line::gimli;
use core::convert::TryInto;
use core::mem;
use core::u32;
use libc::c_void;
use mystd::ffi::OsString;
use mystd::fs::File;
use mystd::path::Path;
use mystd::prelude::v1::*;
#[cfg(backtrace_in_libstd)]
mod mystd {
pub use crate::*;
}
#[cfg(not(backtrace_in_libstd))]
extern crate std as mystd;
cfg_if::cfg_if! {
if #[cfg(windows)] {
#[path = "gimli/mmap_windows.rs"]
mod mmap;
} else if #[cfg(any(
target_os = "android",
target_os = "freebsd",
target_os = "fuchsia",
target_os = "haiku",
target_os = "ios",
target_os = "linux",
target_os = "macos",
target_os = "openbsd",
target_os = "solaris",
target_os = "illumos",
))] {
#[path = "gimli/mmap_unix.rs"]
mod mmap;
} else {
#[path = "gimli/mmap_fake.rs"]
mod mmap;
}
}
mod stash;
const MAPPINGS_CACHE_SIZE: usize = 4;
struct Mapping {
// 'static lifetime is a lie to hack around lack of support for self-referential structs.
cx: Context<'static>,
_map: Mmap,
stash: Stash,
}
enum Either<A, B> {
#[allow(dead_code)]
A(A),
B(B),
}
impl Mapping {
/// Creates a `Mapping` by ensuring that the `data` specified is used to
/// create a `Context` and it can only borrow from that or the `Stash` of
/// decompressed sections or auxiliary data.
fn mk<F>(data: Mmap, mk: F) -> Option<Mapping>
where
F: for<'a> FnOnce(&'a [u8], &'a Stash) -> Option<Context<'a>>,
{
Mapping::mk_or_other(data, move |data, stash| {
let cx = mk(data, stash)?;
Some(Either::B(cx))
})
}
/// Creates a `Mapping` from `data`, or if the closure decides to, returns a
/// different mapping.
fn mk_or_other<F>(data: Mmap, mk: F) -> Option<Mapping>
where
F: for<'a> FnOnce(&'a [u8], &'a Stash) -> Option<Either<Mapping, Context<'a>>>,
{
let stash = Stash::new();
let cx = match mk(&data, &stash)? {
Either::A(mapping) => return Some(mapping),
Either::B(cx) => cx,
};
Some(Mapping {
// Convert to 'static lifetimes since the symbols should
// only borrow `map` and `stash` and we're preserving them below.
cx: unsafe { core::mem::transmute::<Context<'_>, Context<'static>>(cx) },
_map: data,
stash: stash,
})
}
}
struct Context<'a> {
dwarf: addr2line::Context<EndianSlice<'a, Endian>>,
object: Object<'a>,
package: Option<gimli::DwarfPackage<EndianSlice<'a, Endian>>>,
}
impl<'data> Context<'data> {
fn new(
stash: &'data Stash,
object: Object<'data>,
sup: Option<Object<'data>>,
dwp: Option<Object<'data>>,
) -> Option<Context<'data>> {
let mut sections = gimli::Dwarf::load(|id| -> Result<_, ()> {
let data = object.section(stash, id.name()).unwrap_or(&[]);
Ok(EndianSlice::new(data, Endian))
})
.ok()?;
if let Some(sup) = sup {
sections
.load_sup(|id| -> Result<_, ()> {
let data = sup.section(stash, id.name()).unwrap_or(&[]);
Ok(EndianSlice::new(data, Endian))
})
.ok()?;
}
let dwarf = addr2line::Context::from_dwarf(sections).ok()?;
let mut package = None;
if let Some(dwp) = dwp {
package = Some(
gimli::DwarfPackage::load(
|id| -> Result<_, gimli::Error> {
let data = id
.dwo_name()
.and_then(|name| dwp.section(stash, name))
.unwrap_or(&[]);
Ok(EndianSlice::new(data, Endian))
},
EndianSlice::new(&[], Endian),
)
.ok()?,
);
}
Some(Context {
dwarf,
object,
package,
})
}
fn find_frames(
&'_ self,
stash: &'data Stash,
probe: u64,
) -> gimli::Result<addr2line::FrameIter<'_, EndianSlice<'data, Endian>>> {
use addr2line::{LookupContinuation, LookupResult};
let mut l = self.dwarf.find_frames(probe);
loop {
let (load, continuation) = match l {
LookupResult::Output(output) => break output,
LookupResult::Load { load, continuation } => (load, continuation),
};
l = continuation.resume(handle_split_dwarf(self.package.as_ref(), stash, load));
}
}
}
fn mmap(path: &Path) -> Option<Mmap> {
let file = File::open(path).ok()?;
let len = file.metadata().ok()?.len().try_into().ok()?;
unsafe { Mmap::map(&file, len) }
}
cfg_if::cfg_if! {
if #[cfg(windows)] {
mod coff;
use self::coff::{handle_split_dwarf, Object};
} else if #[cfg(any(
target_os = "macos",
target_os = "ios",
target_os = "tvos",
target_os = "watchos",
))] {
mod macho;
use self::macho::{handle_split_dwarf, Object};
} else {
mod elf;
use self::elf::{handle_split_dwarf, Object};
}
}
cfg_if::cfg_if! {
if #[cfg(windows)] {
mod libs_windows;
use libs_windows::native_libraries;
} else if #[cfg(any(
target_os = "macos",
target_os = "ios",
target_os = "tvos",
target_os = "watchos",
))] {
mod libs_macos;
use libs_macos::native_libraries;
} else if #[cfg(target_os = "illumos")] {
mod libs_illumos;
use libs_illumos::native_libraries;
} else if #[cfg(all(
any(
target_os = "linux",
target_os = "fuchsia",
target_os = "freebsd",
target_os = "openbsd",
target_os = "netbsd",
all(target_os = "android", feature = "dl_iterate_phdr"),
),
not(target_env = "uclibc"),
))] {
mod libs_dl_iterate_phdr;
use libs_dl_iterate_phdr::native_libraries;
#[path = "gimli/parse_running_mmaps_unix.rs"]
mod parse_running_mmaps;
} else if #[cfg(target_env = "libnx")] {
mod libs_libnx;
use libs_libnx::native_libraries;
} else if #[cfg(target_os = "haiku")] {
mod libs_haiku;
use libs_haiku::native_libraries;
} else {
// Everything else should doesn't know how to load native libraries.
fn native_libraries() -> Vec<Library> {
Vec::new()
}
}
}
#[derive(Default)]
struct Cache {
/// All known shared libraries that have been loaded.
libraries: Vec<Library>,
/// Mappings cache where we retain parsed dwarf information.
///
/// This list has a fixed capacity for its entire lifetime which never
/// increases. The `usize` element of each pair is an index into `libraries`
/// above where `usize::max_value()` represents the current executable. The
/// `Mapping` is corresponding parsed dwarf information.
///
/// Note that this is basically an LRU cache and we'll be shifting things
/// around in here as we symbolize addresses.
mappings: Vec<(usize, Mapping)>,
}
struct Library {
name: OsString,
/// Segments of this library loaded into memory, and where they're loaded.
segments: Vec<LibrarySegment>,
/// The "bias" of this library, typically where it's loaded into memory.
/// This value is added to each segment's stated address to get the actual
/// virtual memory address that the segment is loaded into. Additionally
/// this bias is subtracted from real virtual memory addresses to index into
/// debuginfo and the symbol table.
bias: usize,
}
struct LibrarySegment {
/// The stated address of this segment in the object file. This is not
/// actually where the segment is loaded, but rather this address plus the
/// containing library's `bias` is where to find it.
stated_virtual_memory_address: usize,
/// The size of this segment in memory.
len: usize,
}
// unsafe because this is required to be externally synchronized
pub unsafe fn clear_symbol_cache() {
Cache::with_global(|cache| cache.mappings.clear());
}
impl Cache {
fn new() -> Cache {
Cache {
mappings: Vec::with_capacity(MAPPINGS_CACHE_SIZE),
libraries: native_libraries(),
}
}
// unsafe because this is required to be externally synchronized
unsafe fn with_global(f: impl FnOnce(&mut Self)) {
// A very small, very simple LRU cache for debug info mappings.
//
// The hit rate should be very high, since the typical stack doesn't cross
// between many shared libraries.
//
// The `addr2line::Context` structures are pretty expensive to create. Its
// cost is expected to be amortized by subsequent `locate` queries, which
// leverage the structures built when constructing `addr2line::Context`s to
// get nice speedups. If we didn't have this cache, that amortization would
// never happen, and symbolicating backtraces would be ssssllllooooowwww.
static mut MAPPINGS_CACHE: Option<Cache> = None;
f(MAPPINGS_CACHE.get_or_insert_with(|| Cache::new()))
}
fn avma_to_svma(&self, addr: *const u8) -> Option<(usize, *const u8)> {
self.libraries
.iter()
.enumerate()
.filter_map(|(i, lib)| {
// First up, test if this `lib` has any segment containing the
// `addr` (handling relocation). If this check passes then we
// can continue below and actually translate the address.
//
// Note that we're using `wrapping_add` here to avoid overflow
// checks. It's been seen in the wild that the SVMA + bias
// computation overflows. It seems a bit odd that would happen
// but there's not a huge amount we can do about it other than
// probably just ignore those segments since they're likely
// pointing off into space. This originally came up in
// rust-lang/backtrace-rs#329.
if !lib.segments.iter().any(|s| {
let svma = s.stated_virtual_memory_address;
let start = svma.wrapping_add(lib.bias);
let end = start.wrapping_add(s.len);
let address = addr as usize;
start <= address && address < end
}) {
return None;
}
// Now that we know `lib` contains `addr`, we can offset with
// the bias to find the stated virtual memory address.
let svma = (addr as usize).wrapping_sub(lib.bias);
Some((i, svma as *const u8))
})
.next()
}
fn mapping_for_lib<'a>(&'a mut self, lib: usize) -> Option<(&'a mut Context<'a>, &'a Stash)> {
let idx = self.mappings.iter().position(|(idx, _)| *idx == lib);
// Invariant: after this conditional completes without early returning
// from an error, the cache entry for this path is at index 0.
if let Some(idx) = idx {
// When the mapping is already in the cache, move it to the front.
if idx != 0 {
let entry = self.mappings.remove(idx);
self.mappings.insert(0, entry);
}
} else {
// When the mapping is not in the cache, create a new mapping,
// insert it into the front of the cache, and evict the oldest cache
// entry if necessary.
let name = &self.libraries[lib].name;
let mapping = Mapping::new(name.as_ref())?;
if self.mappings.len() == MAPPINGS_CACHE_SIZE {
self.mappings.pop();
}
self.mappings.insert(0, (lib, mapping));
}
let mapping = &mut self.mappings[0].1;
let cx: &'a mut Context<'static> = &mut mapping.cx;
let stash: &'a Stash = &mapping.stash;
// don't leak the `'static` lifetime, make sure it's scoped to just
// ourselves
Some((
unsafe { mem::transmute::<&'a mut Context<'static>, &'a mut Context<'a>>(cx) },
stash,
))
}
}
pub unsafe fn resolve(what: ResolveWhat<'_>, cb: &mut dyn FnMut(&super::Symbol)) {
let addr = what.address_or_ip();
let mut call = |sym: Symbol<'_>| {
// Extend the lifetime of `sym` to `'static` since we are unfortunately
// required to here, but it's only ever going out as a reference so no
// reference to it should be persisted beyond this frame anyway.
let sym = mem::transmute::<Symbol<'_>, Symbol<'static>>(sym);
(cb)(&super::Symbol { inner: sym });
};
Cache::with_global(|cache| {
let (lib, addr) = match cache.avma_to_svma(addr as *const u8) {
Some(pair) => pair,
None => return,
};
// Finally, get a cached mapping or create a new mapping for this file, and
// evaluate the DWARF info to find the file/line/name for this address.
let (cx, stash) = match cache.mapping_for_lib(lib) {
Some((cx, stash)) => (cx, stash),
None => return,
};
let mut any_frames = false;
if let Ok(mut frames) = cx.find_frames(stash, addr as u64) {
while let Ok(Some(frame)) = frames.next() {
any_frames = true;
let name = match frame.function {
Some(f) => Some(f.name.slice()),
None => cx.object.search_symtab(addr as u64),
};
call(Symbol::Frame {
addr: addr as *mut c_void,
location: frame.location,
name,
});
}
}
if !any_frames {
if let Some((object_cx, object_addr)) = cx.object.search_object_map(addr as u64) {
if let Ok(mut frames) = object_cx.find_frames(stash, object_addr) {
while let Ok(Some(frame)) = frames.next() {
any_frames = true;
call(Symbol::Frame {
addr: addr as *mut c_void,
location: frame.location,
name: frame.function.map(|f| f.name.slice()),
});
}
}
}
}
if !any_frames {
if let Some(name) = cx.object.search_symtab(addr as u64) {
call(Symbol::Symtab {
addr: addr as *mut c_void,
name,
});
}
}
});
}
pub enum Symbol<'a> {
/// We were able to locate frame information for this symbol, and
/// `addr2line`'s frame internally has all the nitty gritty details.
Frame {
addr: *mut c_void,
location: Option<addr2line::Location<'a>>,
name: Option<&'a [u8]>,
},
/// Couldn't find debug information, but we found it in the symbol table of
/// the elf executable.
Symtab { addr: *mut c_void, name: &'a [u8] },
}
impl Symbol<'_> {
pub fn name(&self) -> Option<SymbolName<'_>> {
match self {
Symbol::Frame { name, .. } => {
let name = name.as_ref()?;
Some(SymbolName::new(name))
}
Symbol::Symtab { name, .. } => Some(SymbolName::new(name)),
}
}
pub fn addr(&self) -> Option<*mut c_void> {
match self {
Symbol::Frame { addr, .. } => Some(*addr),
Symbol::Symtab { .. } => None,
}
}
pub fn filename_raw(&self) -> Option<BytesOrWideString<'_>> {
match self {
Symbol::Frame { location, .. } => {
let file = location.as_ref()?.file?;
Some(BytesOrWideString::Bytes(file.as_bytes()))
}
Symbol::Symtab { .. } => None,
}
}
pub fn filename(&self) -> Option<&Path> {
match self {
Symbol::Frame { location, .. } => {
let file = location.as_ref()?.file?;
Some(Path::new(file))
}
Symbol::Symtab { .. } => None,
}
}
pub fn lineno(&self) -> Option<u32> {
match self {
Symbol::Frame { location, .. } => location.as_ref()?.line,
Symbol::Symtab { .. } => None,
}
}
pub fn colno(&self) -> Option<u32> {
match self {
Symbol::Frame { location, .. } => location.as_ref()?.column,
Symbol::Symtab { .. } => None,
}
}
}

