Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
This commit is contained in:
689
vendor/bytemuck/src/allocation.rs
vendored
Normal file
689
vendor/bytemuck/src/allocation.rs
vendored
Normal file
@@ -0,0 +1,689 @@
|
||||
#![cfg(feature = "extern_crate_alloc")]
|
||||
|
||||
//! Stuff to boost things in the `alloc` crate.
|
||||
//!
|
||||
//! * You must enable the `extern_crate_alloc` feature of `bytemuck` or you will
|
||||
//! not be able to use this module! This is generally done by adding the
|
||||
//! feature to the dependency in Cargo.toml like so:
|
||||
//!
|
||||
//! `bytemuck = { version = "VERSION_YOU_ARE_USING", features =
|
||||
//! ["extern_crate_alloc"]}`
|
||||
|
||||
use super::*;
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
use alloc::sync::Arc;
|
||||
use alloc::{
|
||||
alloc::{alloc_zeroed, Layout},
|
||||
boxed::Box,
|
||||
rc::Rc,
|
||||
vec,
|
||||
vec::Vec,
|
||||
};
|
||||
|
||||
/// As [`try_cast_box`](try_cast_box), but unwraps for you.
|
||||
#[inline]
|
||||
pub fn cast_box<A: NoUninit, B: AnyBitPattern>(input: Box<A>) -> Box<B> {
|
||||
try_cast_box(input).map_err(|(e, _v)| e).unwrap()
|
||||
}
|
||||
|
||||
/// Attempts to cast the content type of a [`Box`](alloc::boxed::Box).
|
||||
///
|
||||
/// On failure you get back an error along with the starting `Box`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * The start and end content type of the `Box` must have the exact same
|
||||
/// alignment.
|
||||
/// * The start and end size of the `Box` must have the exact same size.
|
||||
#[inline]
|
||||
pub fn try_cast_box<A: NoUninit, B: AnyBitPattern>(
|
||||
input: Box<A>,
|
||||
) -> Result<Box<B>, (PodCastError, Box<A>)> {
|
||||
if align_of::<A>() != align_of::<B>() {
|
||||
Err((PodCastError::AlignmentMismatch, input))
|
||||
} else if size_of::<A>() != size_of::<B>() {
|
||||
Err((PodCastError::SizeMismatch, input))
|
||||
} else {
|
||||
// Note(Lokathor): This is much simpler than with the Vec casting!
|
||||
let ptr: *mut B = Box::into_raw(input) as *mut B;
|
||||
Ok(unsafe { Box::from_raw(ptr) })
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocates a `Box<T>` with all of the contents being zeroed out.
|
||||
///
|
||||
/// This uses the global allocator to create a zeroed allocation and _then_
|
||||
/// turns it into a Box. In other words, it's 100% assured that the zeroed data
|
||||
/// won't be put temporarily on the stack. You can make a box of any size
|
||||
/// without fear of a stack overflow.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// This fails if the allocation fails.
|
||||
#[inline]
|
||||
pub fn try_zeroed_box<T: Zeroable>() -> Result<Box<T>, ()> {
|
||||
if size_of::<T>() == 0 {
|
||||
// This will not allocate but simply create a dangling pointer.
|
||||
let dangling = core::ptr::NonNull::dangling().as_ptr();
|
||||
return Ok(unsafe { Box::from_raw(dangling) });
|
||||
}
|
||||
let layout = Layout::new::<T>();
|
||||
let ptr = unsafe { alloc_zeroed(layout) };
|
||||
if ptr.is_null() {
|
||||
// we don't know what the error is because `alloc_zeroed` is a dumb API
|
||||
Err(())
|
||||
} else {
|
||||
Ok(unsafe { Box::<T>::from_raw(ptr as *mut T) })
|
||||
}
|
||||
}
|
||||
|
||||
/// As [`try_zeroed_box`], but unwraps for you.
|
||||
#[inline]
|
||||
pub fn zeroed_box<T: Zeroable>() -> Box<T> {
|
||||
try_zeroed_box().unwrap()
|
||||
}
|
||||
|
||||
/// Allocates a `Vec<T>` of length and capacity exactly equal to `length` and
|
||||
/// all elements zeroed.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// This fails if the allocation fails, or if a layout cannot be calculated for
|
||||
/// the allocation.
|
||||
pub fn try_zeroed_vec<T: Zeroable>(length: usize) -> Result<Vec<T>, ()> {
|
||||
if length == 0 {
|
||||
Ok(Vec::new())
|
||||
} else {
|
||||
let boxed_slice = try_zeroed_slice_box(length)?;
|
||||
Ok(boxed_slice.into_vec())
|
||||
}
|
||||
}
|
||||
|
||||
/// As [`try_zeroed_vec`] but unwraps for you
|
||||
pub fn zeroed_vec<T: Zeroable>(length: usize) -> Vec<T> {
|
||||
try_zeroed_vec(length).unwrap()
|
||||
}
|
||||
|
||||
/// Allocates a `Box<[T]>` with all contents being zeroed out.
|
||||
///
|
||||
/// This uses the global allocator to create a zeroed allocation and _then_
|
||||
/// turns it into a Box. In other words, it's 100% assured that the zeroed data
|
||||
/// won't be put temporarily on the stack. You can make a box of any size
|
||||
/// without fear of a stack overflow.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// This fails if the allocation fails, or if a layout cannot be calculated for
|
||||
/// the allocation.
|
||||
#[inline]
|
||||
pub fn try_zeroed_slice_box<T: Zeroable>(
|
||||
length: usize,
|
||||
) -> Result<Box<[T]>, ()> {
|
||||
if size_of::<T>() == 0 || length == 0 {
|
||||
// This will not allocate but simply create a dangling slice pointer.
|
||||
let dangling = core::ptr::NonNull::dangling().as_ptr();
|
||||
let dangling_slice = core::ptr::slice_from_raw_parts_mut(dangling, length);
|
||||
return Ok(unsafe { Box::from_raw(dangling_slice) });
|
||||
}
|
||||
let layout = core::alloc::Layout::array::<T>(length).map_err(|_| ())?;
|
||||
let ptr = unsafe { alloc_zeroed(layout) };
|
||||
if ptr.is_null() {
|
||||
// we don't know what the error is because `alloc_zeroed` is a dumb API
|
||||
Err(())
|
||||
} else {
|
||||
let slice =
|
||||
unsafe { core::slice::from_raw_parts_mut(ptr as *mut T, length) };
|
||||
Ok(unsafe { Box::<[T]>::from_raw(slice) })
|
||||
}
|
||||
}
|
||||
|
||||
/// As [`try_zeroed_slice_box`](try_zeroed_slice_box), but unwraps for you.
|
||||
pub fn zeroed_slice_box<T: Zeroable>(length: usize) -> Box<[T]> {
|
||||
try_zeroed_slice_box(length).unwrap()
|
||||
}
|
||||
|
||||
/// As [`try_cast_slice_box`](try_cast_slice_box), but unwraps for you.
|
||||
#[inline]
|
||||
pub fn cast_slice_box<A: NoUninit, B: AnyBitPattern>(
|
||||
input: Box<[A]>,
|
||||
) -> Box<[B]> {
|
||||
try_cast_slice_box(input).map_err(|(e, _v)| e).unwrap()
|
||||
}
|
||||
|
||||
/// Attempts to cast the content type of a `Box<[T]>`.
|
||||
///
|
||||
/// On failure you get back an error along with the starting `Box<[T]>`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * The start and end content type of the `Box<[T]>` must have the exact same
|
||||
/// alignment.
|
||||
/// * The start and end content size in bytes of the `Box<[T]>` must be the
|
||||
/// exact same.
|
||||
#[inline]
|
||||
pub fn try_cast_slice_box<A: NoUninit, B: AnyBitPattern>(
|
||||
input: Box<[A]>,
|
||||
) -> Result<Box<[B]>, (PodCastError, Box<[A]>)> {
|
||||
if align_of::<A>() != align_of::<B>() {
|
||||
Err((PodCastError::AlignmentMismatch, input))
|
||||
} else if size_of::<A>() != size_of::<B>() {
|
||||
if size_of::<A>() * input.len() % size_of::<B>() != 0 {
|
||||
// If the size in bytes of the underlying buffer does not match an exact
|
||||
// multiple of the size of B, we cannot cast between them.
|
||||
Err((PodCastError::SizeMismatch, input))
|
||||
} else {
|
||||
// Because the size is an exact multiple, we can now change the length
|
||||
// of the slice and recreate the Box
|
||||
// NOTE: This is a valid operation because according to the docs of
|
||||
// std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc
|
||||
// the block must be the same Layout that is used to dealloc the block.
|
||||
// Luckily, Layout only stores two things, the alignment, and the size in
|
||||
// bytes. So as long as both of those stay the same, the Layout will
|
||||
// remain a valid input to dealloc.
|
||||
let length = size_of::<A>() * input.len() / size_of::<B>();
|
||||
let box_ptr: *mut A = Box::into_raw(input) as *mut A;
|
||||
let ptr: *mut [B] =
|
||||
unsafe { core::slice::from_raw_parts_mut(box_ptr as *mut B, length) };
|
||||
Ok(unsafe { Box::<[B]>::from_raw(ptr) })
|
||||
}
|
||||
} else {
|
||||
let box_ptr: *mut [A] = Box::into_raw(input);
|
||||
let ptr: *mut [B] = box_ptr as *mut [B];
|
||||
Ok(unsafe { Box::<[B]>::from_raw(ptr) })
|
||||
}
|
||||
}
|
||||
|
||||
/// As [`try_cast_vec`](try_cast_vec), but unwraps for you.
|
||||
#[inline]
|
||||
pub fn cast_vec<A: NoUninit, B: AnyBitPattern>(input: Vec<A>) -> Vec<B> {
|
||||
try_cast_vec(input).map_err(|(e, _v)| e).unwrap()
|
||||
}
|
||||
|
||||
/// Attempts to cast the content type of a [`Vec`](alloc::vec::Vec).
|
||||
///
|
||||
/// On failure you get back an error along with the starting `Vec`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * The start and end content type of the `Vec` must have the exact same
|
||||
/// alignment.
|
||||
/// * The start and end content size in bytes of the `Vec` must be the exact
|
||||
/// same.
|
||||
/// * The start and end capacity in bytes of the `Vec` must be the exact same.
|
||||
#[inline]
|
||||
pub fn try_cast_vec<A: NoUninit, B: AnyBitPattern>(
|
||||
input: Vec<A>,
|
||||
) -> Result<Vec<B>, (PodCastError, Vec<A>)> {
|
||||
if align_of::<A>() != align_of::<B>() {
|
||||
Err((PodCastError::AlignmentMismatch, input))
|
||||
} else if size_of::<A>() != size_of::<B>() {
|
||||
if size_of::<A>() * input.len() % size_of::<B>() != 0
|
||||
|| size_of::<A>() * input.capacity() % size_of::<B>() != 0
|
||||
{
|
||||
// If the size in bytes of the underlying buffer does not match an exact
|
||||
// multiple of the size of B, we cannot cast between them.
|
||||
// Note that we have to pay special attention to make sure that both
|
||||
// length and capacity are valid under B, as we do not want to
|
||||
// change which bytes are considered part of the initialized slice
|
||||
// of the Vec
|
||||
Err((PodCastError::SizeMismatch, input))
|
||||
} else {
|
||||
// Because the size is an exact multiple, we can now change the length and
|
||||
// capacity and recreate the Vec
|
||||
// NOTE: This is a valid operation because according to the docs of
|
||||
// std::alloc::GlobalAlloc::dealloc(), the Layout that was used to alloc
|
||||
// the block must be the same Layout that is used to dealloc the block.