View File

@@ -0,0 +1,118 @@
use super::{gimli, Context, Endian, EndianSlice, Mapping, Path, Stash, Vec};
use alloc::sync::Arc;
use core::convert::TryFrom;
use object::pe::{ImageDosHeader, ImageSymbol};
use object::read::coff::ImageSymbol as _;
use object::read::pe::{ImageNtHeaders, ImageOptionalHeader, SectionTable};
use object::read::StringTable;
use object::LittleEndian as LE;
#[cfg(target_pointer_width = "32")]
type Pe = object::pe::ImageNtHeaders32;
#[cfg(target_pointer_width = "64")]
type Pe = object::pe::ImageNtHeaders64;
impl Mapping {
pub fn new(path: &Path) -> Option<Mapping> {
let map = super::mmap(path)?;
Mapping::mk(map, |data, stash| {
Context::new(stash, Object::parse(data)?, None, None)
})
}
}
pub struct Object<'a> {
data: &'a [u8],
sections: SectionTable<'a>,
symbols: Vec<(usize, &'a ImageSymbol)>,
strings: StringTable<'a>,
}
pub fn get_image_base(data: &[u8]) -> Option<usize> {
let dos_header = ImageDosHeader::parse(data).ok()?;
let mut offset = dos_header.nt_headers_offset().into();
let (nt_headers, _) = Pe::parse(data, &mut offset).ok()?;
usize::try_from(nt_headers.optional_header().image_base()).ok()
}
impl<'a> Object<'a> {
fn parse(data: &'a [u8]) -> Option<Object<'a>> {
let dos_header = ImageDosHeader::parse(data).ok()?;
let mut offset = dos_header.nt_headers_offset().into();
let (nt_headers, _) = Pe::parse(data, &mut offset).ok()?;
let sections = nt_headers.sections(data, offset).ok()?;
let symtab = nt_headers.symbols(data).ok()?;
let strings = symtab.strings();
let image_base = usize::try_from(nt_headers.optional_header().image_base()).ok()?;
// Collect all the symbols into a local vector which is sorted
// by address and contains enough data to learn about the symbol
// name. Note that we only look at function symbols and also
// note that the sections are 1-indexed because the zero section
// is special (apparently).
let mut symbols = Vec::new();
let mut i = 0;
let len = symtab.len();
while i < len {
let sym = symtab.symbol(i).ok()?;
i += 1 + sym.number_of_aux_symbols as usize;
let section_number = sym.section_number.get(LE);
if sym.derived_type() != object::pe::IMAGE_SYM_DTYPE_FUNCTION || section_number == 0 {
continue;
}
let addr = usize::try_from(sym.value.get(LE)).ok()?;
let section = sections
.section(usize::try_from(section_number).ok()?)
.ok()?;
let va = usize::try_from(section.virtual_address.get(LE)).ok()?;
symbols.push((addr + va + image_base, sym));
}
symbols.sort_unstable_by_key(|x| x.0);
Some(Object {
data,
sections,
strings,
symbols,
})
}
pub fn section(&self, _: &Stash, name: &str) -> Option<&'a [u8]> {
Some(
self.sections
.section_by_name(self.strings, name.as_bytes())?
.1
.pe_data(self.data)
.ok()?,
)
}
pub fn search_symtab<'b>(&'b self, addr: u64) -> Option<&'b [u8]> {
// Note that unlike other formats COFF doesn't embed the size of
// each symbol. As a last ditch effort search for the *closest*
// symbol to a particular address and return that one. This gets
// really wonky once symbols start getting removed because the
// symbols returned here can be totally incorrect, but we have
// no idea of knowing how to detect that.
let addr = usize::try_from(addr).ok()?;
let i = match self.symbols.binary_search_by_key(&addr, |p| p.0) {
Ok(i) => i,
// typically `addr` isn't in the array, but `i` is where
// we'd insert it, so the previous position must be the
// greatest less than `addr`
Err(i) => i.checked_sub(1)?,
};
self.symbols[i].1.name(self.strings).ok()
}
pub(super) fn search_object_map(&self, _addr: u64) -> Option<(&Context<'_>, u64)> {
None
}
}
pub(super) fn handle_split_dwarf<'data>(
_package: Option<&gimli::DwarfPackage<EndianSlice<'data, Endian>>>,
_stash: &'data Stash,
_load: addr2line::SplitDwarfLoad<EndianSlice<'data, Endian>>,
) -> Option<Arc<gimli::Dwarf<EndianSlice<'data, Endian>>>> {
None
}

View File

@@ -0,0 +1,495 @@
use super::mystd::ffi::{OsStr, OsString};
use super::mystd::fs;
use super::mystd::os::unix::ffi::{OsStrExt, OsStringExt};
use super::mystd::path::{Path, PathBuf};
use super::Either;
use super::{gimli, Context, Endian, EndianSlice, Mapping, Stash, Vec};
use alloc::sync::Arc;
use core::convert::{TryFrom, TryInto};
use core::str;
use object::elf::{ELFCOMPRESS_ZLIB, ELF_NOTE_GNU, NT_GNU_BUILD_ID, SHF_COMPRESSED};
use object::read::elf::{CompressionHeader, FileHeader, SectionHeader, SectionTable, Sym};
use object::read::StringTable;
use object::{BigEndian, Bytes, NativeEndian};
#[cfg(target_pointer_width = "32")]
type Elf = object::elf::FileHeader32<NativeEndian>;
#[cfg(target_pointer_width = "64")]
type Elf = object::elf::FileHeader64<NativeEndian>;
impl Mapping {
pub fn new(path: &Path) -> Option<Mapping> {
let map = super::mmap(path)?;
Mapping::mk_or_other(map, |map, stash| {
let object = Object::parse(&map)?;
// Try to locate an external debug file using the build ID.
if let Some(path_debug) = object.build_id().and_then(locate_build_id) {
if let Some(mapping) = Mapping::new_debug(path, path_debug, None) {
return Some(Either::A(mapping));
}
}
// Try to locate an external debug file using the GNU debug link section.
if let Some((path_debug, crc)) = object.gnu_debuglink_path(path) {
if let Some(mapping) = Mapping::new_debug(path, path_debug, Some(crc)) {
return Some(Either::A(mapping));
}
}
let dwp = Mapping::load_dwarf_package(path, stash);
Context::new(stash, object, None, dwp).map(Either::B)
})
}
/// Load debuginfo from an external debug file.
fn new_debug(original_path: &Path, path: PathBuf, crc: Option<u32>) -> Option<Mapping> {
let map = super::mmap(&path)?;
Mapping::mk(map, |map, stash| {
let object = Object::parse(&map)?;
if let Some(_crc) = crc {
// TODO: check crc
}
// Try to locate a supplementary object file.
let mut sup = None;
if let Some((path_sup, build_id_sup)) = object.gnu_debugaltlink_path(&path) {
if let Some(map_sup) = super::mmap(&path_sup) {
let map_sup = stash.cache_mmap(map_sup);
if let Some(sup_) = Object::parse(map_sup) {
if sup_.build_id() == Some(build_id_sup) {
sup = Some(sup_);
}
}
}
}
let dwp = Mapping::load_dwarf_package(original_path, stash);
Context::new(stash, object, sup, dwp)
})
}
/// Try to locate a DWARF package file.
fn load_dwarf_package<'data>(path: &Path, stash: &'data Stash) -> Option<Object<'data>> {
let mut path_dwp = path.to_path_buf();
let dwp_extension = path
.extension()
.map(|previous_extension| {
let mut previous_extension = previous_extension.to_os_string();
previous_extension.push(".dwp");
previous_extension
})
.unwrap_or_else(|| "dwp".into());
path_dwp.set_extension(dwp_extension);
if let Some(map_dwp) = super::mmap(&path_dwp) {
let map_dwp = stash.cache_mmap(map_dwp);
if let Some(dwp_) = Object::parse(map_dwp) {
return Some(dwp_);
}
}
None
}
}
struct ParsedSym {
address: u64,
size: u64,
name: u32,
}
pub struct Object<'a> {
/// Zero-sized type representing the native endianness.
///
/// We could use a literal instead, but this helps ensure correctness.
endian: NativeEndian,
/// The entire file data.
data: &'a [u8],
sections: SectionTable<'a, Elf>,
strings: StringTable<'a>,
/// List of pre-parsed and sorted symbols by base address.
syms: Vec<ParsedSym>,
}
impl<'a> Object<'a> {
fn parse(data: &'a [u8]) -> Option<Object<'a>> {
let elf = Elf::parse(data).ok()?;
let endian = elf.endian().ok()?;
let sections = elf.sections(endian, data).ok()?;
let mut syms = sections
.symbols(endian, data, object::elf::SHT_SYMTAB)
.ok()?;
if syms.is_empty() {
syms = sections
.symbols(endian, data, object::elf::SHT_DYNSYM)
.ok()?;
}
let strings = syms.strings();
let mut syms = syms
.iter()
// Only look at function/object symbols. This mirrors what
// libbacktrace does and in general we're only symbolicating
// function addresses in theory. Object symbols correspond
// to data, and maybe someone's crazy enough to have a
// function go into static data?
.filter(|sym| {
let st_type = sym.st_type();
st_type == object::elf::STT_FUNC || st_type == object::elf::STT_OBJECT
})
// skip anything that's in an undefined section header,
// since it means it's an imported function and we're only
// symbolicating with locally defined functions.
.filter(|sym| sym.st_shndx(endian) != object::elf::SHN_UNDEF)
.map(|sym| {
let address = sym.st_value(endian).into();
let size = sym.st_size(endian).into();
let name = sym.st_name(endian);
ParsedSym {
address,
size,
name,
}
})
.collect::<Vec<_>>();
syms.sort_unstable_by_key(|s| s.address);
Some(Object {
endian,
data,
sections,
strings,
syms,
})
}
pub fn section(&self, stash: &'a Stash, name: &str) -> Option<&'a [u8]> {
if let Some(section) = self.section_header(name) {
let mut data = Bytes(section.data(self.endian, self.data).ok()?);
// Check for DWARF-standard (gABI) compression, i.e., as generated
// by ld's `--compress-debug-sections=zlib-gabi` flag.
let flags: u64 = section.sh_flags(self.endian).into();
if (flags & u64::from(SHF_COMPRESSED)) == 0 {
// Not compressed.
return Some(data.0);
}
let header = data.read::<<Elf as FileHeader>::CompressionHeader>().ok()?;
if header.ch_type(self.endian) != ELFCOMPRESS_ZLIB {
// Zlib compression is the only known type.
return None;
}
let size = usize::try_from(header.ch_size(self.endian)).ok()?;
let buf = stash.allocate(size);
decompress_zlib(data.0, buf)?;
return Some(buf);
}
// Check for the nonstandard GNU compression format, i.e., as generated
// by ld's `--compress-debug-sections=zlib-gnu` flag. This means that if
// we're actually asking for `.debug_info` then we need to look up a
// section named `.zdebug_info`.
if !name.starts_with(".debug_") {
return None;
}
let debug_name = name[7..].as_bytes();
let compressed_section = self
.sections
.iter()
.filter_map(|header| {
let name = self.sections.section_name(self.endian, header).ok()?;
if name.starts_with(b".zdebug_") && &name[8..] == debug_name {
Some(header)
} else {
None
}
})
.next()?;
let mut data = Bytes(compressed_section.data(self.endian, self.data).ok()?);
if data.read_bytes(8).ok()?.0 != b"ZLIB\0\0\0\0" {
return None;
}
let size = usize::try_from(data.read::<object::U32Bytes<_>>().ok()?.get(BigEndian)).ok()?;
let buf = stash.allocate(size);
decompress_zlib(data.0, buf)?;
Some(buf)
}
fn section_header(&self, name: &str) -> Option<&<Elf as FileHeader>::SectionHeader> {
self.sections
.section_by_name(self.endian, name.as_bytes())
.map(|(_index, section)| section)
}
pub fn search_symtab<'b>(&'b self, addr: u64) -> Option<&'b [u8]> {
// Same sort of binary search as Windows above
let i = match self.syms.binary_search_by_key(&addr, |sym| sym.address) {
Ok(i) => i,
Err(i) => i.checked_sub(1)?,
};
let sym = self.syms.get(i)?;
if sym.address <= addr && addr <= sym.address + sym.size {
self.strings.get(sym.name).ok()
} else {
None
}
}
pub(super) fn search_object_map(&self, _addr: u64) -> Option<(&Context<'_>, u64)> {
None
}
fn build_id(&self) -> Option<&'a [u8]> {
for section in self.sections.iter() {
if let Ok(Some(mut notes)) = section.notes(self.endian, self.data) {
while let Ok(Some(note)) = notes.next() {
if note.name() == ELF_NOTE_GNU && note.n_type(self.endian) == NT_GNU_BUILD_ID {
return Some(note.desc());
}
}
}
}
None
}
// The contents of the ".gnu_debuglink" section is documented at:
// https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
fn gnu_debuglink_path(&self, path: &Path) -> Option<(PathBuf, u32)> {
let section = self.section_header(".gnu_debuglink")?;
let data = section.data(self.endian, self.data).ok()?;
let len = data.iter().position(|x| *x == 0)?;
let filename = &data[..len];
let offset = (len + 1 + 3) & !3;
let crc_bytes = data
.get(offset..offset + 4)
.and_then(|bytes| bytes.try_into().ok())?;
let crc = u32::from_ne_bytes(crc_bytes);
let path_debug = locate_debuglink(path, filename)?;
Some((path_debug, crc))
}
// The format of the ".gnu_debugaltlink" section is based on gdb.
fn gnu_debugaltlink_path(&self, path: &Path) -> Option<(PathBuf, &'a [u8])> {
let section = self.section_header(".gnu_debugaltlink")?;
let data = section.data(self.endian, self.data).ok()?;
let len = data.iter().position(|x| *x == 0)?;
let filename = &data[..len];
let build_id = &data[len + 1..];
let path_sup = locate_debugaltlink(path, filename, build_id)?;
Some((path_sup, build_id))
}
}
fn decompress_zlib(input: &[u8], output: &mut [u8]) -> Option<()> {
use miniz_oxide::inflate::core::inflate_flags::{
TINFL_FLAG_PARSE_ZLIB_HEADER, TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF,
};
use miniz_oxide::inflate::core::{decompress, DecompressorOxide};
use miniz_oxide::inflate::TINFLStatus;
let (status, in_read, out_read) = decompress(
&mut DecompressorOxide::new(),
input,
output,
0,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | TINFL_FLAG_PARSE_ZLIB_HEADER,
);
if status == TINFLStatus::Done && in_read == input.len() && out_read == output.len() {
Some(())
} else {
None
}
}
const DEBUG_PATH: &[u8] = b"/usr/lib/debug";
fn debug_path_exists() -> bool {
cfg_if::cfg_if! {
if #[cfg(any(target_os = "freebsd", target_os = "linux"))] {
use core::sync::atomic::{AtomicU8, Ordering};
static DEBUG_PATH_EXISTS: AtomicU8 = AtomicU8::new(0);
let mut exists = DEBUG_PATH_EXISTS.load(Ordering::Relaxed);
if exists == 0 {
exists = if Path::new(OsStr::from_bytes(DEBUG_PATH)).is_dir() {
1
} else {
2
};
DEBUG_PATH_EXISTS.store(exists, Ordering::Relaxed);
}
exists == 1
} else {
false
}
}
}
/// Locate a debug file based on its build ID.
///
/// The format of build id paths is documented at:
/// https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
fn locate_build_id(build_id: &[u8]) -> Option<PathBuf> {
const BUILD_ID_PATH: &[u8] = b"/usr/lib/debug/.build-id/";
const BUILD_ID_SUFFIX: &[u8] = b".debug";
if build_id.len() < 2 {
return None;
}
if !debug_path_exists() {
return None;
}
let mut path =
Vec::with_capacity(BUILD_ID_PATH.len() + BUILD_ID_SUFFIX.len() + build_id.len() * 2 + 1);
path.extend(BUILD_ID_PATH);
path.push(hex(build_id[0] >> 4));
path.push(hex(build_id[0] & 0xf));
path.push(b'/');
for byte in &build_id[1..] {
path.push(hex(byte >> 4));
path.push(hex(byte & 0xf));
}
path.extend(BUILD_ID_SUFFIX);
Some(PathBuf::from(OsString::from_vec(path)))
}
fn hex(byte: u8) -> u8 {
if byte < 10 {
b'0' + byte
} else {
b'a' + byte - 10
}
}
/// Locate a file specified in a `.gnu_debuglink` section.
///
/// `path` is the file containing the section.
/// `filename` is from the contents of the section.
///
/// Search order is based on gdb, documented at:
/// https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
///
/// gdb also allows the user to customize the debug search path, but we don't.
///
/// gdb also supports debuginfod, but we don't yet.
fn locate_debuglink(path: &Path, filename: &[u8]) -> Option<PathBuf> {
let path = fs::canonicalize(path).ok()?;
let parent = path.parent()?;
let mut f = PathBuf::from(OsString::with_capacity(
DEBUG_PATH.len() + parent.as_os_str().len() + filename.len() + 2,
));
let filename = Path::new(OsStr::from_bytes(filename));
// Try "/parent/filename" if it differs from "path"
f.push(parent);
f.push(filename);
if f != path && f.is_file() {
return Some(f);
}
// Try "/parent/.debug/filename"
let mut s = OsString::from(f);
s.clear();
f = PathBuf::from(s);
f.push(parent);
f.push(".debug");
f.push(filename);
if f.is_file() {
return Some(f);
}
if debug_path_exists() {
// Try "/usr/lib/debug/parent/filename"
let mut s = OsString::from(f);
s.clear();
f = PathBuf::from(s);
f.push(OsStr::from_bytes(DEBUG_PATH));
f.push(parent.strip_prefix("/").unwrap());
f.push(filename);
if f.is_file() {
return Some(f);
}
}
None
}
/// Locate a file specified in a `.gnu_debugaltlink` section.
///
/// `path` is the file containing the section.
/// `filename` and `build_id` are the contents of the section.
///
/// Search order is based on gdb:
/// - filename, which is either absolute or relative to `path`
/// - the build ID path under `BUILD_ID_PATH`
///
/// gdb also allows the user to customize the debug search path, but we don't.
///
/// gdb also supports debuginfod, but we don't yet.
fn locate_debugaltlink(path: &Path, filename: &[u8], build_id: &[u8]) -> Option<PathBuf> {
let filename = Path::new(OsStr::from_bytes(filename));
if filename.is_absolute() {
if filename.is_file() {
return Some(filename.into());
}
} else {
let path = fs::canonicalize(path).ok()?;
let parent = path.parent()?;
let mut f = PathBuf::from(parent);
f.push(filename);
if f.is_file() {
return Some(f);
}
}
locate_build_id(build_id)
}
fn convert_path<R: gimli::Reader>(r: &R) -> Result<PathBuf, gimli::Error> {
let bytes = r.to_slice()?;
Ok(PathBuf::from(OsStr::from_bytes(&bytes)))
}
pub(super) fn handle_split_dwarf<'data>(
package: Option<&gimli::DwarfPackage<EndianSlice<'data, Endian>>>,
stash: &'data Stash,
load: addr2line::SplitDwarfLoad<EndianSlice<'data, Endian>>,
) -> Option<Arc<gimli::Dwarf<EndianSlice<'data, Endian>>>> {
if let Some(dwp) = package.as_ref() {
if let Ok(Some(cu)) = dwp.find_cu(load.dwo_id, &load.parent) {
return Some(Arc::new(cu));
}
}
let mut path = PathBuf::new();
if let Some(p) = load.comp_dir.as_ref() {
path.push(convert_path(p).ok()?);
}
path.push(convert_path(load.path.as_ref()?).ok()?);
if let Some(map_dwo) = super::mmap(&path) {
let map_dwo = stash.cache_mmap(map_dwo);
if let Some(dwo) = Object::parse(map_dwo) {
return gimli::Dwarf::load(|id| -> Result<_, ()> {
let data = id
.dwo_name()
.and_then(|name| dwo.section(stash, name))
.unwrap_or(&[]);
Ok(EndianSlice::new(data, Endian))
})
.ok()
.map(|mut dwo_dwarf| {
dwo_dwarf.make_dwo(&load.parent);
Arc::new(dwo_dwarf)
});
}
}
None
}

View File

@@ -0,0 +1,71 @@
// Other Unix (e.g. Linux) platforms use ELF as an object file format
// and typically implement an API called `dl_iterate_phdr` to load
// native libraries.
use super::mystd::borrow::ToOwned;
use super::mystd::env;
use super::mystd::ffi::{CStr, OsStr};
use super::mystd::os::unix::prelude::*;
use super::{Library, LibrarySegment, OsString, Vec};
use core::slice;
pub(super) fn native_libraries() -> Vec<Library> {
let mut ret = Vec::new();
unsafe {
libc::dl_iterate_phdr(Some(callback), &mut ret as *mut Vec<_> as *mut _);
}
return ret;
}
fn infer_current_exe(base_addr: usize) -> OsString {
if let Ok(entries) = super::parse_running_mmaps::parse_maps() {
let opt_path = entries
.iter()
.find(|e| e.ip_matches(base_addr) && e.pathname().len() > 0)
.map(|e| e.pathname())
.cloned();
if let Some(path) = opt_path {
return path;
}
}
env::current_exe().map(|e| e.into()).unwrap_or_default()
}
// `info` should be a valid pointers.
// `vec` should be a valid pointer to a `std::Vec`.
unsafe extern "C" fn callback(
info: *mut libc::dl_phdr_info,
_size: libc::size_t,
vec: *mut libc::c_void,
) -> libc::c_int {
let info = &*info;
let libs = &mut *(vec as *mut Vec<Library>);
let is_main_prog = info.dlpi_name.is_null() || *info.dlpi_name == 0;
let name = if is_main_prog {
// The man page for dl_iterate_phdr says that the first object visited by
// callback is the main program; so the first time we encounter a
// nameless entry, we can assume its the main program and try to infer its path.
// After that, we cannot continue that assumption, and we use an empty string.
if libs.is_empty() {
infer_current_exe(info.dlpi_addr as usize)
} else {
OsString::new()
}
} else {
let bytes = CStr::from_ptr(info.dlpi_name).to_bytes();
OsStr::from_bytes(bytes).to_owned()
};
let headers = slice::from_raw_parts(info.dlpi_phdr, info.dlpi_phnum as usize);
libs.push(Library {
name,
segments: headers
.iter()
.map(|header| LibrarySegment {
len: (*header).p_memsz as usize,
stated_virtual_memory_address: (*header).p_vaddr as usize,
})
.collect(),
bias: info.dlpi_addr as usize,
});
0
}

View File

@@ -0,0 +1,48 @@
// Haiku implements the image_info struct and the get_next_image_info()
// functions to iterate through the loaded executable images. The
// image_info struct contains a pointer to the start of the .text
// section within the virtual address space, as well as the size of
// that section. All the read-only segments of the ELF-binary are in
// that part of the address space.
use super::mystd::borrow::ToOwned;
use super::mystd::ffi::{CStr, OsStr};
use super::mystd::mem::MaybeUninit;
use super::mystd::os::unix::prelude::*;
use super::{Library, LibrarySegment, Vec};
pub(super) fn native_libraries() -> Vec<Library> {
let mut libraries: Vec<Library> = Vec::new();
unsafe {
let mut info = MaybeUninit::<libc::image_info>::zeroed();
let mut cookie: i32 = 0;
// Load the first image to get a valid info struct
let mut status =
libc::get_next_image_info(libc::B_CURRENT_TEAM, &mut cookie, info.as_mut_ptr());
if status != libc::B_OK {
return libraries;
}
let mut info = info.assume_init();
while status == libc::B_OK {
let mut segments = Vec::new();
segments.push(LibrarySegment {
stated_virtual_memory_address: 0,
len: info.text_size as usize,
});
let bytes = CStr::from_ptr(info.name.as_ptr()).to_bytes();
let name = OsStr::from_bytes(bytes).to_owned();
libraries.push(Library {
name: name,
segments: segments,
bias: info.text as usize,
});
status = libc::get_next_image_info(libc::B_CURRENT_TEAM, &mut cookie, &mut info);
}
}
libraries
}

View File

@@ -0,0 +1,99 @@
use super::mystd::borrow::ToOwned;
use super::mystd::ffi::{CStr, OsStr};
use super::mystd::os::unix::prelude::*;
use super::{Library, LibrarySegment, Vec};
use core::mem;
use object::NativeEndian;
#[cfg(target_pointer_width = "64")]
use object::elf::{FileHeader64 as FileHeader, ProgramHeader64 as ProgramHeader};
type EHdr = FileHeader<NativeEndian>;
type PHdr = ProgramHeader<NativeEndian>;
#[repr(C)]
struct LinkMap {
l_addr: libc::c_ulong,
l_name: *const libc::c_char,
l_ld: *const libc::c_void,
l_next: *const LinkMap,
l_prev: *const LinkMap,
l_refname: *const libc::c_char,
}
const RTLD_SELF: *const libc::c_void = -3isize as *const libc::c_void;
const RTLD_DI_LINKMAP: libc::c_int = 2;
extern "C" {
fn dlinfo(
handle: *const libc::c_void,
request: libc::c_int,
p: *mut libc::c_void,
) -> libc::c_int;
}
pub(super) fn native_libraries() -> Vec<Library> {
let mut libs = Vec::new();
// Request the current link map from the runtime linker:
let map = unsafe {
let mut map: *const LinkMap = mem::zeroed();
if dlinfo(
RTLD_SELF,
RTLD_DI_LINKMAP,
(&mut map) as *mut *const LinkMap as *mut libc::c_void,
) != 0
{
return libs;
}
map
};
// Each entry in the link map represents a loaded object:
let mut l = map;
while !l.is_null() {
// Fetch the fully qualified path of the loaded object:
let bytes = unsafe { CStr::from_ptr((*l).l_name) }.to_bytes();
let name = OsStr::from_bytes(bytes).to_owned();
// The base address of the object loaded into memory:
let addr = unsafe { (*l).l_addr };
// Use the ELF header for this object to locate the program
// header:
let e: *const EHdr = unsafe { (*l).l_addr as *const EHdr };
let phoff = unsafe { (*e).e_phoff }.get(NativeEndian);
let phnum = unsafe { (*e).e_phnum }.get(NativeEndian);
let etype = unsafe { (*e).e_type }.get(NativeEndian);
let phdr: *const PHdr = (addr + phoff) as *const PHdr;
let phdr = unsafe { core::slice::from_raw_parts(phdr, phnum as usize) };
libs.push(Library {
name,
segments: phdr
.iter()
.map(|p| {
let memsz = p.p_memsz.get(NativeEndian);
let vaddr = p.p_vaddr.get(NativeEndian);
LibrarySegment {
len: memsz as usize,
stated_virtual_memory_address: vaddr as usize,
}
})
.collect(),
bias: if etype == object::elf::ET_EXEC {
// Program header addresses for the base executable are
// already absolute.
0
} else {
// Other addresses are relative to the object base.
addr as usize
},
});
l = unsafe { (*l).l_next };
}
libs
}

View File

@@ -0,0 +1,27 @@
use super::{Library, LibrarySegment, Vec};
// DevkitA64 doesn't natively support debug info, but the build system will
// place debug info at the path `romfs:/debug_info.elf`.
pub(super) fn native_libraries() -> Vec<Library> {
extern "C" {
static __start__: u8;
}
let bias = unsafe { &__start__ } as *const u8 as usize;
let mut ret = Vec::new();
let mut segments = Vec::new();
segments.push(LibrarySegment {
stated_virtual_memory_address: 0,
len: usize::max_value() - bias,
});
let path = "romfs:/debug_info.elf";
ret.push(Library {
name: path.into(),
segments,
bias,
});
ret
}