|
||||
// Luckily, Layout only stores two things, the alignment, and the size in
|
||||
// bytes. So as long as both of those stay the same, the Layout will
|
||||
// remain a valid input to dealloc.
|
||||
|
||||
// Note(Lokathor): First we record the length and capacity, which don't
|
||||
// have any secret provenance metadata.
|
||||
let length: usize = size_of::<A>() * input.len() / size_of::<B>();
|
||||
let capacity: usize = size_of::<A>() * input.capacity() / size_of::<B>();
|
||||
// Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with
|
||||
// ManuallyDrop, because if we used `core::mem::forget` after taking the
|
||||
// pointer then that would invalidate our pointer. In nightly there's a
|
||||
// "into raw parts" method, which we can switch this too eventually.
|
||||
let mut manual_drop_vec = ManuallyDrop::new(input);
|
||||
let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr();
|
||||
let ptr: *mut B = vec_ptr as *mut B;
|
||||
Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) })
|
||||
}
|
||||
} else {
|
||||
// Note(Lokathor): First we record the length and capacity, which don't have
|
||||
// any secret provenance metadata.
|
||||
let length: usize = input.len();
|
||||
let capacity: usize = input.capacity();
|
||||
// Note(Lokathor): Next we "pre-forget" the old Vec by wrapping with
|
||||
// ManuallyDrop, because if we used `core::mem::forget` after taking the
|
||||
// pointer then that would invalidate our pointer. In nightly there's a
|
||||
// "into raw parts" method, which we can switch this too eventually.
|
||||
let mut manual_drop_vec = ManuallyDrop::new(input);
|
||||
let vec_ptr: *mut A = manual_drop_vec.as_mut_ptr();
|
||||
let ptr: *mut B = vec_ptr as *mut B;
|
||||
Ok(unsafe { Vec::from_raw_parts(ptr, length, capacity) })
|
||||
}
|
||||
}
|
||||
|
||||
/// This "collects" a slice of pod data into a vec of a different pod type.
|
||||
///
|
||||
/// Unlike with [`cast_slice`] and [`cast_slice_mut`], this will always work.
|
||||
///
|
||||
/// The output vec will be of a minimal size/capacity to hold the slice given.
|
||||
///
|
||||
/// ```rust
|
||||
/// # use bytemuck::*;
|
||||
/// let halfwords: [u16; 4] = [5, 6, 7, 8];
|
||||
/// let vec_of_words: Vec<u32> = pod_collect_to_vec(&halfwords);
|
||||
/// if cfg!(target_endian = "little") {
|
||||
/// assert_eq!(&vec_of_words[..], &[0x0006_0005, 0x0008_0007][..])
|
||||
/// } else {
|
||||
/// assert_eq!(&vec_of_words[..], &[0x0005_0006, 0x0007_0008][..])
|
||||
/// }
|
||||
/// ```
|
||||
pub fn pod_collect_to_vec<A: NoUninit, B: NoUninit + AnyBitPattern>(
|
||||
src: &[A],
|
||||
) -> Vec<B> {
|
||||
let src_size = size_of_val(src);
|
||||
// Note(Lokathor): dst_count is rounded up so that the dest will always be at
|
||||
// least as many bytes as the src.
|
||||
let dst_count = src_size / size_of::<B>()
|
||||
+ if src_size % size_of::<B>() != 0 { 1 } else { 0 };
|
||||
let mut dst = vec![B::zeroed(); dst_count];
|
||||
|
||||
let src_bytes: &[u8] = cast_slice(src);
|
||||
let dst_bytes: &mut [u8] = cast_slice_mut(&mut dst[..]);
|
||||
dst_bytes[..src_size].copy_from_slice(src_bytes);
|
||||
dst
|
||||
}
|
||||
|
||||
/// As [`try_cast_rc`](try_cast_rc), but unwraps for you.
|
||||
#[inline]
|
||||
pub fn cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
|
||||
input: Rc<A>,
|
||||
) -> Rc<B> {
|
||||
try_cast_rc(input).map_err(|(e, _v)| e).unwrap()
|
||||
}
|
||||
|
||||
/// Attempts to cast the content type of a [`Rc`](alloc::rc::Rc).
|
||||
///
|
||||
/// On failure you get back an error along with the starting `Rc`.
|
||||
///
|
||||
/// The bounds on this function are the same as [`cast_mut`], because a user
|
||||
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
|
||||
/// in the input.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * The start and end content type of the `Rc` must have the exact same
|
||||
/// alignment.
|
||||
/// * The start and end size of the `Rc` must have the exact same size.
|
||||
#[inline]
|
||||
pub fn try_cast_rc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
|
||||
input: Rc<A>,
|
||||
) -> Result<Rc<B>, (PodCastError, Rc<A>)> {
|
||||
if align_of::<A>() != align_of::<B>() {
|
||||
Err((PodCastError::AlignmentMismatch, input))
|
||||
} else if size_of::<A>() != size_of::<B>() {
|
||||
Err((PodCastError::SizeMismatch, input))
|
||||
} else {
|
||||
// Safety: Rc::from_raw requires size and alignment match, which is met.
|
||||
let ptr: *const B = Rc::into_raw(input) as *const B;
|
||||
Ok(unsafe { Rc::from_raw(ptr) })
|
||||
}
|
||||
}
|
||||
|
||||
/// As [`try_cast_arc`](try_cast_arc), but unwraps for you.
|
||||
#[inline]
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
pub fn cast_arc<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
|
||||
input: Arc<A>,
|
||||
) -> Arc<B> {
|
||||
try_cast_arc(input).map_err(|(e, _v)| e).unwrap()
|
||||
}
|
||||
|
||||
/// Attempts to cast the content type of a [`Arc`](alloc::sync::Arc).
|
||||
///
|
||||
/// On failure you get back an error along with the starting `Arc`.
|
||||
///
|
||||
/// The bounds on this function are the same as [`cast_mut`], because a user
|
||||
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
|
||||
/// in the input.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * The start and end content type of the `Arc` must have the exact same
|
||||
/// alignment.
|
||||
/// * The start and end size of the `Arc` must have the exact same size.
|
||||
#[inline]
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
pub fn try_cast_arc<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
input: Arc<A>,
|
||||
) -> Result<Arc<B>, (PodCastError, Arc<A>)> {
|
||||
if align_of::<A>() != align_of::<B>() {
|
||||
Err((PodCastError::AlignmentMismatch, input))
|
||||
} else if size_of::<A>() != size_of::<B>() {
|
||||
Err((PodCastError::SizeMismatch, input))
|
||||
} else {
|
||||
// Safety: Arc::from_raw requires size and alignment match, which is met.
|
||||
let ptr: *const B = Arc::into_raw(input) as *const B;
|
||||
Ok(unsafe { Arc::from_raw(ptr) })
|
||||
}
|
||||
}
|
||||
|
||||
/// As [`try_cast_slice_rc`](try_cast_slice_rc), but unwraps for you.
|
||||
#[inline]
|
||||
pub fn cast_slice_rc<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
input: Rc<[A]>,
|
||||
) -> Rc<[B]> {
|
||||
try_cast_slice_rc(input).map_err(|(e, _v)| e).unwrap()
|
||||
}
|
||||
|
||||
/// Attempts to cast the content type of a `Rc<[T]>`.
|
||||
///
|
||||
/// On failure you get back an error along with the starting `Rc<[T]>`.
|
||||
///
|
||||
/// The bounds on this function are the same as [`cast_mut`], because a user
|
||||
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
|
||||
/// in the input.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * The start and end content type of the `Rc<[T]>` must have the exact same
|
||||
/// alignment.
|
||||
/// * The start and end content size in bytes of the `Rc<[T]>` must be the exact
|
||||
/// same.
|
||||
#[inline]
|
||||
pub fn try_cast_slice_rc<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
input: Rc<[A]>,
|
||||
) -> Result<Rc<[B]>, (PodCastError, Rc<[A]>)> {
|
||||
if align_of::<A>() != align_of::<B>() {
|
||||
Err((PodCastError::AlignmentMismatch, input))
|
||||
} else if size_of::<A>() != size_of::<B>() {
|
||||
if size_of::<A>() * input.len() % size_of::<B>() != 0 {
|
||||
// If the size in bytes of the underlying buffer does not match an exact
|
||||
// multiple of the size of B, we cannot cast between them.
|
||||
Err((PodCastError::SizeMismatch, input))
|
||||
} else {
|
||||
// Because the size is an exact multiple, we can now change the length
|
||||
// of the slice and recreate the Rc
|
||||
// NOTE: This is a valid operation because according to the docs of
|
||||
// std::rc::Rc::from_raw(), the type U that was in the original Rc<U>
|
||||
// acquired from Rc::into_raw() must have the same size alignment and
|
||||
// size of the type T in the new Rc<T>. So as long as both the size
|
||||
// and alignment stay the same, the Rc will remain a valid Rc.
|
||||
let length = size_of::<A>() * input.len() / size_of::<B>();
|
||||
let rc_ptr: *const A = Rc::into_raw(input) as *const A;
|
||||
// Must use ptr::slice_from_raw_parts, because we cannot make an
|
||||
// intermediate const reference, because it has mutable provenance,
|
||||
// nor an intermediate mutable reference, because it could be aliased.
|
||||
let ptr = core::ptr::slice_from_raw_parts(rc_ptr as *const B, length);
|
||||
Ok(unsafe { Rc::<[B]>::from_raw(ptr) })
|
||||
}
|
||||
} else {
|
||||
let rc_ptr: *const [A] = Rc::into_raw(input);
|
||||
let ptr: *const [B] = rc_ptr as *const [B];
|
||||
Ok(unsafe { Rc::<[B]>::from_raw(ptr) })
|
||||
}
|
||||
}
|
||||
|
||||
/// As [`try_cast_slice_arc`](try_cast_slice_arc), but unwraps for you.
|
||||
#[inline]
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
pub fn cast_slice_arc<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
input: Arc<[A]>,
|
||||
) -> Arc<[B]> {
|
||||
try_cast_slice_arc(input).map_err(|(e, _v)| e).unwrap()
|
||||
}
|
||||
|
||||
/// Attempts to cast the content type of a `Arc<[T]>`.
|
||||
///
|
||||
/// On failure you get back an error along with the starting `Arc<[T]>`.
|
||||
///
|
||||
/// The bounds on this function are the same as [`cast_mut`], because a user
|
||||
/// could call `Rc::get_unchecked_mut` on the output, which could be observable
|
||||
/// in the input.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * The start and end content type of the `Arc<[T]>` must have the exact same
|
||||
/// alignment.
|
||||
/// * The start and end content size in bytes of the `Arc<[T]>` must be the
|
||||
/// exact same.
|
||||
#[inline]
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
pub fn try_cast_slice_arc<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
input: Arc<[A]>,
|
||||
) -> Result<Arc<[B]>, (PodCastError, Arc<[A]>)> {
|
||||
if align_of::<A>() != align_of::<B>() {
|
||||
Err((PodCastError::AlignmentMismatch, input))
|
||||
} else if size_of::<A>() != size_of::<B>() {
|
||||
if size_of::<A>() * input.len() % size_of::<B>() != 0 {
|
||||
// If the size in bytes of the underlying buffer does not match an exact
|
||||
// multiple of the size of B, we cannot cast between them.