View File

@@ -0,0 +1,146 @@
#![allow(deprecated)]
use super::mystd::ffi::{CStr, OsStr};
use super::mystd::os::unix::prelude::*;
use super::mystd::prelude::v1::*;
use super::{Library, LibrarySegment};
use core::convert::TryInto;
use core::mem;
pub(super) fn native_libraries() -> Vec<Library> {
let mut ret = Vec::new();
let images = unsafe { libc::_dyld_image_count() };
for i in 0..images {
ret.extend(native_library(i));
}
return ret;
}
fn native_library(i: u32) -> Option<Library> {
use object::macho;
use object::read::macho::{MachHeader, Segment};
use object::NativeEndian;
// Fetch the name of this library which corresponds to the path of
// where to load it as well.
let name = unsafe {
let name = libc::_dyld_get_image_name(i);
if name.is_null() {
return None;
}
CStr::from_ptr(name)
};
// Load the image header of this library and delegate to `object` to
// parse all the load commands so we can figure out all the segments
// involved here.
let (mut load_commands, endian) = unsafe {
let header = libc::_dyld_get_image_header(i);
if header.is_null() {
return None;
}
match (*header).magic {
macho::MH_MAGIC => {
let endian = NativeEndian;
let header = &*(header as *const macho::MachHeader32<NativeEndian>);
let data = core::slice::from_raw_parts(
header as *const _ as *const u8,
mem::size_of_val(header) + header.sizeofcmds.get(endian) as usize,
);
(header.load_commands(endian, data, 0).ok()?, endian)
}
macho::MH_MAGIC_64 => {
let endian = NativeEndian;
let header = &*(header as *const macho::MachHeader64<NativeEndian>);
let data = core::slice::from_raw_parts(
header as *const _ as *const u8,
mem::size_of_val(header) + header.sizeofcmds.get(endian) as usize,
);
(header.load_commands(endian, data, 0).ok()?, endian)
}
_ => return None,
}
};
// Iterate over the segments and register known regions for segments
// that we find. Additionally record information bout text segments
// for processing later, see comments below.
let mut segments = Vec::new();
let mut first_text = 0;
let mut text_fileoff_zero = false;
while let Some(cmd) = load_commands.next().ok()? {
if let Some((seg, _)) = cmd.segment_32().ok()? {
if seg.name() == b"__TEXT" {
first_text = segments.len();
if seg.fileoff(endian) == 0 && seg.filesize(endian) > 0 {
text_fileoff_zero = true;
}
}
segments.push(LibrarySegment {
len: seg.vmsize(endian).try_into().ok()?,
stated_virtual_memory_address: seg.vmaddr(endian).try_into().ok()?,
});
}
if let Some((seg, _)) = cmd.segment_64().ok()? {
if seg.name() == b"__TEXT" {
first_text = segments.len();
if seg.fileoff(endian) == 0 && seg.filesize(endian) > 0 {
text_fileoff_zero = true;
}
}
segments.push(LibrarySegment {
len: seg.vmsize(endian).try_into().ok()?,
stated_virtual_memory_address: seg.vmaddr(endian).try_into().ok()?,
});
}
}
// Determine the "slide" for this library which ends up being the
// bias we use to figure out where in memory objects are loaded.
// This is a bit of a weird computation though and is the result of
// trying a few things in the wild and seeing what sticks.
//
// The general idea is that the `bias` plus a segment's
// `stated_virtual_memory_address` is going to be where in the
// actual address space the segment resides. The other thing we rely
// on though is that a real address minus the `bias` is the index to
// look up in the symbol table and debuginfo.
//
// It turns out, though, that for system loaded libraries these
// calculations are incorrect. For native executables, however, it
// appears correct. Lifting some logic from LLDB's source it has
// some special-casing for the first `__TEXT` section loaded from
// file offset 0 with a nonzero size. For whatever reason when this
// is present it appears to mean that the symbol table is relative
// to just the vmaddr slide for the library. If it's *not* present
// then the symbol table is relative to the vmaddr slide plus the
// segment's stated address.
//
// To handle this situation if we *don't* find a text section at
// file offset zero then we increase the bias by the first text
// sections's stated address and decrease all stated addresses by
// that amount as well. That way the symbol table is always appears
// relative to the library's bias amount. This appears to have the
// right results for symbolizing via the symbol table.
//
// Honestly I'm not entirely sure whether this is right or if
// there's something else that should indicate how to do this. For
// now though this seems to work well enough (?) and we should
// always be able to tweak this over time if necessary.
//
// For some more information see #318
let mut slide = unsafe { libc::_dyld_get_image_vmaddr_slide(i) as usize };
if !text_fileoff_zero {
let adjust = segments[first_text].stated_virtual_memory_address;
for segment in segments.iter_mut() {
segment.stated_virtual_memory_address -= adjust;
}
slide += adjust;
}
Some(Library {
name: OsStr::from_bytes(name.to_bytes()).to_owned(),
segments,
bias: slide,
})
}

View File

@@ -0,0 +1,89 @@
use super::super::super::windows::*;
use super::mystd::os::windows::prelude::*;
use super::{coff, mmap, Library, LibrarySegment, OsString};
use alloc::vec;
use alloc::vec::Vec;
use core::mem;
use core::mem::MaybeUninit;
// For loading native libraries on Windows, see some discussion on
// rust-lang/rust#71060 for the various strategies here.
pub(super) fn native_libraries() -> Vec<Library> {
let mut ret = Vec::new();
unsafe {
add_loaded_images(&mut ret);
}
return ret;
}
unsafe fn add_loaded_images(ret: &mut Vec<Library>) {
let snap = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, 0);
if snap == INVALID_HANDLE_VALUE {
return;
}
let mut me = MaybeUninit::<MODULEENTRY32W>::zeroed().assume_init();
me.dwSize = mem::size_of_val(&me) as DWORD;
if Module32FirstW(snap, &mut me) == TRUE {
loop {
if let Some(lib) = load_library(&me) {
ret.push(lib);
}
if Module32NextW(snap, &mut me) != TRUE {
break;
}
}
}
CloseHandle(snap);
}
unsafe fn load_library(me: &MODULEENTRY32W) -> Option<Library> {
let pos = me
.szExePath
.iter()
.position(|i| *i == 0)
.unwrap_or(me.szExePath.len());
let name = OsString::from_wide(&me.szExePath[..pos]);
// MinGW libraries currently don't support ASLR
// (rust-lang/rust#16514), but DLLs can still be relocated around in
// the address space. It appears that addresses in debug info are
// all as-if this library was loaded at its "image base", which is a
// field in its COFF file headers. Since this is what debuginfo
// seems to list we parse the symbol table and store addresses as if
// the library was loaded at "image base" as well.
//
// The library may not be loaded at "image base", however.
// (presumably something else may be loaded there?) This is where
// the `bias` field comes into play, and we need to figure out the
// value of `bias` here. Unfortunately though it's not clear how to
// acquire this from a loaded module. What we do have, however, is
// the actual load address (`modBaseAddr`).
//
// As a bit of a cop-out for now we mmap the file, read the file
// header information, then drop the mmap. This is wasteful because
// we'll probably reopen the mmap later, but this should work well
// enough for now.
//
// Once we have the `image_base` (desired load location) and the
// `base_addr` (actual load location) we can fill in the `bias`
// (difference between the actual and desired) and then the stated
// address of each segment is the `image_base` since that's what the
// file says.
//
// For now it appears that unlike ELF/MachO we can make do with one
// segment per library, using `modBaseSize` as the whole size.
let mmap = mmap(name.as_ref())?;
let image_base = coff::get_image_base(&mmap)?;
let base_addr = me.modBaseAddr as usize;
Some(Library {
name,
bias: base_addr.wrapping_sub(image_base),
segments: vec![LibrarySegment {
stated_virtual_memory_address: image_base,
len: me.modBaseSize as usize,
}],
})
}

View File

@@ -0,0 +1,333 @@
use super::{gimli, Box, Context, Endian, EndianSlice, Mapping, Path, Stash, Vec};
use alloc::sync::Arc;
use core::convert::TryInto;
use object::macho;
use object::read::macho::{MachHeader, Nlist, Section, Segment as _};
use object::{Bytes, NativeEndian};
#[cfg(target_pointer_width = "32")]
type Mach = object::macho::MachHeader32<NativeEndian>;
#[cfg(target_pointer_width = "64")]
type Mach = object::macho::MachHeader64<NativeEndian>;
type MachSegment = <Mach as MachHeader>::Segment;
type MachSection = <Mach as MachHeader>::Section;
type MachNlist = <Mach as MachHeader>::Nlist;
impl Mapping {
// The loading path for macOS is so different we just have a completely
// different implementation of the function here. On macOS we need to go
// probing the filesystem for a bunch of files.
pub fn new(path: &Path) -> Option<Mapping> {
// First up we need to load the unique UUID which is stored in the macho
// header of the file we're reading, specified at `path`.
let map = super::mmap(path)?;
let (macho, data) = find_header(&map)?;
let endian = macho.endian().ok()?;
let uuid = macho.uuid(endian, data, 0).ok()?;
// Next we need to look for a `*.dSYM` file. For now we just probe the
// containing directory and look around for something that matches
// `*.dSYM`. Once it's found we root through the dwarf resources that it
// contains and try to find a macho file which has a matching UUID as
// the one of our own file. If we find a match that's the dwarf file we
// want to return.
if let Some(uuid) = uuid {
if let Some(parent) = path.parent() {
if let Some(mapping) = Mapping::load_dsym(parent, uuid) {
return Some(mapping);
}
}
}
// Looks like nothing matched our UUID, so let's at least return our own
// file. This should have the symbol table for at least some
// symbolication purposes.
Mapping::mk(map, |data, stash| {
let (macho, data) = find_header(data)?;
let endian = macho.endian().ok()?;
let obj = Object::parse(macho, endian, data)?;
Context::new(stash, obj, None, None)
})
}
fn load_dsym(dir: &Path, uuid: [u8; 16]) -> Option<Mapping> {
for entry in dir.read_dir().ok()? {
let entry = entry.ok()?;
let filename = match entry.file_name().into_string() {
Ok(name) => name,
Err(_) => continue,
};
if !filename.ends_with(".dSYM") {
continue;
}
let candidates = entry.path().join("Contents/Resources/DWARF");
if let Some(mapping) = Mapping::try_dsym_candidate(&candidates, uuid) {
return Some(mapping);
}
}
None
}
fn try_dsym_candidate(dir: &Path, uuid: [u8; 16]) -> Option<Mapping> {
// Look for files in the `DWARF` directory which have a matching uuid to
// the original object file. If we find one then we found the debug
// information.
for entry in dir.read_dir().ok()? {
let entry = entry.ok()?;
let map = super::mmap(&entry.path())?;
let candidate = Mapping::mk(map, |data, stash| {
let (macho, data) = find_header(data)?;
let endian = macho.endian().ok()?;
let entry_uuid = macho.uuid(endian, data, 0).ok()??;
if entry_uuid != uuid {
return None;
}
let obj = Object::parse(macho, endian, data)?;
Context::new(stash, obj, None, None)
});
if let Some(candidate) = candidate {
return Some(candidate);
}
}
None
}
}
fn find_header(data: &'_ [u8]) -> Option<(&'_ Mach, &'_ [u8])> {
use object::endian::BigEndian;
let desired_cpu = || {
if cfg!(target_arch = "x86") {
Some(macho::CPU_TYPE_X86)
} else if cfg!(target_arch = "x86_64") {
Some(macho::CPU_TYPE_X86_64)
} else if cfg!(target_arch = "arm") {
Some(macho::CPU_TYPE_ARM)
} else if cfg!(target_arch = "aarch64") {
Some(macho::CPU_TYPE_ARM64)
} else {
None
}
};
let mut data = Bytes(data);
match data
.clone()
.read::<object::endian::U32<NativeEndian>>()
.ok()?
.get(NativeEndian)
{
macho::MH_MAGIC_64 | macho::MH_CIGAM_64 | macho::MH_MAGIC | macho::MH_CIGAM => {}
macho::FAT_MAGIC | macho::FAT_CIGAM => {
let mut header_data = data;
let endian = BigEndian;
let header = header_data.read::<macho::FatHeader>().ok()?;
let nfat = header.nfat_arch.get(endian);
let arch = (0..nfat)
.filter_map(|_| header_data.read::<macho::FatArch32>().ok())
.find(|arch| desired_cpu() == Some(arch.cputype.get(endian)))?;
let offset = arch.offset.get(endian);
let size = arch.size.get(endian);
data = data
.read_bytes_at(offset.try_into().ok()?, size.try_into().ok()?)
.ok()?;
}
macho::FAT_MAGIC_64 | macho::FAT_CIGAM_64 => {
let mut header_data = data;
let endian = BigEndian;
let header = header_data.read::<macho::FatHeader>().ok()?;
let nfat = header.nfat_arch.get(endian);
let arch = (0..nfat)
.filter_map(|_| header_data.read::<macho::FatArch64>().ok())
.find(|arch| desired_cpu() == Some(arch.cputype.get(endian)))?;
let offset = arch.offset.get(endian);
let size = arch.size.get(endian);
data = data
.read_bytes_at(offset.try_into().ok()?, size.try_into().ok()?)
.ok()?;
}
_ => return None,
}
Mach::parse(data.0, 0).ok().map(|h| (h, data.0))
}
// This is used both for executables/libraries and source object files.
pub struct Object<'a> {
endian: NativeEndian,
data: &'a [u8],
dwarf: Option<&'a [MachSection]>,
syms: Vec<(&'a [u8], u64)>,
syms_sort_by_name: bool,
// Only set for executables/libraries, and not the source object files.
object_map: Option<object::ObjectMap<'a>>,
// The outer Option is for lazy loading, and the inner Option allows load errors to be cached.
object_mappings: Box<[Option<Option<Mapping>>]>,
}
impl<'a> Object<'a> {
fn parse(mach: &'a Mach, endian: NativeEndian, data: &'a [u8]) -> Option<Object<'a>> {
let is_object = mach.filetype(endian) == object::macho::MH_OBJECT;
let mut dwarf = None;
let mut syms = Vec::new();
let mut syms_sort_by_name = false;
let mut commands = mach.load_commands(endian, data, 0).ok()?;
let mut object_map = None;
let mut object_mappings = Vec::new();
while let Ok(Some(command)) = commands.next() {
if let Some((segment, section_data)) = MachSegment::from_command(command).ok()? {
// Object files should have all sections in a single unnamed segment load command.
if segment.name() == b"__DWARF" || (is_object && segment.name() == b"") {
dwarf = segment.sections(endian, section_data).ok();
}
} else if let Some(symtab) = command.symtab().ok()? {
let symbols = symtab.symbols::<Mach, _>(endian, data).ok()?;
syms = symbols
.iter()
.filter_map(|nlist: &MachNlist| {
let name = nlist.name(endian, symbols.strings()).ok()?;
if name.len() > 0 && nlist.is_definition() {
Some((name, u64::from(nlist.n_value(endian))))
} else {
None
}
})
.collect();
if is_object {
// We never search object file symbols by address.
// Instead, we already know the symbol name from the executable, and we
// need to search by name to find the matching symbol in the object file.
syms.sort_unstable_by_key(|(name, _)| *name);
syms_sort_by_name = true;
} else {
syms.sort_unstable_by_key(|(_, addr)| *addr);
let map = symbols.object_map(endian);
object_mappings.resize_with(map.objects().len(), || None);
object_map = Some(map);
}
}
}
Some(Object {
endian,
data,
dwarf,
syms,
syms_sort_by_name,
object_map,
object_mappings: object_mappings.into_boxed_slice(),
})
}
pub fn section(&self, _: &Stash, name: &str) -> Option<&'a [u8]> {
let name = name.as_bytes();
let dwarf = self.dwarf?;
let section = dwarf.into_iter().find(|section| {
let section_name = section.name();
section_name == name || {
section_name.starts_with(b"__")
&& name.starts_with(b".")
&& &section_name[2..] == &name[1..]
}
})?;
Some(section.data(self.endian, self.data).ok()?)
}
pub fn search_symtab<'b>(&'b self, addr: u64) -> Option<&'b [u8]> {
debug_assert!(!self.syms_sort_by_name);
let i = match self.syms.binary_search_by_key(&addr, |(_, addr)| *addr) {
Ok(i) => i,
Err(i) => i.checked_sub(1)?,
};
let (sym, _addr) = self.syms.get(i)?;
Some(sym)
}
/// Try to load a context for an object file.
///
/// If dsymutil was not run, then the DWARF may be found in the source object files.
pub(super) fn search_object_map<'b>(&'b mut self, addr: u64) -> Option<(&Context<'b>, u64)> {
// `object_map` contains a map from addresses to symbols and object paths.
// Look up the address and get a mapping for the object.
let object_map = self.object_map.as_ref()?;
let symbol = object_map.get(addr)?;
let object_index = symbol.object_index();
let mapping = self.object_mappings.get_mut(object_index)?;
if mapping.is_none() {
// No cached mapping, so create it.
*mapping = Some(object_mapping(object_map.objects().get(object_index)?));
}
let cx: &'b Context<'static> = &mapping.as_ref()?.as_ref()?.cx;
// Don't leak the `'static` lifetime, make sure it's scoped to just ourselves.
let cx = unsafe { core::mem::transmute::<&'b Context<'static>, &'b Context<'b>>(cx) };
// We must translate the address in order to be able to look it up
// in the DWARF in the object file.
debug_assert!(cx.object.syms.is_empty() || cx.object.syms_sort_by_name);
let i = cx
.object
.syms
.binary_search_by_key(&symbol.name(), |(name, _)| *name)
.ok()?;
let object_symbol = cx.object.syms.get(i)?;
let object_addr = addr
.wrapping_sub(symbol.address())
.wrapping_add(object_symbol.1);
Some((cx, object_addr))
}
}
fn object_mapping(path: &[u8]) -> Option<Mapping> {
use super::mystd::ffi::OsStr;
use super::mystd::os::unix::prelude::*;
let map;
// `N_OSO` symbol names can be either `/path/to/object.o` or `/path/to/archive.a(object.o)`.
let member_name = if let Some((archive_path, member_name)) = split_archive_path(path) {
map = super::mmap(Path::new(OsStr::from_bytes(archive_path)))?;
Some(member_name)
} else {
map = super::mmap(Path::new(OsStr::from_bytes(path)))?;
None
};
Mapping::mk(map, |data, stash| {
let data = match member_name {
Some(member_name) => {
let archive = object::read::archive::ArchiveFile::parse(data).ok()?;
let member = archive
.members()
.filter_map(Result::ok)
.find(|m| m.name() == member_name)?;
member.data(data).ok()?
}
None => data,
};
let (macho, data) = find_header(data)?;
let endian = macho.endian().ok()?;
let obj = Object::parse(macho, endian, data)?;
Context::new(stash, obj, None, None)
})
}
fn split_archive_path(path: &[u8]) -> Option<(&[u8], &[u8])> {
let (last, path) = path.split_last()?;
if *last != b')' {
return None;
}
let index = path.iter().position(|&x| x == b'(')?;
let (archive, rest) = path.split_at(index);
Some((archive, &rest[1..]))
}
pub(super) fn handle_split_dwarf<'data>(
_package: Option<&gimli::DwarfPackage<EndianSlice<'data, Endian>>>,
_stash: &'data Stash,
_load: addr2line::SplitDwarfLoad<EndianSlice<'data, Endian>>,
) -> Option<Arc<gimli::Dwarf<EndianSlice<'data, Endian>>>> {
None
}

View File

@@ -0,0 +1,25 @@
use super::{mystd::io::Read, File};
use alloc::vec::Vec;
use core::ops::Deref;
pub struct Mmap {
vec: Vec<u8>,
}
impl Mmap {
pub unsafe fn map(mut file: &File, len: usize) -> Option<Mmap> {
let mut mmap = Mmap {
vec: Vec::with_capacity(len),
};
file.read_to_end(&mut mmap.vec).ok()?;
Some(mmap)
}
}
impl Deref for Mmap {
type Target = [u8];
fn deref(&self) -> &[u8] {
&self.vec[..]
}
}

View File

@@ -0,0 +1,49 @@
use super::mystd::fs::File;
use super::mystd::os::unix::prelude::*;
use core::ops::Deref;
use core::ptr;
use core::slice;
#[cfg(not(all(target_os = "linux", target_env = "gnu")))]
use libc::mmap as mmap64;
#[cfg(all(target_os = "linux", target_env = "gnu"))]
use libc::mmap64;
pub struct Mmap {
ptr: *mut libc::c_void,
len: usize,
}
impl Mmap {
pub unsafe fn map(file: &File, len: usize) -> Option<Mmap> {
let ptr = mmap64(
ptr::null_mut(),
len,
libc::PROT_READ,
libc::MAP_PRIVATE,
file.as_raw_fd(),
0,
);
if ptr == libc::MAP_FAILED {
return None;
}
Some(Mmap { ptr, len })
}
}
impl Deref for Mmap {
type Target = [u8];
fn deref(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr as *const u8, self.len) }
}
}
impl Drop for Mmap {
fn drop(&mut self) {
unsafe {
let r = libc::munmap(self.ptr, self.len);
debug_assert_eq!(r, 0);
}
}
}

View File

@@ -0,0 +1,57 @@
use super::super::super::windows::*;
use super::mystd::fs::File;
use super::mystd::os::windows::prelude::*;
use core::ops::Deref;
use core::ptr;
use core::slice;
pub struct Mmap {
// keep the file alive to prevent it from being deleted which would cause
// us to read bad data.
_file: File,
ptr: *mut c_void,
len: usize,
}
impl Mmap {
pub unsafe fn map(file: &File, len: usize) -> Option<Mmap> {
let file = file.try_clone().ok()?;
let mapping = CreateFileMappingA(
file.as_raw_handle() as *mut _,
ptr::null_mut(),
PAGE_READONLY,
0,
0,
ptr::null(),
);
if mapping.is_null() {
return None;
}
let ptr = MapViewOfFile(mapping, FILE_MAP_READ, 0, 0, len);
CloseHandle(mapping);
if ptr.is_null() {
return None;
}
Some(Mmap {
_file: file,
ptr,
len,
})
}
}
impl Deref for Mmap {
type Target = [u8];
fn deref(&self) -> &[u8] {
unsafe { slice::from_raw_parts(self.ptr as *const u8, self.len) }
}
}
impl Drop for Mmap {
fn drop(&mut self) {
unsafe {
let r = UnmapViewOfFile(self.ptr);
debug_assert!(r != 0);
}
}
}

View File

@@ -0,0 +1,295 @@
// Note: This file is only currently used on targets that call out to the code
// in `mod libs_dl_iterate_phdr` (e.g. linux, freebsd, ...); it may be more
// general purpose, but it hasn't been tested elsewhere.
use super::mystd::fs::File;
use super::mystd::io::Read;
use super::mystd::str::FromStr;
use super::{OsString, String, Vec};
#[derive(PartialEq, Eq, Debug)]
pub(super) struct MapsEntry {
/// start (inclusive) and limit (exclusive) of address range.
address: (usize, usize),
/// The perms field are the permissions for the entry
///
/// r = read
/// w = write
/// x = execute
/// s = shared
/// p = private (copy on write)
perms: [char; 4],
/// Offset into the file (or "whatever").
offset: usize,
/// device (major, minor)
dev: (usize, usize),
/// inode on the device. 0 indicates that no inode is associated with the memory region (e.g. uninitalized data aka BSS).
inode: usize,
/// Usually the file backing the mapping.
///
/// Note: The man page for proc includes a note about "coordination" by
/// using readelf to see the Offset field in ELF program headers. pnkfelix
/// is not yet sure if that is intended to be a comment on pathname, or what
/// form/purpose such coordination is meant to have.
///
/// There are also some pseudo-paths:
/// "[stack]": The initial process's (aka main thread's) stack.
/// "[stack:<tid>]": a specific thread's stack. (This was only present for a limited range of Linux verisons; it was determined to be too expensive to provide.)
/// "[vdso]": Virtual dynamically linked shared object
/// "[heap]": The process's heap
///
/// The pathname can be blank, which means it is an anonymous mapping
/// obtained via mmap.
///
/// Newlines in pathname are replaced with an octal escape sequence.
///
/// The pathname may have "(deleted)" appended onto it if the file-backed
/// path has been deleted.
///
/// Note that modifications like the latter two indicated above imply that
/// in general the pathname may be ambiguous. (I.e. you cannot tell if the
/// denoted filename actually ended with the text "(deleted)", or if that
/// was added by the maps rendering.
pathname: OsString,
}
pub(super) fn parse_maps() -> Result<Vec<MapsEntry>, &'static str> {
let mut v = Vec::new();
let mut proc_self_maps =
File::open("/proc/self/maps").map_err(|_| "Couldn't open /proc/self/maps")?;
let mut buf = String::new();
let _bytes_read = proc_self_maps
.read_to_string(&mut buf)
.map_err(|_| "Couldn't read /proc/self/maps")?;
for line in buf.lines() {
v.push(line.parse()?);
}
Ok(v)
}
impl MapsEntry {
pub(super) fn pathname(&self) -> &OsString {
&self.pathname
}
pub(super) fn ip_matches(&self, ip: usize) -> bool {
self.address.0 <= ip && ip < self.address.1
}
}
impl FromStr for MapsEntry {
type Err = &'static str;
// Format: address perms offset dev inode pathname
// e.g.: "ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0 [vsyscall]"
// e.g.: "7f5985f46000-7f5985f48000 rw-p 00039000 103:06 76021795 /usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2"
// e.g.: "35b1a21000-35b1a22000 rw-p 00000000 00:00 0"
//
// Note that paths may contain spaces, so we can't use `str::split` for parsing (until
// Split::remainder is stabilized #77998).
fn from_str(s: &str) -> Result<Self, Self::Err> {
let (range_str, s) = s.trim_start().split_once(' ').unwrap_or((s, ""));
if range_str.is_empty() {
return Err("Couldn't find address");
}
let (perms_str, s) = s.trim_start().split_once(' ').unwrap_or((s, ""));
if perms_str.is_empty() {
return Err("Couldn't find permissions");
}
let (offset_str, s) = s.trim_start().split_once(' ').unwrap_or((s, ""));
if offset_str.is_empty() {
return Err("Couldn't find offset");
}
let (dev_str, s) = s.trim_start().split_once(' ').unwrap_or((s, ""));
if dev_str.is_empty() {
return Err("Couldn't find dev");
}
let (inode_str, s) = s.trim_start().split_once(' ').unwrap_or((s, ""));
if inode_str.is_empty() {
return Err("Couldn't find inode");
}
// Pathname may be omitted in which case it will be empty
let pathname_str = s.trim_start();
let hex = |s| usize::from_str_radix(s, 16).map_err(|_| "Couldn't parse hex number");
let address = if let Some((start, limit)) = range_str.split_once('-') {
(hex(start)?, hex(limit)?)
} else {
return Err("Couldn't parse address range");
};
let perms: [char; 4] = {
let mut chars = perms_str.chars();
let mut c = || chars.next().ok_or("insufficient perms");
let perms = [c()?, c()?, c()?, c()?];
if chars.next().is_some() {
return Err("too many perms");
}
perms
};
let offset = hex(offset_str)?;
let dev = if let Some((major, minor)) = dev_str.split_once(':') {
(hex(major)?, hex(minor)?)
} else {
return Err("Couldn't parse dev");
};
let inode = hex(inode_str)?;
let pathname = pathname_str.into();
Ok(MapsEntry {
address,
perms,
offset,
dev,
inode,
pathname,
})
}
}
// Make sure we can parse 64-bit sample output if we're on a 64-bit target.
#[cfg(target_pointer_width = "64")]
#[test]
fn check_maps_entry_parsing_64bit() {
assert_eq!(
"ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0 \
[vsyscall]"
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0xffffffffff600000, 0xffffffffff601000),
perms: ['-', '-', 'x', 'p'],
offset: 0x00000000,
dev: (0x00, 0x00),
inode: 0x0,
pathname: "[vsyscall]".into(),
}
);
assert_eq!(
"7f5985f46000-7f5985f48000 rw-p 00039000 103:06 76021795 \
/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2"
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0x7f5985f46000, 0x7f5985f48000),
perms: ['r', 'w', '-', 'p'],
offset: 0x00039000,
dev: (0x103, 0x06),
inode: 0x76021795,
pathname: "/usr/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2".into(),
}
);
assert_eq!(
"35b1a21000-35b1a22000 rw-p 00000000 00:00 0"
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0x35b1a21000, 0x35b1a22000),
perms: ['r', 'w', '-', 'p'],
offset: 0x00000000,
dev: (0x00, 0x00),
inode: 0x0,
pathname: Default::default(),
}
);
}
// (This output was taken from a 32-bit machine, but will work on any target)
#[test]
fn check_maps_entry_parsing_32bit() {
/* Example snippet of output:
08056000-08077000 rw-p 00000000 00:00 0 [heap]
b7c79000-b7e02000 r--p 00000000 08:01 60662705 /usr/lib/locale/locale-archive
b7e02000-b7e03000 rw-p 00000000 00:00 0
*/
assert_eq!(
"08056000-08077000 rw-p 00000000 00:00 0 \
[heap]"
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0x08056000, 0x08077000),
perms: ['r', 'w', '-', 'p'],
offset: 0x00000000,
dev: (0x00, 0x00),
inode: 0x0,
pathname: "[heap]".into(),
}
);
assert_eq!(
"b7c79000-b7e02000 r--p 00000000 08:01 60662705 \
/usr/lib/locale/locale-archive"
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0xb7c79000, 0xb7e02000),
perms: ['r', '-', '-', 'p'],
offset: 0x00000000,
dev: (0x08, 0x01),
inode: 0x60662705,
pathname: "/usr/lib/locale/locale-archive".into(),
}
);
assert_eq!(
"b7e02000-b7e03000 rw-p 00000000 00:00 0"
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0xb7e02000, 0xb7e03000),
perms: ['r', 'w', '-', 'p'],
offset: 0x00000000,
dev: (0x00, 0x00),
inode: 0x0,
pathname: Default::default(),
}
);
assert_eq!(
"b7c79000-b7e02000 r--p 00000000 08:01 60662705 \
/executable/path/with some spaces"
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0xb7c79000, 0xb7e02000),
perms: ['r', '-', '-', 'p'],
offset: 0x00000000,
dev: (0x08, 0x01),
inode: 0x60662705,
pathname: "/executable/path/with some spaces".into(),
}
);
assert_eq!(
"b7c79000-b7e02000 r--p 00000000 08:01 60662705 \
/executable/path/with multiple-continuous spaces "
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0xb7c79000, 0xb7e02000),
perms: ['r', '-', '-', 'p'],
offset: 0x00000000,
dev: (0x08, 0x01),
inode: 0x60662705,
pathname: "/executable/path/with multiple-continuous spaces ".into(),
}
);
assert_eq!(
" b7c79000-b7e02000 r--p 00000000 08:01 60662705 \
/executable/path/starts-with-spaces"
.parse::<MapsEntry>()
.unwrap(),
MapsEntry {
address: (0xb7c79000, 0xb7e02000),
perms: ['r', '-', '-', 'p'],
offset: 0x00000000,
dev: (0x08, 0x01),
inode: 0x60662705,
pathname: "/executable/path/starts-with-spaces".into(),
}
);
}