|
||||
Err((PodCastError::SizeMismatch, input))
|
||||
} else {
|
||||
// Because the size is an exact multiple, we can now change the length
|
||||
// of the slice and recreate the Arc
|
||||
// NOTE: This is a valid operation because according to the docs of
|
||||
// std::sync::Arc::from_raw(), the type U that was in the original Arc<U>
|
||||
// acquired from Arc::into_raw() must have the same size alignment and
|
||||
// size of the type T in the new Arc<T>. So as long as both the size
|
||||
// and alignment stay the same, the Arc will remain a valid Arc.
|
||||
let length = size_of::<A>() * input.len() / size_of::<B>();
|
||||
let arc_ptr: *const A = Arc::into_raw(input) as *const A;
|
||||
// Must use ptr::slice_from_raw_parts, because we cannot make an
|
||||
// intermediate const reference, because it has mutable provenance,
|
||||
// nor an intermediate mutable reference, because it could be aliased.
|
||||
let ptr = core::ptr::slice_from_raw_parts(arc_ptr as *const B, length);
|
||||
Ok(unsafe { Arc::<[B]>::from_raw(ptr) })
|
||||
}
|
||||
} else {
|
||||
let arc_ptr: *const [A] = Arc::into_raw(input);
|
||||
let ptr: *const [B] = arc_ptr as *const [B];
|
||||
Ok(unsafe { Arc::<[B]>::from_raw(ptr) })
|
||||
}
|
||||
}
|
||||
|
||||
/// An extension trait for `TransparentWrapper` and alloc types.
|
||||
pub trait TransparentWrapperAlloc<Inner: ?Sized>:
|
||||
TransparentWrapper<Inner>
|
||||
{
|
||||
/// Convert a vec of the inner type into a vec of the wrapper type.
|
||||
fn wrap_vec(s: Vec<Inner>) -> Vec<Self>
|
||||
where
|
||||
Self: Sized,
|
||||
Inner: Sized,
|
||||
{
|
||||
let mut s = core::mem::ManuallyDrop::new(s);
|
||||
|
||||
let length = s.len();
|
||||
let capacity = s.capacity();
|
||||
let ptr = s.as_mut_ptr();
|
||||
|
||||
unsafe {
|
||||
// SAFETY:
|
||||
// * ptr comes from Vec (and will not be double-dropped)
|
||||
// * the two types have the identical representation
|
||||
// * the len and capacity fields are valid
|
||||
Vec::from_raw_parts(ptr as *mut Self, length, capacity)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a box to the inner type into a box to the wrapper
|
||||
/// type.
|
||||
#[inline]
|
||||
fn wrap_box(s: Box<Inner>) -> Box<Self> {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
|
||||
unsafe {
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the sizes are unspecified.
|
||||
//
|
||||
// SAFETY:
|
||||
// * The unsafe contract requires that pointers to Inner and Self have
|
||||
// identical representations
|
||||
// * Box is guaranteed to have representation identical to a (non-null)
|
||||
// pointer
|
||||
// * The pointer comes from a box (and thus satisfies all safety
|
||||
// requirements of Box)
|
||||
let inner_ptr: *mut Inner = Box::into_raw(s);
|
||||
let wrapper_ptr: *mut Self = transmute!(inner_ptr);
|
||||
Box::from_raw(wrapper_ptr)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an [`Rc`](alloc::rc::Rc) to the inner type into an `Rc` to the
|
||||
/// wrapper type.
|
||||
#[inline]
|
||||
fn wrap_rc(s: Rc<Inner>) -> Rc<Self> {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
|
||||
unsafe {
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the layout of Rc is unspecified.
|
||||
//
|
||||
// SAFETY:
|
||||
// * The unsafe contract requires that pointers to Inner and Self have
|
||||
// identical representations, and that the size and alignment of Inner
|
||||
// and Self are the same, which meets the safety requirements of
|
||||
// Rc::from_raw
|
||||
let inner_ptr: *const Inner = Rc::into_raw(s);
|
||||
let wrapper_ptr: *const Self = transmute!(inner_ptr);
|
||||
Rc::from_raw(wrapper_ptr)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an [`Arc`](alloc::sync::Arc) to the inner type into an `Arc` to
|
||||
/// the wrapper type.
|
||||
#[inline]
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
fn wrap_arc(s: Arc<Inner>) -> Arc<Self> {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
|
||||
unsafe {
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the layout of Arc is unspecified.
|
||||
//
|
||||
// SAFETY:
|
||||
// * The unsafe contract requires that pointers to Inner and Self have
|
||||
// identical representations, and that the size and alignment of Inner
|
||||
// and Self are the same, which meets the safety requirements of
|
||||
// Arc::from_raw
|
||||
let inner_ptr: *const Inner = Arc::into_raw(s);
|
||||
let wrapper_ptr: *const Self = transmute!(inner_ptr);
|
||||
Arc::from_raw(wrapper_ptr)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a vec of the wrapper type into a vec of the inner type.
|
||||
fn peel_vec(s: Vec<Self>) -> Vec<Inner>
|
||||
where
|
||||
Self: Sized,
|
||||
Inner: Sized,
|
||||
{
|
||||
let mut s = core::mem::ManuallyDrop::new(s);
|
||||
|
||||
let length = s.len();
|
||||
let capacity = s.capacity();
|
||||
let ptr = s.as_mut_ptr();
|
||||
|
||||
unsafe {
|
||||
// SAFETY:
|
||||
// * ptr comes from Vec (and will not be double-dropped)
|
||||
// * the two types have the identical representation
|
||||
// * the len and capacity fields are valid
|
||||
Vec::from_raw_parts(ptr as *mut Inner, length, capacity)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a box to the wrapper type into a box to the inner
|
||||
/// type.
|
||||
#[inline]
|
||||
fn peel_box(s: Box<Self>) -> Box<Inner> {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
|
||||
unsafe {
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the sizes are unspecified.
|
||||
//
|
||||
// SAFETY:
|
||||
// * The unsafe contract requires that pointers to Inner and Self have
|
||||
// identical representations
|
||||
// * Box is guaranteed to have representation identical to a (non-null)
|
||||
// pointer
|
||||
// * The pointer comes from a box (and thus satisfies all safety
|
||||
// requirements of Box)
|
||||
let wrapper_ptr: *mut Self = Box::into_raw(s);
|
||||
let inner_ptr: *mut Inner = transmute!(wrapper_ptr);
|
||||
Box::from_raw(inner_ptr)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an [`Rc`](alloc::rc::Rc) to the wrapper type into an `Rc` to the
|
||||
/// inner type.
|
||||
#[inline]
|
||||
fn peel_rc(s: Rc<Self>) -> Rc<Inner> {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
|
||||
unsafe {
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the layout of Rc is unspecified.
|
||||
//
|
||||
// SAFETY:
|
||||
// * The unsafe contract requires that pointers to Inner and Self have
|
||||
// identical representations, and that the size and alignment of Inner
|
||||
// and Self are the same, which meets the safety requirements of
|
||||
// Rc::from_raw
|
||||
let wrapper_ptr: *const Self = Rc::into_raw(s);
|
||||
let inner_ptr: *const Inner = transmute!(wrapper_ptr);
|
||||
Rc::from_raw(inner_ptr)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an [`Arc`](alloc::sync::Arc) to the wrapper type into an `Arc` to
|
||||
/// the inner type.
|
||||
#[inline]
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
fn peel_arc(s: Arc<Self>) -> Arc<Inner> {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
|
||||
unsafe {
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the layout of Arc is unspecified.
|
||||
//
|
||||
// SAFETY:
|
||||
// * The unsafe contract requires that pointers to Inner and Self have
|
||||
// identical representations, and that the size and alignment of Inner
|
||||
// and Self are the same, which meets the safety requirements of
|
||||
// Arc::from_raw
|
||||
let wrapper_ptr: *const Self = Arc::into_raw(s);
|
||||
let inner_ptr: *const Inner = transmute!(wrapper_ptr);
|
||||
Arc::from_raw(inner_ptr)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: ?Sized, T: ?Sized + TransparentWrapper<I>> TransparentWrapperAlloc<I> for T {}
|
61
vendor/bytemuck/src/anybitpattern.rs
vendored
Normal file
61
vendor/bytemuck/src/anybitpattern.rs
vendored
Normal file
@@ -0,0 +1,61 @@
|
||||
use crate::{Pod, Zeroable};
|
||||
|
||||
/// Marker trait for "plain old data" types that are valid for any bit pattern.
|
||||
///
|
||||
/// The requirements for this is very similar to [`Pod`],
|
||||
/// except that the type can allow uninit (or padding) bytes.
|
||||
/// This limits what you can do with a type of this kind, but also broadens the
|
||||
/// included types to `repr(C)` `struct`s that contain padding as well as
|
||||
/// `union`s. Notably, you can only cast *immutable* references and *owned*
|
||||
/// values into [`AnyBitPattern`] types, not *mutable* references.
|
||||
///
|
||||
/// [`Pod`] is a subset of [`AnyBitPattern`], meaning that any `T: Pod` is also
|
||||
/// [`AnyBitPattern`] but any `T: AnyBitPattern` is not necessarily [`Pod`].
|
||||
///
|
||||
/// [`AnyBitPattern`] is a subset of [`Zeroable`], meaning that any `T:
|
||||
/// AnyBitPattern` is also [`Zeroable`], but any `T: Zeroable` is not
|
||||
/// necessarily [`AnyBitPattern ]
|
||||
///
|
||||
/// # Derive
|
||||
///
|
||||
/// A `#[derive(AnyBitPattern)]` macro is provided under the `derive` feature
|
||||
/// flag which will automatically validate the requirements of this trait and
|
||||
/// implement the trait for you for both structs and enums. This is the
|
||||
/// recommended method for implementing the trait, however it's also possible to
|
||||
/// do manually. If you implement it manually, you *must* carefully follow the
|
||||
/// below safety rules.
|
||||
///
|
||||
/// * *NOTE: even `C-style`, fieldless enums are intentionally **excluded** from
|
||||
/// this trait, since it is **unsound** for an enum to have a discriminant value
|
||||
/// that is not one of its defined variants.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// Similar to [`Pod`] except we disregard the rule about it must not contain
|
||||
/// uninit bytes. Still, this is a quite strong guarantee about a type, so *be
|
||||
/// careful* when implementing it manually.
|
||||
///
|
||||
/// * The type must be inhabited (eg: no
|
||||
/// [Infallible](core::convert::Infallible)).
|
||||
/// * The type must be valid for any bit pattern of its backing memory.
|
||||
/// * Structs need to have all fields also be `AnyBitPattern`.
|
||||
/// * It is disallowed for types to contain pointer types, `Cell`, `UnsafeCell`,
|
||||
/// atomics, and any other forms of interior mutability.
|
||||
/// * More precisely: A shared reference to the type must allow reads, and
|
||||
/// *only* reads. RustBelt's separation logic is based on the notion that a
|
||||
/// type is allowed to define a sharing predicate, its own invariant that must
|
||||
/// hold for shared references, and this predicate is the reasoning that allow
|
||||
/// it to deal with atomic and cells etc. We require the sharing predicate to
|
||||
/// be trivial and permit only read-only access.