View File

@@ -0,0 +1,50 @@
// only used on Linux right now, so allow dead code elsewhere
#![cfg_attr(not(target_os = "linux"), allow(dead_code))]
use super::Mmap;
use alloc::vec;
use alloc::vec::Vec;
use core::cell::UnsafeCell;
/// A simple arena allocator for byte buffers.
pub struct Stash {
buffers: UnsafeCell<Vec<Vec<u8>>>,
mmaps: UnsafeCell<Vec<Mmap>>,
}
impl Stash {
pub fn new() -> Stash {
Stash {
buffers: UnsafeCell::new(Vec::new()),
mmaps: UnsafeCell::new(Vec::new()),
}
}
/// Allocates a buffer of the specified size and returns a mutable reference
/// to it.
pub fn allocate(&self, size: usize) -> &mut [u8] {
// SAFETY: this is the only function that ever constructs a mutable
// reference to `self.buffers`.
let buffers = unsafe { &mut *self.buffers.get() };
let i = buffers.len();
buffers.push(vec![0; size]);
// SAFETY: we never remove elements from `self.buffers`, so a reference
// to the data inside any buffer will live as long as `self` does.
&mut buffers[i]
}
/// Stores a `Mmap` for the lifetime of this `Stash`, returning a pointer
/// which is scoped to just this lifetime.
pub fn cache_mmap(&self, map: Mmap) -> &[u8] {
// SAFETY: this is the only location for a mutable pointer to
// `mmaps`, and this structure isn't threadsafe to shared across
// threads either. We also never remove elements from `self.mmaps`,
// so a reference to the data inside the map will live as long as
// `self` does.
unsafe {
let mmaps = &mut *self.mmaps.get();
mmaps.push(map);
mmaps.last().unwrap()
}
}
}

56
vendor/backtrace/src/symbolize/miri.rs vendored Normal file
View File

@@ -0,0 +1,56 @@
use core::ffi::c_void;
use core::marker::PhantomData;
use super::super::backtrace::miri::{resolve_addr, Frame};
use super::BytesOrWideString;
use super::{ResolveWhat, SymbolName};
pub unsafe fn resolve(what: ResolveWhat<'_>, cb: &mut dyn FnMut(&super::Symbol)) {
let sym = match what {
ResolveWhat::Address(addr) => Symbol {
inner: resolve_addr(addr),
_unused: PhantomData,
},
ResolveWhat::Frame(frame) => Symbol {
inner: frame.inner.clone(),
_unused: PhantomData,
},
};
cb(&super::Symbol { inner: sym })
}
pub struct Symbol<'a> {
inner: Frame,
_unused: PhantomData<&'a ()>,
}
impl<'a> Symbol<'a> {
pub fn name(&self) -> Option<SymbolName<'_>> {
Some(SymbolName::new(&self.inner.inner.name))
}
pub fn addr(&self) -> Option<*mut c_void> {
Some(self.inner.addr)
}
pub fn filename_raw(&self) -> Option<BytesOrWideString<'_>> {
Some(BytesOrWideString::Bytes(&self.inner.inner.filename))
}
pub fn lineno(&self) -> Option<u32> {
Some(self.inner.inner.lineno)
}
pub fn colno(&self) -> Option<u32> {
Some(self.inner.inner.colno)
}
#[cfg(feature = "std")]
pub fn filename(&self) -> Option<&std::path::Path> {
Some(std::path::Path::new(
core::str::from_utf8(&self.inner.inner.filename).unwrap(),
))
}
}
pub unsafe fn clear_symbol_cache() {}

485
vendor/backtrace/src/symbolize/mod.rs vendored Normal file
View File

@@ -0,0 +1,485 @@
use core::{fmt, str};
cfg_if::cfg_if! {
if #[cfg(feature = "std")] {
use std::path::Path;
use std::prelude::v1::*;
}
}
use super::backtrace::Frame;
use super::types::BytesOrWideString;
use core::ffi::c_void;
use rustc_demangle::{try_demangle, Demangle};
/// Resolve an address to a symbol, passing the symbol to the specified
/// closure.
///
/// This function will look up the given address in areas such as the local
/// symbol table, dynamic symbol table, or DWARF debug info (depending on the
/// activated implementation) to find symbols to yield.
///
/// The closure may not be called if resolution could not be performed, and it
/// also may be called more than once in the case of inlined functions.
///
/// Symbols yielded represent the execution at the specified `addr`, returning
/// file/line pairs for that address (if available).
///
/// Note that if you have a `Frame` then it's recommended to use the
/// `resolve_frame` function instead of this one.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
///
/// # Panics
///
/// This function strives to never panic, but if the `cb` provided panics then
/// some platforms will force a double panic to abort the process. Some
/// platforms use a C library which internally uses callbacks which cannot be
/// unwound through, so panicking from `cb` may trigger a process abort.
///
/// # Example
///
/// ```
/// extern crate backtrace;
///
/// fn main() {
/// backtrace::trace(|frame| {
/// let ip = frame.ip();
///
/// backtrace::resolve(ip, |symbol| {
/// // ...
/// });
///
/// false // only look at the top frame
/// });
/// }
/// ```
#[cfg(feature = "std")]
pub fn resolve<F: FnMut(&Symbol)>(addr: *mut c_void, cb: F) {
let _guard = crate::lock::lock();
unsafe { resolve_unsynchronized(addr, cb) }
}
/// Resolve a previously capture frame to a symbol, passing the symbol to the
/// specified closure.
///
/// This function performs the same function as `resolve` except that it takes a
/// `Frame` as an argument instead of an address. This can allow some platform
/// implementations of backtracing to provide more accurate symbol information
/// or information about inline frames for example. It's recommended to use this
/// if you can.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
///
/// # Panics
///
/// This function strives to never panic, but if the `cb` provided panics then
/// some platforms will force a double panic to abort the process. Some
/// platforms use a C library which internally uses callbacks which cannot be
/// unwound through, so panicking from `cb` may trigger a process abort.
///
/// # Example
///
/// ```
/// extern crate backtrace;
///
/// fn main() {
/// backtrace::trace(|frame| {
/// backtrace::resolve_frame(frame, |symbol| {
/// // ...
/// });
///
/// false // only look at the top frame
/// });
/// }
/// ```
#[cfg(feature = "std")]
pub fn resolve_frame<F: FnMut(&Symbol)>(frame: &Frame, cb: F) {
let _guard = crate::lock::lock();
unsafe { resolve_frame_unsynchronized(frame, cb) }
}
pub enum ResolveWhat<'a> {
Address(*mut c_void),
Frame(&'a Frame),
}
impl<'a> ResolveWhat<'a> {
#[allow(dead_code)]
fn address_or_ip(&self) -> *mut c_void {
match self {
ResolveWhat::Address(a) => adjust_ip(*a),
ResolveWhat::Frame(f) => adjust_ip(f.ip()),
}
}
}
// IP values from stack frames are typically (always?) the instruction
// *after* the call that's the actual stack trace. Symbolizing this on
// causes the filename/line number to be one ahead and perhaps into
// the void if it's near the end of the function.
//
// This appears to basically always be the case on all platforms, so we always
// subtract one from a resolved ip to resolve it to the previous call
// instruction instead of the instruction being returned to.
//
// Ideally we would not do this. Ideally we would require callers of the
// `resolve` APIs here to manually do the -1 and account that they want location
// information for the *previous* instruction, not the current. Ideally we'd
// also expose on `Frame` if we are indeed the address of the next instruction
// or the current.
//
// For now though this is a pretty niche concern so we just internally always
// subtract one. Consumers should keep working and getting pretty good results,
// so we should be good enough.
fn adjust_ip(a: *mut c_void) -> *mut c_void {
if a.is_null() {
a
} else {
(a as usize - 1) as *mut c_void
}
}
/// Same as `resolve`, only unsafe as it's unsynchronized.
///
/// This function does not have synchronization guarantees but is available when
/// the `std` feature of this crate isn't compiled in. See the `resolve`
/// function for more documentation and examples.
///
/// # Panics
///
/// See information on `resolve` for caveats on `cb` panicking.
pub unsafe fn resolve_unsynchronized<F>(addr: *mut c_void, mut cb: F)
where
F: FnMut(&Symbol),
{
imp::resolve(ResolveWhat::Address(addr), &mut cb)
}
/// Same as `resolve_frame`, only unsafe as it's unsynchronized.
///
/// This function does not have synchronization guarantees but is available
/// when the `std` feature of this crate isn't compiled in. See the
/// `resolve_frame` function for more documentation and examples.
///
/// # Panics
///
/// See information on `resolve_frame` for caveats on `cb` panicking.
pub unsafe fn resolve_frame_unsynchronized<F>(frame: &Frame, mut cb: F)
where
F: FnMut(&Symbol),
{
imp::resolve(ResolveWhat::Frame(frame), &mut cb)
}
/// A trait representing the resolution of a symbol in a file.
///
/// This trait is yielded as a trait object to the closure given to the
/// `backtrace::resolve` function, and it is virtually dispatched as it's
/// unknown which implementation is behind it.
///
/// A symbol can give contextual information about a function, for example the
/// name, filename, line number, precise address, etc. Not all information is
/// always available in a symbol, however, so all methods return an `Option`.
pub struct Symbol {
// TODO: this lifetime bound needs to be persisted eventually to `Symbol`,
// but that's currently a breaking change. For now this is safe since
// `Symbol` is only ever handed out by reference and can't be cloned.
inner: imp::Symbol<'static>,
}
impl Symbol {
/// Returns the name of this function.
///
/// The returned structure can be used to query various properties about the
/// symbol name:
///
/// * The `Display` implementation will print out the demangled symbol.
/// * The raw `str` value of the symbol can be accessed (if it's valid
/// utf-8).
/// * The raw bytes for the symbol name can be accessed.
pub fn name(&self) -> Option<SymbolName<'_>> {
self.inner.name()
}
/// Returns the starting address of this function.
pub fn addr(&self) -> Option<*mut c_void> {
self.inner.addr().map(|p| p as *mut _)
}
/// Returns the raw filename as a slice. This is mainly useful for `no_std`
/// environments.
pub fn filename_raw(&self) -> Option<BytesOrWideString<'_>> {
self.inner.filename_raw()
}
/// Returns the column number for where this symbol is currently executing.
///
/// Only gimli currently provides a value here and even then only if `filename`
/// returns `Some`, and so it is then consequently subject to similar caveats.
pub fn colno(&self) -> Option<u32> {
self.inner.colno()
}
/// Returns the line number for where this symbol is currently executing.
///
/// This return value is typically `Some` if `filename` returns `Some`, and
/// is consequently subject to similar caveats.
pub fn lineno(&self) -> Option<u32> {
self.inner.lineno()
}
/// Returns the file name where this function was defined.
///
/// This is currently only available when libbacktrace or gimli is being
/// used (e.g. unix platforms other) and when a binary is compiled with
/// debuginfo. If neither of these conditions is met then this will likely
/// return `None`.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
#[cfg(feature = "std")]
#[allow(unreachable_code)]
pub fn filename(&self) -> Option<&Path> {
self.inner.filename()
}
}
impl fmt::Debug for Symbol {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_struct("Symbol");
if let Some(name) = self.name() {
d.field("name", &name);
}
if let Some(addr) = self.addr() {
d.field("addr", &addr);
}
#[cfg(feature = "std")]
{
if let Some(filename) = self.filename() {
d.field("filename", &filename);
}
}
if let Some(lineno) = self.lineno() {
d.field("lineno", &lineno);
}
d.finish()
}
}
cfg_if::cfg_if! {
if #[cfg(feature = "cpp_demangle")] {
// Maybe a parsed C++ symbol, if parsing the mangled symbol as Rust
// failed.
struct OptionCppSymbol<'a>(Option<::cpp_demangle::BorrowedSymbol<'a>>);
impl<'a> OptionCppSymbol<'a> {
fn parse(input: &'a [u8]) -> OptionCppSymbol<'a> {
OptionCppSymbol(::cpp_demangle::BorrowedSymbol::new(input).ok())
}
fn none() -> OptionCppSymbol<'a> {
OptionCppSymbol(None)
}
}
} else {
use core::marker::PhantomData;
// Make sure to keep this zero-sized, so that the `cpp_demangle` feature
// has no cost when disabled.
struct OptionCppSymbol<'a>(PhantomData<&'a ()>);
impl<'a> OptionCppSymbol<'a> {
fn parse(_: &'a [u8]) -> OptionCppSymbol<'a> {
OptionCppSymbol(PhantomData)
}
fn none() -> OptionCppSymbol<'a> {
OptionCppSymbol(PhantomData)
}
}
}
}
/// A wrapper around a symbol name to provide ergonomic accessors to the
/// demangled name, the raw bytes, the raw string, etc.
// Allow dead code for when the `cpp_demangle` feature is not enabled.
#[allow(dead_code)]
pub struct SymbolName<'a> {
bytes: &'a [u8],
demangled: Option<Demangle<'a>>,
cpp_demangled: OptionCppSymbol<'a>,
}
impl<'a> SymbolName<'a> {
/// Creates a new symbol name from the raw underlying bytes.
pub fn new(bytes: &'a [u8]) -> SymbolName<'a> {
let str_bytes = str::from_utf8(bytes).ok();
let demangled = str_bytes.and_then(|s| try_demangle(s).ok());
let cpp = if demangled.is_none() {
OptionCppSymbol::parse(bytes)
} else {
OptionCppSymbol::none()
};
SymbolName {
bytes: bytes,
demangled: demangled,
cpp_demangled: cpp,
}
}
/// Returns the raw (mangled) symbol name as a `str` if the symbol is valid utf-8.
///
/// Use the `Display` implementation if you want the demangled version.
pub fn as_str(&self) -> Option<&'a str> {
self.demangled
.as_ref()
.map(|s| s.as_str())
.or_else(|| str::from_utf8(self.bytes).ok())
}
/// Returns the raw symbol name as a list of bytes
pub fn as_bytes(&self) -> &'a [u8] {
self.bytes
}
}
fn format_symbol_name(
fmt: fn(&str, &mut fmt::Formatter<'_>) -> fmt::Result,
mut bytes: &[u8],
f: &mut fmt::Formatter<'_>,
) -> fmt::Result {
while bytes.len() > 0 {
match str::from_utf8(bytes) {
Ok(name) => {
fmt(name, f)?;
break;
}
Err(err) => {
fmt("\u{FFFD}", f)?;
match err.error_len() {
Some(len) => bytes = &bytes[err.valid_up_to() + len..],
None => break,
}
}
}
}
Ok(())
}
cfg_if::cfg_if! {
if #[cfg(feature = "cpp_demangle")] {
impl<'a> fmt::Display for SymbolName<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ref s) = self.demangled {
s.fmt(f)
} else if let Some(ref cpp) = self.cpp_demangled.0 {
cpp.fmt(f)
} else {
format_symbol_name(fmt::Display::fmt, self.bytes, f)
}
}
}
} else {
impl<'a> fmt::Display for SymbolName<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ref s) = self.demangled {
s.fmt(f)
} else {
format_symbol_name(fmt::Display::fmt, self.bytes, f)
}
}
}
}
}
cfg_if::cfg_if! {
if #[cfg(all(feature = "std", feature = "cpp_demangle"))] {
impl<'a> fmt::Debug for SymbolName<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use std::fmt::Write;
if let Some(ref s) = self.demangled {
return s.fmt(f)
}
// This may to print if the demangled symbol isn't actually
// valid, so handle the error here gracefully by not propagating
// it outwards.
if let Some(ref cpp) = self.cpp_demangled.0 {
let mut s = String::new();
if write!(s, "{}", cpp).is_ok() {
return s.fmt(f)
}
}
format_symbol_name(fmt::Debug::fmt, self.bytes, f)
}
}
} else {
impl<'a> fmt::Debug for SymbolName<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ref s) = self.demangled {
s.fmt(f)
} else {
format_symbol_name(fmt::Debug::fmt, self.bytes, f)
}
}
}
}
}
/// Attempt to reclaim that cached memory used to symbolicate addresses.
///
/// This method will attempt to release any global data structures that have
/// otherwise been cached globally or in the thread which typically represent
/// parsed DWARF information or similar.
///
/// # Caveats
///
/// While this function is always available it doesn't actually do anything on
/// most implementations. Libraries like dbghelp or libbacktrace do not provide
/// facilities to deallocate state and manage the allocated memory. For now the
/// `gimli-symbolize` feature of this crate is the only feature where this
/// function has any effect.
#[cfg(feature = "std")]
pub fn clear_symbol_cache() {
let _guard = crate::lock::lock();
unsafe {
imp::clear_symbol_cache();
}
}
cfg_if::cfg_if! {
if #[cfg(miri)] {
mod miri;
use miri as imp;
} else if #[cfg(all(windows, target_env = "msvc", not(target_vendor = "uwp")))] {
mod dbghelp;
use dbghelp as imp;
} else if #[cfg(all(
any(unix, all(windows, target_env = "gnu")),
not(target_vendor = "uwp"),
not(target_os = "emscripten"),
any(not(backtrace_in_libstd), feature = "backtrace"),
))] {
mod gimli;
use gimli as imp;
} else {
mod noop;
use noop as imp;
}
}