|
||||
/// * There's probably more, don't mess it up (I mean it).
|
||||
pub unsafe trait AnyBitPattern:
|
||||
Zeroable + Sized + Copy + 'static
|
||||
{
|
||||
}
|
||||
|
||||
unsafe impl<T: Pod> AnyBitPattern for T {}
|
||||
|
||||
#[cfg(feature = "zeroable_maybe_uninit")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "zeroable_maybe_uninit")))]
|
||||
unsafe impl<T> AnyBitPattern for core::mem::MaybeUninit<T> where T: AnyBitPattern
|
||||
{}
|
522
vendor/bytemuck/src/checked.rs
vendored
Normal file
522
vendor/bytemuck/src/checked.rs
vendored
Normal file
@@ -0,0 +1,522 @@
|
||||
//! Checked versions of the casting functions exposed in crate root
|
||||
//! that support [`CheckedBitPattern`] types.
|
||||
|
||||
use crate::{
|
||||
internal::{self, something_went_wrong},
|
||||
AnyBitPattern, NoUninit,
|
||||
};
|
||||
|
||||
/// A marker trait that allows types that have some invalid bit patterns to be
|
||||
/// used in places that otherwise require [`AnyBitPattern`] or [`Pod`] types by
|
||||
/// performing a runtime check on a perticular set of bits. This is particularly
|
||||
/// useful for types like fieldless ('C-style') enums, [`char`], bool, and
|
||||
/// structs containing them.
|
||||
///
|
||||
/// To do this, we define a `Bits` type which is a type with equivalent layout
|
||||
/// to `Self` other than the invalid bit patterns which disallow `Self` from
|
||||
/// being [`AnyBitPattern`]. This `Bits` type must itself implement
|
||||
/// [`AnyBitPattern`]. Then, we implement a function that checks whether a
|
||||
/// certain instance of the `Bits` is also a valid bit pattern of `Self`. If
|
||||
/// this check passes, then we can allow casting from the `Bits` to `Self` (and
|
||||
/// therefore, any type which is able to be cast to `Bits` is also able to be
|
||||
/// cast to `Self`).
|
||||
///
|
||||
/// [`AnyBitPattern`] is a subset of [`CheckedBitPattern`], meaning that any `T:
|
||||
/// AnyBitPattern` is also [`CheckedBitPattern`]. This means you can also use
|
||||
/// any [`AnyBitPattern`] type in the checked versions of casting functions in
|
||||
/// this module. If it's possible, prefer implementing [`AnyBitPattern`] for
|
||||
/// your type directly instead of [`CheckedBitPattern`] as it gives greater
|
||||
/// flexibility.
|
||||
///
|
||||
/// # Derive
|
||||
///
|
||||
/// A `#[derive(CheckedBitPattern)]` macro is provided under the `derive`
|
||||
/// feature flag which will automatically validate the requirements of this
|
||||
/// trait and implement the trait for you for both enums and structs. This is
|
||||
/// the recommended method for implementing the trait, however it's also
|
||||
/// possible to do manually.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// If manually implementing the trait, we can do something like so:
|
||||
///
|
||||
/// ```rust
|
||||
/// use bytemuck::{CheckedBitPattern, NoUninit};
|
||||
///
|
||||
/// #[repr(u32)]
|
||||
/// #[derive(Copy, Clone)]
|
||||
/// enum MyEnum {
|
||||
/// Variant0 = 0,
|
||||
/// Variant1 = 1,
|
||||
/// Variant2 = 2,
|
||||
/// }
|
||||
///
|
||||
/// unsafe impl CheckedBitPattern for MyEnum {
|
||||
/// type Bits = u32;
|
||||
///
|
||||
/// fn is_valid_bit_pattern(bits: &u32) -> bool {
|
||||
/// match *bits {
|
||||
/// 0 | 1 | 2 => true,
|
||||
/// _ => false,
|
||||
/// }
|
||||
/// }
|
||||
/// }
|
||||
///
|
||||
/// // It is often useful to also implement `NoUninit` on our `CheckedBitPattern` types.
|
||||
/// // This will allow us to do casting of mutable references (and mutable slices).
|
||||
/// // It is not always possible to do so, but in this case we have no padding so it is.
|
||||
/// unsafe impl NoUninit for MyEnum {}
|
||||
/// ```
|
||||
///
|
||||
/// We can now use relevant casting functions. For example,
|
||||
///
|
||||
/// ```rust
|
||||
/// # use bytemuck::{CheckedBitPattern, NoUninit};
|
||||
/// # #[repr(u32)]
|
||||
/// # #[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
/// # enum MyEnum {
|
||||
/// # Variant0 = 0,
|
||||
/// # Variant1 = 1,
|
||||
/// # Variant2 = 2,
|
||||
/// # }
|
||||
/// # unsafe impl NoUninit for MyEnum {}
|
||||
/// # unsafe impl CheckedBitPattern for MyEnum {
|
||||
/// # type Bits = u32;
|
||||
/// # fn is_valid_bit_pattern(bits: &u32) -> bool {
|
||||
/// # match *bits {
|
||||
/// # 0 | 1 | 2 => true,
|
||||
/// # _ => false,
|
||||
/// # }
|
||||
/// # }
|
||||
/// # }
|
||||
/// use bytemuck::{bytes_of, bytes_of_mut};
|
||||
/// use bytemuck::checked;
|
||||
///
|
||||
/// let bytes = bytes_of(&2u32);
|
||||
/// let result = checked::try_from_bytes::<MyEnum>(bytes);
|
||||
/// assert_eq!(result, Ok(&MyEnum::Variant2));
|
||||
///
|
||||
/// // Fails for invalid discriminant
|
||||
/// let bytes = bytes_of(&100u32);
|
||||
/// let result = checked::try_from_bytes::<MyEnum>(bytes);
|
||||
/// assert!(result.is_err());
|
||||
///
|
||||
/// // Since we implemented NoUninit, we can also cast mutably from an original type
|
||||
/// // that is `NoUninit + AnyBitPattern`:
|
||||
/// let mut my_u32 = 2u32;
|
||||
/// {
|
||||
/// let as_enum_mut = checked::cast_mut::<_, MyEnum>(&mut my_u32);
|
||||
/// assert_eq!(as_enum_mut, &mut MyEnum::Variant2);
|
||||
/// *as_enum_mut = MyEnum::Variant0;
|
||||
/// }
|
||||
/// assert_eq!(my_u32, 0u32);
|
||||
/// ```
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// * `Self` *must* have the same layout as the specified `Bits` except for
|
||||
/// the possible invalid bit patterns being checked during
|
||||
/// [`is_valid_bit_pattern`].
|
||||
/// * This almost certainly means your type must be `#[repr(C)]` or a similar
|
||||
/// specified repr, but if you think you know better, you probably don't. If
|
||||
/// you still think you know better, be careful and have fun. And don't mess
|
||||
/// it up (I mean it).
|
||||
/// * If [`is_valid_bit_pattern`] returns true, then the bit pattern contained
|
||||
/// in `bits` must also be valid for an instance of `Self`.
|
||||
/// * Probably more, don't mess it up (I mean it 2.0)
|
||||
///
|
||||
/// [`is_valid_bit_pattern`]: CheckedBitPattern::is_valid_bit_pattern
|
||||
/// [`Pod`]: crate::Pod
|
||||
pub unsafe trait CheckedBitPattern: Copy {
|
||||
/// `Self` *must* have the same layout as the specified `Bits` except for
|
||||
/// the possible invalid bit patterns being checked during
|
||||
/// [`is_valid_bit_pattern`].
|
||||
///
|
||||
/// [`is_valid_bit_pattern`]: CheckedBitPattern::is_valid_bit_pattern
|
||||
type Bits: AnyBitPattern;
|
||||
|
||||
/// If this function returns true, then it must be valid to reinterpret `bits`
|
||||
/// as `&Self`.
|
||||
fn is_valid_bit_pattern(bits: &Self::Bits) -> bool;
|
||||
}
|
||||
|
||||
unsafe impl<T: AnyBitPattern> CheckedBitPattern for T {
|
||||
type Bits = T;
|
||||
|
||||
#[inline(always)]
|
||||
fn is_valid_bit_pattern(_bits: &T) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl CheckedBitPattern for char {
|
||||
type Bits = u32;
|
||||
|
||||
#[inline]
|
||||
fn is_valid_bit_pattern(bits: &Self::Bits) -> bool {
|
||||
core::char::from_u32(*bits).is_some()
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl CheckedBitPattern for bool {
|
||||
type Bits = u8;
|
||||
|
||||
#[inline]
|
||||
fn is_valid_bit_pattern(bits: &Self::Bits) -> bool {
|
||||
match *bits {
|
||||
0 | 1 => true,
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Rust 1.70.0 documents that NonZero[int] has the same layout as [int].
|
||||
macro_rules! impl_checked_for_nonzero {
|
||||
($($nonzero:ty: $primitive:ty),* $(,)?) => {
|
||||
$(
|
||||
unsafe impl CheckedBitPattern for $nonzero {
|
||||
type Bits = $primitive;
|
||||
|
||||
#[inline]
|
||||
fn is_valid_bit_pattern(bits: &Self::Bits) -> bool {
|
||||
*bits != 0
|
||||
}
|
||||
}
|
||||
)*
|
||||
};
|
||||
}
|
||||
impl_checked_for_nonzero! {
|
||||
core::num::NonZeroU8: u8,
|
||||
core::num::NonZeroI8: i8,
|
||||
core::num::NonZeroU16: u16,
|
||||
core::num::NonZeroI16: i16,
|
||||
core::num::NonZeroU32: u32,
|
||||
core::num::NonZeroI32: i32,
|
||||
core::num::NonZeroU64: u64,
|
||||
core::num::NonZeroI64: i64,
|
||||
core::num::NonZeroI128: i128,
|
||||
core::num::NonZeroU128: u128,
|
||||
core::num::NonZeroUsize: usize,
|
||||
core::num::NonZeroIsize: isize,
|
||||
}
|
||||
|
||||
/// The things that can go wrong when casting between [`CheckedBitPattern`] data
|
||||
/// forms.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum CheckedCastError {
|
||||
/// An error occurred during a true-[`Pod`] cast
|
||||
///
|
||||
/// [`Pod`]: crate::Pod
|
||||
PodCastError(crate::PodCastError),
|
||||
/// When casting to a [`CheckedBitPattern`] type, it is possible that the
|
||||
/// original data contains an invalid bit pattern. If so, the cast will
|
||||
/// fail and this error will be returned. Will never happen on casts
|
||||
/// between [`Pod`] types.