41
vendor/backtrace/src/symbolize/noop.rs vendored Normal file
View File

@@ -0,0 +1,41 @@
//! Empty symbolication strategy used to compile for platforms that have no
//! support.
use super::{BytesOrWideString, ResolveWhat, SymbolName};
use core::ffi::c_void;
use core::marker;
pub unsafe fn resolve(_addr: ResolveWhat<'_>, _cb: &mut dyn FnMut(&super::Symbol)) {}
pub struct Symbol<'a> {
_marker: marker::PhantomData<&'a i32>,
}
impl Symbol<'_> {
pub fn name(&self) -> Option<SymbolName<'_>> {
None
}
pub fn addr(&self) -> Option<*mut c_void> {
None
}
pub fn filename_raw(&self) -> Option<BytesOrWideString<'_>> {
None
}
#[cfg(feature = "std")]
pub fn filename(&self) -> Option<&::std::path::Path> {
None
}
pub fn lineno(&self) -> Option<u32> {
None
}
pub fn colno(&self) -> Option<u32> {
None
}
}
pub unsafe fn clear_symbol_cache() {}

83
vendor/backtrace/src/types.rs vendored Normal file
View File

@@ -0,0 +1,83 @@
//! Platform dependent types.
cfg_if::cfg_if! {
if #[cfg(feature = "std")] {
use std::borrow::Cow;
use std::fmt;
use std::path::PathBuf;
use std::prelude::v1::*;
use std::str;
}
}
/// A platform independent representation of a string. When working with `std`
/// enabled it is recommended to the convenience methods for providing
/// conversions to `std` types.
#[derive(Debug)]
pub enum BytesOrWideString<'a> {
/// A slice, typically provided on Unix platforms.
Bytes(&'a [u8]),
/// Wide strings typically from Windows.
Wide(&'a [u16]),
}
#[cfg(feature = "std")]
impl<'a> BytesOrWideString<'a> {
/// Lossy converts to a `Cow<str>`, will allocate if `Bytes` is not valid
/// UTF-8 or if `BytesOrWideString` is `Wide`.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn to_str_lossy(&self) -> Cow<'a, str> {
use self::BytesOrWideString::*;
match self {
&Bytes(slice) => String::from_utf8_lossy(slice),
&Wide(wide) => Cow::Owned(String::from_utf16_lossy(wide)),
}
}
/// Provides a `Path` representation of `BytesOrWideString`.
///
/// # Required features
///
/// This function requires the `std` feature of the `backtrace` crate to be
/// enabled, and the `std` feature is enabled by default.
pub fn into_path_buf(self) -> PathBuf {
#[cfg(unix)]
{
use std::ffi::OsStr;
use std::os::unix::ffi::OsStrExt;
if let BytesOrWideString::Bytes(slice) = self {
return PathBuf::from(OsStr::from_bytes(slice));
}
}
#[cfg(windows)]
{
use std::ffi::OsString;
use std::os::windows::ffi::OsStringExt;
if let BytesOrWideString::Wide(slice) = self {
return PathBuf::from(OsString::from_wide(slice));
}
}
if let BytesOrWideString::Bytes(b) = self {
if let Ok(s) = str::from_utf8(b) {
return PathBuf::from(s);
}
}
unreachable!()
}
}
#[cfg(feature = "std")]
impl<'a> fmt::Display for BytesOrWideString<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.to_str_lossy().fmt(f)
}
}