|
||||
///
|
||||
/// [`Pod`]: crate::Pod
|
||||
InvalidBitPattern,
|
||||
}
|
||||
|
||||
#[cfg(not(target_arch = "spirv"))]
|
||||
impl core::fmt::Display for CheckedCastError {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
|
||||
write!(f, "{:?}", self)
|
||||
}
|
||||
}
|
||||
#[cfg(feature = "extern_crate_std")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_std")))]
|
||||
impl std::error::Error for CheckedCastError {}
|
||||
|
||||
impl From<crate::PodCastError> for CheckedCastError {
|
||||
fn from(err: crate::PodCastError) -> CheckedCastError {
|
||||
CheckedCastError::PodCastError(err)
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&[u8]` as `&T`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the slice isn't aligned for the new type
|
||||
/// * If the slice's length isn’t exactly the size of the new type
|
||||
/// * If the slice contains an invalid bit pattern for `T`
|
||||
#[inline]
|
||||
pub fn try_from_bytes<T: CheckedBitPattern>(
|
||||
s: &[u8],
|
||||
) -> Result<&T, CheckedCastError> {
|
||||
let pod = crate::try_from_bytes(s)?;
|
||||
|
||||
if <T as CheckedBitPattern>::is_valid_bit_pattern(pod) {
|
||||
Ok(unsafe { &*(pod as *const <T as CheckedBitPattern>::Bits as *const T) })
|
||||
} else {
|
||||
Err(CheckedCastError::InvalidBitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&mut [u8]` as `&mut T`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the slice isn't aligned for the new type
|
||||
/// * If the slice's length isn’t exactly the size of the new type
|
||||
/// * If the slice contains an invalid bit pattern for `T`
|
||||
#[inline]
|
||||
pub fn try_from_bytes_mut<T: CheckedBitPattern + NoUninit>(
|
||||
s: &mut [u8],
|
||||
) -> Result<&mut T, CheckedCastError> {
|
||||
let pod = unsafe { internal::try_from_bytes_mut(s) }?;
|
||||
|
||||
if <T as CheckedBitPattern>::is_valid_bit_pattern(pod) {
|
||||
Ok(unsafe { &mut *(pod as *mut <T as CheckedBitPattern>::Bits as *mut T) })
|
||||
} else {
|
||||
Err(CheckedCastError::InvalidBitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
/// Reads from the bytes as if they were a `T`.
|
||||
///
|
||||
/// ## Failure
|
||||
/// * If the `bytes` length is not equal to `size_of::<T>()`.
|
||||
/// * If the slice contains an invalid bit pattern for `T`
|
||||
#[inline]
|
||||
pub fn try_pod_read_unaligned<T: CheckedBitPattern>(
|
||||
bytes: &[u8],
|
||||
) -> Result<T, CheckedCastError> {
|
||||
let pod = crate::try_pod_read_unaligned(bytes)?;
|
||||
|
||||
if <T as CheckedBitPattern>::is_valid_bit_pattern(&pod) {
|
||||
Ok(unsafe { transmute!(pod) })
|
||||
} else {
|
||||
Err(CheckedCastError::InvalidBitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to cast `T` into `U`.
|
||||
///
|
||||
/// Note that for this particular type of cast, alignment isn't a factor. The
|
||||
/// input value is semantically copied into the function and then returned to a
|
||||
/// new memory location which will have whatever the required alignment of the
|
||||
/// output type is.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the types don't have the same size this fails.
|
||||
/// * If `a` contains an invalid bit pattern for `B` this fails.
|
||||
#[inline]
|
||||
pub fn try_cast<A: NoUninit, B: CheckedBitPattern>(
|
||||
a: A,
|
||||
) -> Result<B, CheckedCastError> {
|
||||
let pod = crate::try_cast(a)?;
|
||||
|
||||
if <B as CheckedBitPattern>::is_valid_bit_pattern(&pod) {
|
||||
Ok(unsafe { transmute!(pod) })
|
||||
} else {
|
||||
Err(CheckedCastError::InvalidBitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to convert a `&T` into `&U`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the reference isn't aligned in the new type
|
||||
/// * If the source type and target type aren't the same size.
|
||||
/// * If `a` contains an invalid bit pattern for `B` this fails.
|
||||
#[inline]
|
||||
pub fn try_cast_ref<A: NoUninit, B: CheckedBitPattern>(
|
||||
a: &A,
|
||||
) -> Result<&B, CheckedCastError> {
|
||||
let pod = crate::try_cast_ref(a)?;
|
||||
|
||||
if <B as CheckedBitPattern>::is_valid_bit_pattern(pod) {
|
||||
Ok(unsafe { &*(pod as *const <B as CheckedBitPattern>::Bits as *const B) })
|
||||
} else {
|
||||
Err(CheckedCastError::InvalidBitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to convert a `&mut T` into `&mut U`.
|
||||
///
|
||||
/// As [`try_cast_ref`], but `mut`.
|
||||
#[inline]
|
||||
pub fn try_cast_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: CheckedBitPattern + NoUninit,
|
||||
>(
|
||||
a: &mut A,
|
||||
) -> Result<&mut B, CheckedCastError> {
|
||||
let pod = unsafe { internal::try_cast_mut(a) }?;
|
||||
|
||||
if <B as CheckedBitPattern>::is_valid_bit_pattern(pod) {
|
||||
Ok(unsafe { &mut *(pod as *mut <B as CheckedBitPattern>::Bits as *mut B) })
|
||||
} else {
|
||||
Err(CheckedCastError::InvalidBitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to convert `&[A]` into `&[B]` (possibly with a change in length).
|
||||
///
|
||||
/// * `input.as_ptr() as usize == output.as_ptr() as usize`
|
||||
/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()`
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the target type has a greater alignment requirement and the input slice
|
||||
/// isn't aligned.
|
||||
/// * If the target element type is a different size from the current element
|
||||
/// type, and the output slice wouldn't be a whole number of elements when
|
||||
/// accounting for the size change (eg: 3 `u16` values is 1.5 `u32` values, so
|
||||
/// that's a failure).
|
||||
/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
|
||||
/// and a non-ZST.
|
||||
/// * If any element of the converted slice would contain an invalid bit pattern
|
||||
/// for `B` this fails.
|
||||
#[inline]
|
||||
pub fn try_cast_slice<A: NoUninit, B: CheckedBitPattern>(
|
||||
a: &[A],
|
||||
) -> Result<&[B], CheckedCastError> {
|
||||
let pod = crate::try_cast_slice(a)?;
|
||||
|
||||
if pod.iter().all(|pod| <B as CheckedBitPattern>::is_valid_bit_pattern(pod)) {
|
||||
Ok(unsafe {
|
||||
core::slice::from_raw_parts(pod.as_ptr() as *const B, pod.len())
|
||||
})
|
||||
} else {
|
||||
Err(CheckedCastError::InvalidBitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to convert `&mut [A]` into `&mut [B]` (possibly with a change in
|
||||
/// length).
|
||||
///
|
||||
/// As [`try_cast_slice`], but `&mut`.
|
||||
#[inline]
|
||||
pub fn try_cast_slice_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: CheckedBitPattern + NoUninit,
|
||||
>(
|
||||
a: &mut [A],
|
||||
) -> Result<&mut [B], CheckedCastError> {
|
||||
let pod = unsafe { internal::try_cast_slice_mut(a) }?;
|
||||
|
||||
if pod.iter().all(|pod| <B as CheckedBitPattern>::is_valid_bit_pattern(pod)) {
|
||||
Ok(unsafe {
|
||||
core::slice::from_raw_parts_mut(pod.as_mut_ptr() as *mut B, pod.len())
|
||||
})
|
||||
} else {
|
||||
Err(CheckedCastError::InvalidBitPattern)
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&[u8]` as `&T`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_from_bytes`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn from_bytes<T: CheckedBitPattern>(s: &[u8]) -> &T {
|
||||
match try_from_bytes(s) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("from_bytes", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&mut [u8]` as `&mut T`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_from_bytes_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn from_bytes_mut<T: NoUninit + CheckedBitPattern>(s: &mut [u8]) -> &mut T {
|
||||
match try_from_bytes_mut(s) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("from_bytes_mut", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Reads the slice into a `T` value.
|
||||
///
|
||||
/// ## Panics
|
||||
/// * This is like `try_pod_read_unaligned` but will panic on failure.
|
||||
#[inline]
|
||||
pub fn pod_read_unaligned<T: CheckedBitPattern>(bytes: &[u8]) -> T {
|
||||
match try_pod_read_unaligned(bytes) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("pod_read_unaligned", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `T` into `U`
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// * This is like [`try_cast`](try_cast), but will panic on a size mismatch.
|
||||
#[inline]
|
||||
pub fn cast<A: NoUninit, B: CheckedBitPattern>(a: A) -> B {
|
||||
match try_cast(a) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("cast", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `&mut T` into `&mut U`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn cast_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + CheckedBitPattern,
|
||||
>(
|
||||
a: &mut A,
|
||||
) -> &mut B {
|
||||
match try_cast_mut(a) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("cast_mut", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `&T` into `&U`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_ref`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn cast_ref<A: NoUninit, B: CheckedBitPattern>(a: &A) -> &B {
|
||||
match try_cast_ref(a) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("cast_ref", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `&[A]` into `&[B]`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_slice`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn cast_slice<A: NoUninit, B: CheckedBitPattern>(a: &[A]) -> &[B] {
|
||||
match try_cast_slice(a) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("cast_slice", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `&mut [T]` into `&mut [U]`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_slice_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn cast_slice_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + CheckedBitPattern,
|
||||
>(
|
||||
a: &mut [A],
|
||||
) -> &mut [B] {
|
||||
match try_cast_slice_mut(a) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("cast_slice_mut", e),
|
||||
}
|
||||
}
|
202
vendor/bytemuck/src/contiguous.rs
vendored
Normal file
202
vendor/bytemuck/src/contiguous.rs
vendored
Normal file
@@ -0,0 +1,202 @@
|
||||
use super::*;
|
||||
|
||||
/// A trait indicating that:
|
||||
///
|
||||
/// 1. A type has an equivalent representation to some known integral type.
|
||||
/// 2. All instances of this type fall in a fixed range of values.
|
||||
/// 3. Within that range, there are no gaps.
|
||||
///
|
||||
/// This is generally useful for fieldless enums (aka "c-style" enums), however
|
||||
/// it's important that it only be used for those with an explicit `#[repr]`, as
|
||||
/// `#[repr(Rust)]` fieldess enums have an unspecified layout.
|
||||
///
|
||||
/// Additionally, you shouldn't assume that all implementations are enums. Any
|
||||
/// type which meets the requirements above while following the rules under
|
||||
/// "Safety" below is valid.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```
|
||||
/// # use bytemuck::Contiguous;
|
||||
/// #[repr(u8)]
|
||||
/// #[derive(Debug, Copy, Clone, PartialEq)]
|
||||
/// enum Foo {
|
||||
/// A = 0,
|
||||
/// B = 1,
|
||||
/// C = 2,
|
||||
/// D = 3,
|
||||
/// E = 4,
|
||||
/// }
|
||||
/// unsafe impl Contiguous for Foo {
|
||||
/// type Int = u8;
|
||||
/// const MIN_VALUE: u8 = Foo::A as u8;
|
||||
/// const MAX_VALUE: u8 = Foo::E as u8;
|
||||
/// }
|
||||
/// assert_eq!(Foo::from_integer(3).unwrap(), Foo::D);
|
||||
/// assert_eq!(Foo::from_integer(8), None);
|
||||
/// assert_eq!(Foo::C.into_integer(), 2);
|
||||
/// ```
|
||||
/// # Safety
|
||||
///
|
||||
/// This is an unsafe trait, and incorrectly implementing it is undefined
|
||||
/// behavior.
|
||||
///
|
||||
/// Informally, by implementing it, you're asserting that `C` is identical to
|
||||
/// the integral type `C::Int`, and that every `C` falls between `C::MIN_VALUE`
|
||||
/// and `C::MAX_VALUE` exactly once, without any gaps.
|
||||
///
|
||||
/// Precisely, the guarantees you must uphold when implementing `Contiguous` for
|
||||
/// some type `C` are:
|
||||
///
|
||||
/// 1. The size of `C` and `C::Int` must be the same, and neither may be a ZST.
|
||||
/// (Note: alignment is explicitly allowed to differ)
|
||||
///
|
||||
/// 2. `C::Int` must be a primitive integer, and not a wrapper type. In the
|
||||
/// future, this may be lifted to include cases where the behavior is
|
||||
/// identical for a relevant set of traits (Ord, arithmetic, ...).
|
||||
///
|
||||
/// 3. All `C::Int`s which are in the *inclusive* range between `C::MIN_VALUE`
|
||||
/// and `C::MAX_VALUE` are bitwise identical to unique valid instances of
|
||||
/// `C`.
|
||||
///
|
||||
/// 4. There exist no instances of `C` such that their bitpatterns, when
|
||||
/// interpreted as instances of `C::Int`, fall outside of the `MAX_VALUE` /
|
||||
/// `MIN_VALUE` range -- It is legal for unsafe code to assume that if it
|
||||
/// gets a `C` that implements `Contiguous`, it is in the appropriate range.
|
||||
///
|
||||
/// 5. Finally, you promise not to provide overridden implementations of
|
||||
/// `Contiguous::from_integer` and `Contiguous::into_integer`.
|
||||
///
|
||||
/// For clarity, the following rules could be derived from the above, but are
|
||||
/// listed explicitly:
|
||||
///
|
||||
/// - `C::MAX_VALUE` must be greater or equal to `C::MIN_VALUE` (therefore, `C`
|
||||
/// must be an inhabited type).
|
||||
///
|
||||
/// - There exist no two values between `MIN_VALUE` and `MAX_VALUE` such that
|
||||
/// when interpreted as a `C` they are considered identical (by, say, match).
|
||||
pub unsafe trait Contiguous: Copy + 'static {
|
||||
/// The primitive integer type with an identical representation to this
|
||||
/// type.
|
||||
///
|
||||
/// Contiguous is broadly intended for use with fieldless enums, and for
|
||||
/// these the correct integer type is easy: The enum should have a
|
||||
/// `#[repr(Int)]` or `#[repr(C)]` attribute, (if it does not, it is
|
||||
/// *unsound* to implement `Contiguous`!).
|
||||
///
|
||||
/// - For `#[repr(Int)]`, use the listed `Int`. e.g. `#[repr(u8)]` should use
|
||||
/// `type Int = u8`.
|
||||
///
|
||||
/// - For `#[repr(C)]`, use whichever type the C compiler will use to
|
||||
/// represent the given enum. This is usually `c_int` (from `std::os::raw`
|
||||
/// or `libc`), but it's up to you to make the determination as the
|
||||
/// implementer of the unsafe trait.
|
||||
///
|
||||
/// For precise rules, see the list under "Safety" above.
|
||||
type Int: Copy + Ord;
|
||||
|
||||
/// The upper *inclusive* bound for valid instances of this type.
|
||||
const MAX_VALUE: Self::Int;
|
||||
|
||||
/// The lower *inclusive* bound for valid instances of this type.
|
||||
const MIN_VALUE: Self::Int;
|
||||
|
||||
/// If `value` is within the range for valid instances of this type,
|
||||
/// returns `Some(converted_value)`, otherwise, returns `None`.
|
||||
///
|
||||
/// This is a trait method so that you can write `value.into_integer()` in
|
||||
/// your code. It is a contract of this trait that if you implement
|
||||
/// `Contiguous` on your type you **must not** override this method.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// We will not panic for any correct implementation of `Contiguous`, but
|
||||
/// *may* panic if we detect an incorrect one.
|
||||
///
|
||||
/// This is undefined behavior regardless, so it could have been the nasal
|
||||
/// demons at that point anyway ;).
|
||||
#[inline]
|
||||
fn from_integer(value: Self::Int) -> Option<Self> {
|
||||
// Guard against an illegal implementation of Contiguous. Annoyingly we
|
||||
// can't rely on `transmute` to do this for us (see below), but
|
||||
// whatever, this gets compiled into nothing in release.
|
||||
assert!(size_of::<Self>() == size_of::<Self::Int>());
|
||||
if Self::MIN_VALUE <= value && value <= Self::MAX_VALUE {
|
||||
// SAFETY: We've checked their bounds (and their size, even though
|
||||
// they've sworn under the Oath Of Unsafe Rust that that already
|
||||
// matched) so this is allowed by `Contiguous`'s unsafe contract.
|
||||
//
|
||||
// So, the `transmute!`. ideally we'd use transmute here, which
|
||||
// is more obviously safe. Sadly, we can't, as these types still
|
||||
// have unspecified sizes.
|
||||
Some(unsafe { transmute!(value) })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// Perform the conversion from `C` into the underlying integral type. This
|
||||
/// mostly exists otherwise generic code would need unsafe for the `value as
|
||||
/// integer`
|
||||
///
|
||||
/// This is a trait method so that you can write `value.into_integer()` in
|
||||
/// your code. It is a contract of this trait that if you implement
|
||||
/// `Contiguous` on your type you **must not** override this method.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// We will not panic for any correct implementation of `Contiguous`, but
|
||||
/// *may* panic if we detect an incorrect one.
|
||||
///
|
||||
/// This is undefined behavior regardless, so it could have been the nasal
|
||||
/// demons at that point anyway ;).
|
||||
#[inline]
|
||||
fn into_integer(self) -> Self::Int {
|
||||
// Guard against an illegal implementation of Contiguous. Annoyingly we
|
||||
// can't rely on `transmute` to do the size check for us (see
|
||||
// `from_integer's comment`), but whatever, this gets compiled into
|
||||
// nothing in release. Note that we don't check the result of cast
|
||||
assert!(size_of::<Self>() == size_of::<Self::Int>());
|
||||
|
||||
// SAFETY: The unsafe contract requires that these have identical
|
||||
// representations, and that the range be entirely valid. Using
|
||||
// transmute! instead of transmute here is annoying, but is required
|
||||
// as `Self` and `Self::Int` have unspecified sizes still.
|
||||
unsafe { transmute!(self) }
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_contiguous {
|
||||
($($src:ty as $repr:ident in [$min:expr, $max:expr];)*) => {$(
|
||||
unsafe impl Contiguous for $src {
|
||||
type Int = $repr;
|
||||
const MAX_VALUE: $repr = $max;
|
||||
const MIN_VALUE: $repr = $min;
|
||||
}
|
||||
)*};
|
||||
}
|
||||
|
||||
impl_contiguous! {
|
||||
bool as u8 in [0, 1];
|
||||
|
||||
u8 as u8 in [0, u8::max_value()];
|
||||
u16 as u16 in [0, u16::max_value()];
|
||||
u32 as u32 in [0, u32::max_value()];
|
||||
u64 as u64 in [0, u64::max_value()];
|
||||
u128 as u128 in [0, u128::max_value()];
|
||||
usize as usize in [0, usize::max_value()];
|
||||
|
||||
i8 as i8 in [i8::min_value(), i8::max_value()];
|
||||
i16 as i16 in [i16::min_value(), i16::max_value()];
|
||||
i32 as i32 in [i32::min_value(), i32::max_value()];
|
||||
i64 as i64 in [i64::min_value(), i64::max_value()];
|
||||
i128 as i128 in [i128::min_value(), i128::max_value()];
|
||||
isize as isize in [isize::min_value(), isize::max_value()];
|
||||
|
||||
NonZeroU8 as u8 in [1, u8::max_value()];
|
||||
NonZeroU16 as u16 in [1, u16::max_value()];
|
||||
NonZeroU32 as u32 in [1, u32::max_value()];
|
||||
NonZeroU64 as u64 in [1, u64::max_value()];
|
||||
NonZeroU128 as u128 in [1, u128::max_value()];
|
||||
NonZeroUsize as usize in [1, usize::max_value()];
|
||||
}
|
402
vendor/bytemuck/src/internal.rs
vendored
Normal file
402
vendor/bytemuck/src/internal.rs
vendored
Normal file
@@ -0,0 +1,402 @@
|
||||
//! Internal implementation of casting functions not bound by marker traits
|
||||
//! and therefore marked as unsafe. This is used so that we don't need to
|
||||
//! duplicate the business logic contained in these functions between the
|
||||
//! versions exported in the crate root, `checked`, and `relaxed` modules.
|
||||
#![allow(unused_unsafe)]
|
||||
|
||||
use crate::PodCastError;
|
||||
use core::{marker::*, mem::*};
|
||||
|
||||
/*
|
||||
|
||||
Note(Lokathor): We've switched all of the `unwrap` to `match` because there is
|
||||
apparently a bug: https://github.com/rust-lang/rust/issues/68667
|
||||
and it doesn't seem to show up in simple godbolt examples but has been reported
|
||||
as having an impact when there's a cast mixed in with other more complicated
|
||||
code around it. Rustc/LLVM ends up missing that the `Err` can't ever happen for
|
||||
particular type combinations, and then it doesn't fully eliminated the panic
|
||||
possibility code branch.
|
||||
|
||||
*/
|
||||
|
||||
/// Immediately panics.
|
||||
#[cfg(not(target_arch = "spirv"))]
|
||||
#[cold]
|
||||
#[inline(never)]
|
||||
pub(crate) fn something_went_wrong<D: core::fmt::Display>(
|
||||
_src: &str, _err: D,
|
||||
) -> ! {
|
||||
// Note(Lokathor): Keeping the panic here makes the panic _formatting_ go
|
||||
// here too, which helps assembly readability and also helps keep down
|
||||
// the inline pressure.
|
||||
panic!("{src}>{err}", src = _src, err = _err);
|
||||
}
|
||||
|
||||
/// Immediately panics.
|
||||
#[cfg(target_arch = "spirv")]
|
||||
#[cold]
|
||||
#[inline(never)]
|
||||
pub(crate) fn something_went_wrong<D>(_src: &str, _err: D) -> ! {
|
||||
// Note: On the spirv targets from [rust-gpu](https://github.com/EmbarkStudios/rust-gpu)
|
||||
// panic formatting cannot be used. We we just give a generic error message
|
||||
// The chance that the panicking version of these functions will ever get
|
||||
// called on spir-v targets with invalid inputs is small, but giving a
|
||||
// simple error message is better than no error message at all.
|
||||
panic!("Called a panicing helper from bytemuck which paniced");
|
||||
}
|
||||
|
||||
/// Re-interprets `&T` as `&[u8]`.
|
||||
///
|
||||
/// Any ZST becomes an empty slice, and in that case the pointer value of that
|
||||
/// empty slice might not match the pointer value of the input reference.
|
||||
#[inline(always)]
|
||||
pub(crate) unsafe fn bytes_of<T: Copy>(t: &T) -> &[u8] {
|
||||
if size_of::<T>() == 0 {
|
||||
&[]
|
||||
} else {
|
||||
match try_cast_slice::<T, u8>(core::slice::from_ref(t)) {
|
||||
Ok(s) => s,
|
||||
Err(_) => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&mut T` as `&mut [u8]`.