693
vendor/backtrace/src/windows.rs vendored Normal file
View File

@@ -0,0 +1,693 @@
//! A module to define the FFI definitions we use on Windows for `dbghelp.dll`
//!
//! This module uses a custom macro, `ffi!`, to wrap all definitions to
//! automatically generate tests to assert that our definitions here are the
//! same as `winapi`.
//!
//! This module largely exists to integrate into libstd itself where winapi is
//! not currently available.
#![allow(bad_style, dead_code)]
cfg_if::cfg_if! {
if #[cfg(feature = "verify-winapi")] {
pub use self::winapi::c_void;
pub use self::winapi::HINSTANCE;
pub use self::winapi::FARPROC;
pub use self::winapi::LPSECURITY_ATTRIBUTES;
#[cfg(target_pointer_width = "64")]
pub use self::winapi::PUNWIND_HISTORY_TABLE;
#[cfg(target_pointer_width = "64")]
pub use self::winapi::PRUNTIME_FUNCTION;
mod winapi {
pub use winapi::ctypes::*;
pub use winapi::shared::basetsd::*;
pub use winapi::shared::minwindef::*;
pub use winapi::um::dbghelp::*;
pub use winapi::um::fileapi::*;
pub use winapi::um::handleapi::*;
pub use winapi::um::libloaderapi::*;
pub use winapi::um::memoryapi::*;
pub use winapi::um::minwinbase::*;
pub use winapi::um::processthreadsapi::*;
pub use winapi::um::synchapi::*;
pub use winapi::um::tlhelp32::*;
pub use winapi::um::winbase::*;
pub use winapi::um::winnt::*;
}
} else {
pub use core::ffi::c_void;
pub type HINSTANCE = *mut c_void;
pub type FARPROC = *mut c_void;
pub type LPSECURITY_ATTRIBUTES = *mut c_void;
#[cfg(target_pointer_width = "64")]
pub type PRUNTIME_FUNCTION = *mut c_void;
#[cfg(target_pointer_width = "64")]
pub type PUNWIND_HISTORY_TABLE = *mut c_void;
}
}
macro_rules! ffi {
() => ();
(#[repr($($r:tt)*)] pub struct $name:ident { $(pub $field:ident: $ty:ty,)* } $($rest:tt)*) => (
#[repr($($r)*)]
#[cfg(not(feature = "verify-winapi"))]
#[derive(Copy, Clone)]
pub struct $name {
$(pub $field: $ty,)*
}
#[cfg(feature = "verify-winapi")]
pub use self::winapi::$name;
#[test]
#[cfg(feature = "verify-winapi")]
fn $name() {
use core::mem;
#[repr($($r)*)]
pub struct $name {
$(pub $field: $ty,)*
}
assert_eq!(
mem::size_of::<$name>(),
mem::size_of::<winapi::$name>(),
concat!("size of ", stringify!($name), " is wrong"),
);
assert_eq!(
mem::align_of::<$name>(),
mem::align_of::<winapi::$name>(),
concat!("align of ", stringify!($name), " is wrong"),
);
type Winapi = winapi::$name;
fn assert_same<T>(_: T, _: T) {}
unsafe {
let a = &*(mem::align_of::<$name>() as *const $name);
let b = &*(mem::align_of::<Winapi>() as *const Winapi);
$(
ffi!(@test_fields a b $field $ty);
)*
}
}
ffi!($($rest)*);
);
// Handling verification against unions in winapi requires some special care
(@test_fields $a:ident $b:ident FltSave $ty:ty) => (
// Skip this field on x86_64 `CONTEXT` since it's a union and a bit funny
);
(@test_fields $a:ident $b:ident D $ty:ty) => ({
let a = &$a.D;
let b = $b.D();
assert_same(a, b);
assert_eq!(a as *const $ty, b as *const $ty, "misplaced field D");
});
(@test_fields $a:ident $b:ident s $ty:ty) => ({
let a = &$a.s;
let b = $b.s();
assert_same(a, b);
assert_eq!(a as *const $ty, b as *const $ty, "misplaced field s");
});
// Otherwise test all fields normally.
(@test_fields $a:ident $b:ident $field:ident $ty:ty) => ({
let a = &$a.$field;
let b = &$b.$field;
assert_same(a, b);
assert_eq!(a as *const $ty, b as *const $ty,
concat!("misplaced field ", stringify!($field)));
});
(pub type $name:ident = $ty:ty; $($rest:tt)*) => (
pub type $name = $ty;
#[cfg(feature = "verify-winapi")]
#[allow(dead_code)]
const $name: () = {
fn _foo() {
trait SameType {}
impl<T> SameType for (T, T) {}
fn assert_same<T: SameType>() {}
assert_same::<($name, winapi::$name)>();
}
};
ffi!($($rest)*);
);
(pub const $name:ident: $ty:ty = $val:expr; $($rest:tt)*) => (
pub const $name: $ty = $val;
#[cfg(feature = "verify-winapi")]
#[allow(unused_imports)]
mod $name {
use super::*;
#[test]
fn assert_valid() {
let x: $ty = winapi::$name;
assert_eq!(x, $val);
}
}
ffi!($($rest)*);
);
($(#[$meta:meta])* extern "system" { $(pub fn $name:ident($($args:tt)*) -> $ret:ty;)* } $($rest:tt)*) => (
$(#[$meta])* extern "system" {
$(pub fn $name($($args)*) -> $ret;)*
}
$(
#[cfg(feature = "verify-winapi")]
mod $name {
#[test]
fn assert_same() {
use super::*;
assert_eq!($name as usize, winapi::$name as usize);
let mut x: unsafe extern "system" fn($($args)*) -> $ret;
x = $name;
let _ = x;
x = winapi::$name;
let _ = x;
}
}
)*
ffi!($($rest)*);
);
(impl $name:ident { $($i:tt)* } $($rest:tt)*) => (
#[cfg(not(feature = "verify-winapi"))]
impl $name {
$($i)*
}
ffi!($($rest)*);
);
}
ffi! {
#[repr(C)]
pub struct STACKFRAME64 {
pub AddrPC: ADDRESS64,
pub AddrReturn: ADDRESS64,
pub AddrFrame: ADDRESS64,
pub AddrStack: ADDRESS64,
pub AddrBStore: ADDRESS64,
pub FuncTableEntry: PVOID,
pub Params: [DWORD64; 4],
pub Far: BOOL,
pub Virtual: BOOL,
pub Reserved: [DWORD64; 3],
pub KdHelp: KDHELP64,
}
pub type LPSTACKFRAME64 = *mut STACKFRAME64;
#[repr(C)]
pub struct STACKFRAME_EX {
pub AddrPC: ADDRESS64,
pub AddrReturn: ADDRESS64,
pub AddrFrame: ADDRESS64,
pub AddrStack: ADDRESS64,
pub AddrBStore: ADDRESS64,
pub FuncTableEntry: PVOID,
pub Params: [DWORD64; 4],
pub Far: BOOL,
pub Virtual: BOOL,
pub Reserved: [DWORD64; 3],
pub KdHelp: KDHELP64,
pub StackFrameSize: DWORD,
pub InlineFrameContext: DWORD,
}
pub type LPSTACKFRAME_EX = *mut STACKFRAME_EX;
#[repr(C)]
pub struct IMAGEHLP_LINEW64 {
pub SizeOfStruct: DWORD,
pub Key: PVOID,
pub LineNumber: DWORD,
pub FileName: PWSTR,
pub Address: DWORD64,
}
pub type PIMAGEHLP_LINEW64 = *mut IMAGEHLP_LINEW64;
#[repr(C)]
pub struct SYMBOL_INFOW {
pub SizeOfStruct: ULONG,
pub TypeIndex: ULONG,
pub Reserved: [ULONG64; 2],
pub Index: ULONG,
pub Size: ULONG,
pub ModBase: ULONG64,
pub Flags: ULONG,
pub Value: ULONG64,
pub Address: ULONG64,
pub Register: ULONG,
pub Scope: ULONG,
pub Tag: ULONG,
pub NameLen: ULONG,
pub MaxNameLen: ULONG,
pub Name: [WCHAR; 1],
}
pub type PSYMBOL_INFOW = *mut SYMBOL_INFOW;
pub type PTRANSLATE_ADDRESS_ROUTINE64 = Option<
unsafe extern "system" fn(hProcess: HANDLE, hThread: HANDLE, lpaddr: LPADDRESS64) -> DWORD64,
>;
pub type PGET_MODULE_BASE_ROUTINE64 =
Option<unsafe extern "system" fn(hProcess: HANDLE, Address: DWORD64) -> DWORD64>;
pub type PFUNCTION_TABLE_ACCESS_ROUTINE64 =
Option<unsafe extern "system" fn(ahProcess: HANDLE, AddrBase: DWORD64) -> PVOID>;
pub type PREAD_PROCESS_MEMORY_ROUTINE64 = Option<
unsafe extern "system" fn(
hProcess: HANDLE,
qwBaseAddress: DWORD64,
lpBuffer: PVOID,
nSize: DWORD,
lpNumberOfBytesRead: LPDWORD,
) -> BOOL,
>;
#[repr(C)]
pub struct ADDRESS64 {
pub Offset: DWORD64,
pub Segment: WORD,
pub Mode: ADDRESS_MODE,
}
pub type LPADDRESS64 = *mut ADDRESS64;
pub type ADDRESS_MODE = u32;
#[repr(C)]
pub struct KDHELP64 {
pub Thread: DWORD64,
pub ThCallbackStack: DWORD,
pub ThCallbackBStore: DWORD,
pub NextCallback: DWORD,
pub FramePointer: DWORD,
pub KiCallUserMode: DWORD64,
pub KeUserCallbackDispatcher: DWORD64,
pub SystemRangeStart: DWORD64,
pub KiUserExceptionDispatcher: DWORD64,
pub StackBase: DWORD64,
pub StackLimit: DWORD64,
pub BuildVersion: DWORD,
pub Reserved0: DWORD,
pub Reserved1: [DWORD64; 4],
}
#[repr(C)]
pub struct MODULEENTRY32W {
pub dwSize: DWORD,
pub th32ModuleID: DWORD,
pub th32ProcessID: DWORD,
pub GlblcntUsage: DWORD,
pub ProccntUsage: DWORD,
pub modBaseAddr: *mut u8,
pub modBaseSize: DWORD,
pub hModule: HMODULE,
pub szModule: [WCHAR; MAX_MODULE_NAME32 + 1],
pub szExePath: [WCHAR; MAX_PATH],
}
pub const MAX_SYM_NAME: usize = 2000;
pub const AddrModeFlat: ADDRESS_MODE = 3;
pub const TRUE: BOOL = 1;
pub const FALSE: BOOL = 0;
pub const PROCESS_QUERY_INFORMATION: DWORD = 0x400;
pub const IMAGE_FILE_MACHINE_ARM64: u16 = 43620;
pub const IMAGE_FILE_MACHINE_AMD64: u16 = 34404;
pub const IMAGE_FILE_MACHINE_I386: u16 = 332;
pub const IMAGE_FILE_MACHINE_ARMNT: u16 = 452;
pub const FILE_SHARE_READ: DWORD = 0x1;
pub const FILE_SHARE_WRITE: DWORD = 0x2;
pub const OPEN_EXISTING: DWORD = 0x3;
pub const GENERIC_READ: DWORD = 0x80000000;
pub const INFINITE: DWORD = !0;
pub const PAGE_READONLY: DWORD = 2;
pub const FILE_MAP_READ: DWORD = 4;
pub const TH32CS_SNAPMODULE: DWORD = 0x00000008;
pub const INVALID_HANDLE_VALUE: HANDLE = -1isize as HANDLE;
pub const MAX_MODULE_NAME32: usize = 255;
pub const MAX_PATH: usize = 260;
pub type DWORD = u32;
pub type PDWORD = *mut u32;
pub type BOOL = i32;
pub type DWORD64 = u64;
pub type PDWORD64 = *mut u64;
pub type HANDLE = *mut c_void;
pub type PVOID = HANDLE;
pub type PCWSTR = *const u16;
pub type LPSTR = *mut i8;
pub type LPCSTR = *const i8;
pub type PWSTR = *mut u16;
pub type WORD = u16;
pub type ULONG = u32;
pub type ULONG64 = u64;
pub type WCHAR = u16;
pub type PCONTEXT = *mut CONTEXT;
pub type LPDWORD = *mut DWORD;
pub type DWORDLONG = u64;
pub type HMODULE = HINSTANCE;
pub type SIZE_T = usize;
pub type LPVOID = *mut c_void;
pub type LPCVOID = *const c_void;
pub type LPMODULEENTRY32W = *mut MODULEENTRY32W;
#[link(name = "kernel32")]
extern "system" {
pub fn GetCurrentProcess() -> HANDLE;
pub fn GetCurrentThread() -> HANDLE;
pub fn RtlCaptureContext(ContextRecord: PCONTEXT) -> ();
pub fn LoadLibraryA(a: *const i8) -> HMODULE;
pub fn GetProcAddress(h: HMODULE, name: *const i8) -> FARPROC;
pub fn GetModuleHandleA(name: *const i8) -> HMODULE;
pub fn OpenProcess(
dwDesiredAccess: DWORD,
bInheitHandle: BOOL,
dwProcessId: DWORD,
) -> HANDLE;
pub fn GetCurrentProcessId() -> DWORD;
pub fn CloseHandle(h: HANDLE) -> BOOL;
pub fn CreateFileA(
lpFileName: LPCSTR,
dwDesiredAccess: DWORD,
dwShareMode: DWORD,
lpSecurityAttributes: LPSECURITY_ATTRIBUTES,
dwCreationDisposition: DWORD,
dwFlagsAndAttributes: DWORD,
hTemplateFile: HANDLE,
) -> HANDLE;
pub fn CreateMutexA(
attrs: LPSECURITY_ATTRIBUTES,
initial: BOOL,
name: LPCSTR,
) -> HANDLE;
pub fn ReleaseMutex(hMutex: HANDLE) -> BOOL;
pub fn WaitForSingleObjectEx(
hHandle: HANDLE,
dwMilliseconds: DWORD,
bAlertable: BOOL,
) -> DWORD;
pub fn CreateFileMappingA(
hFile: HANDLE,
lpFileMappingAttributes: LPSECURITY_ATTRIBUTES,
flProtect: DWORD,
dwMaximumSizeHigh: DWORD,
dwMaximumSizeLow: DWORD,
lpName: LPCSTR,
) -> HANDLE;
pub fn MapViewOfFile(
hFileMappingObject: HANDLE,
dwDesiredAccess: DWORD,
dwFileOffsetHigh: DWORD,
dwFileOffsetLow: DWORD,
dwNumberOfBytesToMap: SIZE_T,
) -> LPVOID;
pub fn UnmapViewOfFile(lpBaseAddress: LPCVOID) -> BOOL;
pub fn CreateToolhelp32Snapshot(
dwFlags: DWORD,
th32ProcessID: DWORD,
) -> HANDLE;
pub fn Module32FirstW(
hSnapshot: HANDLE,
lpme: LPMODULEENTRY32W,
) -> BOOL;
pub fn Module32NextW(
hSnapshot: HANDLE,
lpme: LPMODULEENTRY32W,
) -> BOOL;
}
}
#[cfg(target_pointer_width = "64")]
ffi! {
#[link(name = "kernel32")]
extern "system" {
pub fn RtlLookupFunctionEntry(
ControlPc: DWORD64,
ImageBase: PDWORD64,
HistoryTable: PUNWIND_HISTORY_TABLE,
) -> PRUNTIME_FUNCTION;
}
}
#[cfg(target_arch = "aarch64")]
ffi! {
#[repr(C, align(16))]
pub struct CONTEXT {
pub ContextFlags: DWORD,
pub Cpsr: DWORD,
pub u: CONTEXT_u,
pub Sp: u64,
pub Pc: u64,
pub V: [ARM64_NT_NEON128; 32],
pub Fpcr: DWORD,
pub Fpsr: DWORD,
pub Bcr: [DWORD; ARM64_MAX_BREAKPOINTS],
pub Bvr: [DWORD64; ARM64_MAX_BREAKPOINTS],
pub Wcr: [DWORD; ARM64_MAX_WATCHPOINTS],
pub Wvr: [DWORD64; ARM64_MAX_WATCHPOINTS],
}
#[repr(C)]
pub struct CONTEXT_u {
pub s: CONTEXT_u_s,
}
impl CONTEXT_u {
pub unsafe fn s(&self) -> &CONTEXT_u_s {
&self.s
}
}
#[repr(C)]
pub struct CONTEXT_u_s {
pub X0: u64,
pub X1: u64,
pub X2: u64,
pub X3: u64,
pub X4: u64,
pub X5: u64,
pub X6: u64,
pub X7: u64,
pub X8: u64,
pub X9: u64,
pub X10: u64,
pub X11: u64,
pub X12: u64,
pub X13: u64,
pub X14: u64,
pub X15: u64,
pub X16: u64,
pub X17: u64,
pub X18: u64,
pub X19: u64,
pub X20: u64,
pub X21: u64,
pub X22: u64,
pub X23: u64,
pub X24: u64,
pub X25: u64,
pub X26: u64,
pub X27: u64,
pub X28: u64,
pub Fp: u64,
pub Lr: u64,
}
pub const ARM64_MAX_BREAKPOINTS: usize = 8;
pub const ARM64_MAX_WATCHPOINTS: usize = 2;
#[repr(C)]
pub struct ARM64_NT_NEON128 {
pub D: [f64; 2],
}
}
#[cfg(target_arch = "x86")]
ffi! {
#[repr(C)]
pub struct CONTEXT {
pub ContextFlags: DWORD,
pub Dr0: DWORD,
pub Dr1: DWORD,
pub Dr2: DWORD,
pub Dr3: DWORD,
pub Dr6: DWORD,
pub Dr7: DWORD,
pub FloatSave: FLOATING_SAVE_AREA,
pub SegGs: DWORD,
pub SegFs: DWORD,
pub SegEs: DWORD,
pub SegDs: DWORD,
pub Edi: DWORD,
pub Esi: DWORD,
pub Ebx: DWORD,
pub Edx: DWORD,
pub Ecx: DWORD,
pub Eax: DWORD,
pub Ebp: DWORD,
pub Eip: DWORD,
pub SegCs: DWORD,
pub EFlags: DWORD,
pub Esp: DWORD,
pub SegSs: DWORD,
pub ExtendedRegisters: [u8; 512],
}
#[repr(C)]
pub struct FLOATING_SAVE_AREA {
pub ControlWord: DWORD,
pub StatusWord: DWORD,
pub TagWord: DWORD,
pub ErrorOffset: DWORD,
pub ErrorSelector: DWORD,
pub DataOffset: DWORD,
pub DataSelector: DWORD,
pub RegisterArea: [u8; 80],
pub Spare0: DWORD,
}
}
#[cfg(target_arch = "x86_64")]
ffi! {
#[repr(C, align(8))]
pub struct CONTEXT {
pub P1Home: DWORDLONG,
pub P2Home: DWORDLONG,
pub P3Home: DWORDLONG,
pub P4Home: DWORDLONG,
pub P5Home: DWORDLONG,
pub P6Home: DWORDLONG,
pub ContextFlags: DWORD,
pub MxCsr: DWORD,
pub SegCs: WORD,
pub SegDs: WORD,
pub SegEs: WORD,
pub SegFs: WORD,
pub SegGs: WORD,
pub SegSs: WORD,
pub EFlags: DWORD,
pub Dr0: DWORDLONG,
pub Dr1: DWORDLONG,
pub Dr2: DWORDLONG,
pub Dr3: DWORDLONG,
pub Dr6: DWORDLONG,
pub Dr7: DWORDLONG,
pub Rax: DWORDLONG,
pub Rcx: DWORDLONG,
pub Rdx: DWORDLONG,
pub Rbx: DWORDLONG,
pub Rsp: DWORDLONG,
pub Rbp: DWORDLONG,
pub Rsi: DWORDLONG,
pub Rdi: DWORDLONG,
pub R8: DWORDLONG,
pub R9: DWORDLONG,
pub R10: DWORDLONG,
pub R11: DWORDLONG,
pub R12: DWORDLONG,
pub R13: DWORDLONG,
pub R14: DWORDLONG,
pub R15: DWORDLONG,
pub Rip: DWORDLONG,
pub FltSave: FLOATING_SAVE_AREA,
pub VectorRegister: [M128A; 26],
pub VectorControl: DWORDLONG,
pub DebugControl: DWORDLONG,
pub LastBranchToRip: DWORDLONG,
pub LastBranchFromRip: DWORDLONG,
pub LastExceptionToRip: DWORDLONG,
pub LastExceptionFromRip: DWORDLONG,
}
#[repr(C)]
pub struct M128A {
pub Low: u64,
pub High: i64,
}
}
#[repr(C)]
#[cfg(target_arch = "x86_64")]
#[derive(Copy, Clone)]
pub struct FLOATING_SAVE_AREA {
_Dummy: [u8; 512],
}
#[cfg(target_arch = "arm")]
ffi! {
// #[repr(C)]
// pub struct NEON128 {
// pub Low: ULONG64,
// pub High: LONG64,
// }
// pub type PNEON128 = *mut NEON128;
#[repr(C)]
pub struct CONTEXT_u {
// pub Q: [NEON128; 16],
pub D: [ULONG64; 32],
// pub S: [DWORD; 32],
}
pub const ARM_MAX_BREAKPOINTS: usize = 8;
pub const ARM_MAX_WATCHPOINTS: usize = 1;
#[repr(C)]
pub struct CONTEXT {
pub ContextFlags: DWORD,
pub R0: DWORD,
pub R1: DWORD,
pub R2: DWORD,
pub R3: DWORD,
pub R4: DWORD,
pub R5: DWORD,
pub R6: DWORD,
pub R7: DWORD,
pub R8: DWORD,
pub R9: DWORD,
pub R10: DWORD,
pub R11: DWORD,
pub R12: DWORD,
pub Sp: DWORD,
pub Lr: DWORD,
pub Pc: DWORD,
pub Cpsr: DWORD,
pub Fpsrc: DWORD,
pub Padding: DWORD,
pub u: CONTEXT_u,
pub Bvr: [DWORD; ARM_MAX_BREAKPOINTS],
pub Bcr: [DWORD; ARM_MAX_BREAKPOINTS],
pub Wvr: [DWORD; ARM_MAX_WATCHPOINTS],
pub Wcr: [DWORD; ARM_MAX_WATCHPOINTS],
pub Padding2: [DWORD; 2],
}
} // IFDEF(arm)