|
||||
///
|
||||
/// Any ZST becomes an empty slice, and in that case the pointer value of that
|
||||
/// empty slice might not match the pointer value of the input reference.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn bytes_of_mut<T: Copy>(t: &mut T) -> &mut [u8] {
|
||||
if size_of::<T>() == 0 {
|
||||
&mut []
|
||||
} else {
|
||||
match try_cast_slice_mut::<T, u8>(core::slice::from_mut(t)) {
|
||||
Ok(s) => s,
|
||||
Err(_) => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&[u8]` as `&T`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_from_bytes`] but will panic on error.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn from_bytes<T: Copy>(s: &[u8]) -> &T {
|
||||
match try_from_bytes(s) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("from_bytes", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&mut [u8]` as `&mut T`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_from_bytes_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn from_bytes_mut<T: Copy>(s: &mut [u8]) -> &mut T {
|
||||
match try_from_bytes_mut(s) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("from_bytes_mut", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Reads from the bytes as if they were a `T`.
|
||||
///
|
||||
/// ## Failure
|
||||
/// * If the `bytes` length is not equal to `size_of::<T>()`.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn try_pod_read_unaligned<T: Copy>(
|
||||
bytes: &[u8],
|
||||
) -> Result<T, PodCastError> {
|
||||
if bytes.len() != size_of::<T>() {
|
||||
Err(PodCastError::SizeMismatch)
|
||||
} else {
|
||||
Ok(unsafe { (bytes.as_ptr() as *const T).read_unaligned() })
|
||||
}
|
||||
}
|
||||
|
||||
/// Reads the slice into a `T` value.
|
||||
///
|
||||
/// ## Panics
|
||||
/// * This is like `try_pod_read_unaligned` but will panic on failure.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn pod_read_unaligned<T: Copy>(bytes: &[u8]) -> T {
|
||||
match try_pod_read_unaligned(bytes) {
|
||||
Ok(t) => t,
|
||||
Err(e) => something_went_wrong("pod_read_unaligned", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Checks if `ptr` is aligned to an `align` memory boundary.
|
||||
///
|
||||
/// ## Panics
|
||||
/// * If `align` is not a power of two. This includes when `align` is zero.
|
||||
#[inline]
|
||||
pub(crate) fn is_aligned_to(ptr: *const (), align: usize) -> bool {
|
||||
#[cfg(feature = "align_offset")]
|
||||
{
|
||||
// This is in a way better than `ptr as usize % align == 0`,
|
||||
// because casting a pointer to an integer has the side effect that it
|
||||
// exposes the pointer's provenance, which may theoretically inhibit
|
||||
// some compiler optimizations.
|
||||
ptr.align_offset(align) == 0
|
||||
}
|
||||
#[cfg(not(feature = "align_offset"))]
|
||||
{
|
||||
((ptr as usize) % align) == 0
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&[u8]` as `&T`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the slice isn't aligned for the new type
|
||||
/// * If the slice's length isn’t exactly the size of the new type
|
||||
#[inline]
|
||||
pub(crate) unsafe fn try_from_bytes<T: Copy>(
|
||||
s: &[u8],
|
||||
) -> Result<&T, PodCastError> {
|
||||
if s.len() != size_of::<T>() {
|
||||
Err(PodCastError::SizeMismatch)
|
||||
} else if !is_aligned_to(s.as_ptr() as *const (), align_of::<T>()) {
|
||||
Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
|
||||
} else {
|
||||
Ok(unsafe { &*(s.as_ptr() as *const T) })
|
||||
}
|
||||
}
|
||||
|
||||
/// Re-interprets `&mut [u8]` as `&mut T`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the slice isn't aligned for the new type
|
||||
/// * If the slice's length isn’t exactly the size of the new type
|
||||
#[inline]
|
||||
pub(crate) unsafe fn try_from_bytes_mut<T: Copy>(
|
||||
s: &mut [u8],
|
||||
) -> Result<&mut T, PodCastError> {
|
||||
if s.len() != size_of::<T>() {
|
||||
Err(PodCastError::SizeMismatch)
|
||||
} else if !is_aligned_to(s.as_ptr() as *const (), align_of::<T>()) {
|
||||
Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
|
||||
} else {
|
||||
Ok(unsafe { &mut *(s.as_mut_ptr() as *mut T) })
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `T` into `U`
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// * This is like [`try_cast`](try_cast), but will panic on a size mismatch.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn cast<A: Copy, B: Copy>(a: A) -> B {
|
||||
if size_of::<A>() == size_of::<B>() {
|
||||
unsafe { transmute!(a) }
|
||||
} else {
|
||||
something_went_wrong("cast", PodCastError::SizeMismatch)
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `&mut T` into `&mut U`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn cast_mut<A: Copy, B: Copy>(a: &mut A) -> &mut B {
|
||||
if size_of::<A>() == size_of::<B>() && align_of::<A>() >= align_of::<B>() {
|
||||
// Plz mr compiler, just notice that we can't ever hit Err in this case.
|
||||
match try_cast_mut(a) {
|
||||
Ok(b) => b,
|
||||
Err(_) => unreachable!(),
|
||||
}
|
||||
} else {
|
||||
match try_cast_mut(a) {
|
||||
Ok(b) => b,
|
||||
Err(e) => something_went_wrong("cast_mut", e),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `&T` into `&U`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_ref`] but will panic on error.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn cast_ref<A: Copy, B: Copy>(a: &A) -> &B {
|
||||
if size_of::<A>() == size_of::<B>() && align_of::<A>() >= align_of::<B>() {
|
||||
// Plz mr compiler, just notice that we can't ever hit Err in this case.
|
||||
match try_cast_ref(a) {
|
||||
Ok(b) => b,
|
||||
Err(_) => unreachable!(),
|
||||
}
|
||||
} else {
|
||||
match try_cast_ref(a) {
|
||||
Ok(b) => b,
|
||||
Err(e) => something_went_wrong("cast_ref", e),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `&[A]` into `&[B]`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_slice`] but will panic on error.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn cast_slice<A: Copy, B: Copy>(a: &[A]) -> &[B] {
|
||||
match try_cast_slice(a) {
|
||||
Ok(b) => b,
|
||||
Err(e) => something_went_wrong("cast_slice", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Cast `&mut [T]` into `&mut [U]`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_slice_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn cast_slice_mut<A: Copy, B: Copy>(a: &mut [A]) -> &mut [B] {
|
||||
match try_cast_slice_mut(a) {
|
||||
Ok(b) => b,
|
||||
Err(e) => something_went_wrong("cast_slice_mut", e),
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to cast `T` into `U`.
|
||||
///
|
||||
/// Note that for this particular type of cast, alignment isn't a factor. The
|
||||
/// input value is semantically copied into the function and then returned to a
|
||||
/// new memory location which will have whatever the required alignment of the
|
||||
/// output type is.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the types don't have the same size this fails.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn try_cast<A: Copy, B: Copy>(
|
||||
a: A,
|
||||
) -> Result<B, PodCastError> {
|
||||
if size_of::<A>() == size_of::<B>() {
|
||||
Ok(unsafe { transmute!(a) })
|
||||
} else {
|
||||
Err(PodCastError::SizeMismatch)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to convert a `&T` into `&U`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the reference isn't aligned in the new type
|
||||
/// * If the source type and target type aren't the same size.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn try_cast_ref<A: Copy, B: Copy>(
|
||||
a: &A,
|
||||
) -> Result<&B, PodCastError> {
|
||||
// Note(Lokathor): everything with `align_of` and `size_of` will optimize away
|
||||
// after monomorphization.
|
||||
if align_of::<B>() > align_of::<A>()
|
||||
&& !is_aligned_to(a as *const A as *const (), align_of::<B>())
|
||||
{
|
||||
Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
|
||||
} else if size_of::<B>() == size_of::<A>() {
|
||||
Ok(unsafe { &*(a as *const A as *const B) })
|
||||
} else {
|
||||
Err(PodCastError::SizeMismatch)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to convert a `&mut T` into `&mut U`.
|
||||
///
|
||||
/// As [`try_cast_ref`], but `mut`.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn try_cast_mut<A: Copy, B: Copy>(
|
||||
a: &mut A,
|
||||
) -> Result<&mut B, PodCastError> {
|
||||
// Note(Lokathor): everything with `align_of` and `size_of` will optimize away
|
||||
// after monomorphization.
|
||||
if align_of::<B>() > align_of::<A>()
|
||||
&& !is_aligned_to(a as *const A as *const (), align_of::<B>())
|
||||
{
|
||||
Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
|
||||
} else if size_of::<B>() == size_of::<A>() {
|
||||
Ok(unsafe { &mut *(a as *mut A as *mut B) })
|
||||
} else {
|
||||
Err(PodCastError::SizeMismatch)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to convert `&[A]` into `&[B]` (possibly with a change in length).
|
||||
///
|
||||
/// * `input.as_ptr() as usize == output.as_ptr() as usize`
|
||||
/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()`
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the target type has a greater alignment requirement and the input slice
|
||||
/// isn't aligned.
|
||||
/// * If the target element type is a different size from the current element
|
||||
/// type, and the output slice wouldn't be a whole number of elements when
|
||||
/// accounting for the size change (eg: 3 `u16` values is 1.5 `u32` values, so
|
||||
/// that's a failure).
|
||||
/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
|
||||
/// and a non-ZST.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn try_cast_slice<A: Copy, B: Copy>(
|
||||
a: &[A],
|
||||
) -> Result<&[B], PodCastError> {
|
||||
// Note(Lokathor): everything with `align_of` and `size_of` will optimize away
|
||||
// after monomorphization.
|
||||
if align_of::<B>() > align_of::<A>()
|
||||
&& !is_aligned_to(a.as_ptr() as *const (), align_of::<B>())
|
||||
{
|
||||
Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
|
||||
} else if size_of::<B>() == size_of::<A>() {
|
||||
Ok(unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, a.len()) })
|
||||
} else if size_of::<A>() == 0 || size_of::<B>() == 0 {
|
||||
Err(PodCastError::SizeMismatch)
|
||||
} else if core::mem::size_of_val(a) % size_of::<B>() == 0 {
|
||||
let new_len = core::mem::size_of_val(a) / size_of::<B>();
|
||||
Ok(unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, new_len) })
|
||||
} else {
|
||||
Err(PodCastError::OutputSliceWouldHaveSlop)
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to convert `&mut [A]` into `&mut [B]` (possibly with a change in
|
||||
/// length).
|
||||
///
|
||||
/// As [`try_cast_slice`], but `&mut`.
|
||||
#[inline]
|
||||
pub(crate) unsafe fn try_cast_slice_mut<A: Copy, B: Copy>(
|
||||
a: &mut [A],
|
||||
) -> Result<&mut [B], PodCastError> {
|
||||
// Note(Lokathor): everything with `align_of` and `size_of` will optimize away
|
||||
// after monomorphization.
|
||||
if align_of::<B>() > align_of::<A>()
|
||||
&& !is_aligned_to(a.as_ptr() as *const (), align_of::<B>())
|
||||
{
|
||||
Err(PodCastError::TargetAlignmentGreaterAndInputNotAligned)
|
||||
} else if size_of::<B>() == size_of::<A>() {
|
||||
Ok(unsafe {
|
||||
core::slice::from_raw_parts_mut(a.as_mut_ptr() as *mut B, a.len())
|
||||
})
|
||||
} else if size_of::<A>() == 0 || size_of::<B>() == 0 {
|
||||
Err(PodCastError::SizeMismatch)
|
||||
} else if core::mem::size_of_val(a) % size_of::<B>() == 0 {
|
||||
let new_len = core::mem::size_of_val(a) / size_of::<B>();
|
||||
Ok(unsafe {
|
||||
core::slice::from_raw_parts_mut(a.as_mut_ptr() as *mut B, new_len)
|
||||
})
|
||||
} else {
|
||||
Err(PodCastError::OutputSliceWouldHaveSlop)
|
||||
}
|
||||
}
|
457
vendor/bytemuck/src/lib.rs
vendored
Normal file
457
vendor/bytemuck/src/lib.rs
vendored
Normal file
@@ -0,0 +1,457 @@
|
||||
#![no_std]
|
||||
#![warn(missing_docs)]
|
||||
#![allow(clippy::match_like_matches_macro)]
|
||||
#![allow(clippy::uninlined_format_args)]
|
||||
#![cfg_attr(feature = "nightly_docs", feature(doc_cfg))]
|
||||
#![cfg_attr(feature = "nightly_portable_simd", feature(portable_simd))]
|
||||
#![cfg_attr(feature = "nightly_stdsimd", feature(stdsimd))]
|
||||
|
||||
//! This crate gives small utilities for casting between plain data types.
|
||||
//!
|
||||
//! ## Basics
|
||||
//!
|
||||
//! Data comes in five basic forms in Rust, so we have five basic casting
|
||||
//! functions:
|
||||
//!
|
||||
//! * `T` uses [`cast`]
|
||||
//! * `&T` uses [`cast_ref`]
|
||||
//! * `&mut T` uses [`cast_mut`]
|
||||
//! * `&[T]` uses [`cast_slice`]
|
||||
//! * `&mut [T]` uses [`cast_slice_mut`]
|
||||
//!
|
||||
//! Some casts will never fail (eg: `cast::<u32, f32>` always works), other
|
||||
//! casts might fail (eg: `cast_ref::<[u8; 4], u32>` will fail if the reference
|
||||
//! isn't already aligned to 4). Each casting function has a "try" version which
|
||||
//! will return a `Result`, and the "normal" version which will simply panic on
|
||||
//! invalid input.
|
||||
//!
|
||||
//! ## Using Your Own Types
|
||||
//!
|
||||
//! All the functions here are guarded by the [`Pod`] trait, which is a
|
||||
//! sub-trait of the [`Zeroable`] trait.
|
||||
//!
|
||||
//! If you're very sure that your type is eligible, you can implement those
|
||||
//! traits for your type and then they'll have full casting support. However,
|
||||
//! these traits are `unsafe`, and you should carefully read the requirements
|
||||
//! before adding the them to your own types.
|
||||
//!
|
||||
//! ## Features
|
||||
//!
|
||||
//! * This crate is core only by default, but if you're using Rust 1.36 or later
|
||||
//! you can enable the `extern_crate_alloc` cargo feature for some additional
|
||||
//! methods related to `Box` and `Vec`. Note that the `docs.rs` documentation
|
||||
//! is always built with `extern_crate_alloc` cargo feature enabled.
|
||||
|
||||
#[cfg(all(target_arch = "aarch64", feature = "aarch64_simd"))]
|
||||
use core::arch::aarch64;
|
||||
#[cfg(all(target_arch = "wasm32", feature = "wasm_simd"))]
|
||||
use core::arch::wasm32;
|
||||
#[cfg(target_arch = "x86")]
|
||||
use core::arch::x86;
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
use core::arch::x86_64;
|
||||
//
|
||||
use core::{marker::*, mem::*, num::*, ptr::*};
|
||||
|
||||
// Used from macros to ensure we aren't using some locally defined name and
|
||||
// actually are referencing libcore. This also would allow pre-2018 edition
|
||||
// crates to use our macros, but I'm not sure how important that is.
|
||||
#[doc(hidden)]
|
||||
pub use ::core as __core;
|
||||
|
||||
#[cfg(not(feature = "min_const_generics"))]
|
||||
macro_rules! impl_unsafe_marker_for_array {
|
||||
( $marker:ident , $( $n:expr ),* ) => {
|
||||
$(unsafe impl<T> $marker for [T; $n] where T: $marker {})*
|
||||
}
|
||||
}
|
||||
|
||||
/// A macro to transmute between two types without requiring knowing size
|
||||
/// statically.
|
||||
macro_rules! transmute {
|
||||
($val:expr) => {
|
||||
::core::mem::transmute_copy(&::core::mem::ManuallyDrop::new($val))
|
||||
};
|
||||
}
|
||||
|
||||
/// A macro to implement marker traits for various simd types.
|
||||
/// #[allow(unused)] because the impls are only compiled on relevant platforms
|
||||
/// with relevant cargo features enabled.
|
||||
#[allow(unused)]
|
||||
macro_rules! impl_unsafe_marker_for_simd {
|
||||
($(#[cfg($cfg_predicate:meta)])? unsafe impl $trait:ident for $platform:ident :: {}) => {};
|
||||
($(#[cfg($cfg_predicate:meta)])? unsafe impl $trait:ident for $platform:ident :: { $first_type:ident $(, $types:ident)* $(,)? }) => {
|
||||
$( #[cfg($cfg_predicate)] )?
|
||||
$( #[cfg_attr(feature = "nightly_docs", doc(cfg($cfg_predicate)))] )?
|
||||
unsafe impl $trait for $platform::$first_type {}
|
||||
$( #[cfg($cfg_predicate)] )? // To prevent recursion errors if nothing is going to be expanded anyway.
|
||||
impl_unsafe_marker_for_simd!($( #[cfg($cfg_predicate)] )? unsafe impl $trait for $platform::{ $( $types ),* });
|
||||
};
|
||||
}
|
||||
|
||||
#[cfg(feature = "extern_crate_std")]
|
||||
extern crate std;
|
||||
|
||||
#[cfg(feature = "extern_crate_alloc")]
|
||||
extern crate alloc;
|
||||
#[cfg(feature = "extern_crate_alloc")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_alloc")))]
|
||||
pub mod allocation;
|
||||
#[cfg(feature = "extern_crate_alloc")]
|
||||
pub use allocation::*;
|
||||
|
||||
mod anybitpattern;
|
||||
pub use anybitpattern::*;
|
||||
|
||||
pub mod checked;
|
||||
pub use checked::CheckedBitPattern;
|
||||
|
||||
mod internal;
|
||||
|
||||
mod zeroable;
|
||||
pub use zeroable::*;
|
||||
mod zeroable_in_option;
|
||||
pub use zeroable_in_option::*;
|
||||
|
||||
mod pod;
|
||||
pub use pod::*;
|
||||
mod pod_in_option;
|
||||
pub use pod_in_option::*;
|
||||
|
||||
#[cfg(feature = "must_cast")]
|
||||
mod must;
|
||||
#[cfg(feature = "must_cast")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "must_cast")))]
|
||||
pub use must::*;
|
||||
|
||||
mod no_uninit;
|
||||
pub use no_uninit::*;
|
||||
|
||||
mod contiguous;
|
||||
pub use contiguous::*;
|
||||
|
||||
mod offset_of;
|
||||
pub use offset_of::*;
|
||||
|
||||
mod transparent;
|
||||
pub use transparent::*;
|
||||
|
||||
#[cfg(feature = "derive")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "derive")))]
|
||||
pub use bytemuck_derive::{
|
||||
AnyBitPattern, ByteEq, ByteHash, CheckedBitPattern, Contiguous, NoUninit,
|
||||
Pod, TransparentWrapper, Zeroable,
|
||||
};
|
||||
|
||||
/// The things that can go wrong when casting between [`Pod`] data forms.
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
|
||||
pub enum PodCastError {
|
||||
/// You tried to cast a slice to an element type with a higher alignment
|
||||
/// requirement but the slice wasn't aligned.
|
||||
TargetAlignmentGreaterAndInputNotAligned,
|
||||
/// If the element size changes then the output slice changes length
|
||||
/// accordingly. If the output slice wouldn't be a whole number of elements
|
||||
/// then the conversion fails.
|
||||
OutputSliceWouldHaveSlop,
|
||||
/// When casting a slice you can't convert between ZST elements and non-ZST
|
||||
/// elements. When casting an individual `T`, `&T`, or `&mut T` value the
|
||||
/// source size and destination size must be an exact match.
|
||||
SizeMismatch,
|
||||
/// For this type of cast the alignments must be exactly the same and they
|
||||
/// were not so now you're sad.
|
||||
///
|
||||
/// This error is generated **only** by operations that cast allocated types
|
||||
/// (such as `Box` and `Vec`), because in that case the alignment must stay
|
||||
/// exact.
|
||||
AlignmentMismatch,
|
||||
}
|
||||
#[cfg(not(target_arch = "spirv"))]
|
||||
impl core::fmt::Display for PodCastError {
|
||||
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
|
||||
write!(f, "{:?}", self)
|
||||
}
|
||||
}
|
||||
#[cfg(feature = "extern_crate_std")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_std")))]
|
||||
impl std::error::Error for PodCastError {}
|
||||
|
||||
/// Re-interprets `&T` as `&[u8]`.
|
||||
///
|
||||
/// Any ZST becomes an empty slice, and in that case the pointer value of that
|
||||
/// empty slice might not match the pointer value of the input reference.
|
||||
#[inline]
|
||||
pub fn bytes_of<T: NoUninit>(t: &T) -> &[u8] {
|
||||
unsafe { internal::bytes_of(t) }
|
||||
}
|
||||
|
||||
/// Re-interprets `&mut T` as `&mut [u8]`.
|
||||
///
|
||||
/// Any ZST becomes an empty slice, and in that case the pointer value of that
|
||||
/// empty slice might not match the pointer value of the input reference.
|
||||
#[inline]
|
||||
pub fn bytes_of_mut<T: NoUninit + AnyBitPattern>(t: &mut T) -> &mut [u8] {
|
||||
unsafe { internal::bytes_of_mut(t) }
|
||||
}
|
||||
|
||||
/// Re-interprets `&[u8]` as `&T`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_from_bytes`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn from_bytes<T: AnyBitPattern>(s: &[u8]) -> &T {
|
||||
unsafe { internal::from_bytes(s) }
|
||||
}
|
||||
|
||||
/// Re-interprets `&mut [u8]` as `&mut T`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_from_bytes_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn from_bytes_mut<T: NoUninit + AnyBitPattern>(s: &mut [u8]) -> &mut T {
|
||||
unsafe { internal::from_bytes_mut(s) }
|
||||
}
|
||||
|
||||
/// Reads from the bytes as if they were a `T`.
|
||||
///
|
||||
/// ## Failure
|
||||
/// * If the `bytes` length is not equal to `size_of::<T>()`.
|
||||
#[inline]
|
||||
pub fn try_pod_read_unaligned<T: AnyBitPattern>(
|
||||
bytes: &[u8],
|
||||
) -> Result<T, PodCastError> {
|
||||
unsafe { internal::try_pod_read_unaligned(bytes) }
|
||||
}
|
||||
|
||||
/// Reads the slice into a `T` value.
|
||||
///
|
||||
/// ## Panics
|
||||
/// * This is like `try_pod_read_unaligned` but will panic on failure.
|
||||
#[inline]
|
||||
pub fn pod_read_unaligned<T: AnyBitPattern>(bytes: &[u8]) -> T {
|
||||
unsafe { internal::pod_read_unaligned(bytes) }
|
||||
}
|
||||
|
||||
/// Re-interprets `&[u8]` as `&T`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the slice isn't aligned for the new type
|
||||
/// * If the slice's length isn’t exactly the size of the new type
|
||||
#[inline]
|
||||
pub fn try_from_bytes<T: AnyBitPattern>(s: &[u8]) -> Result<&T, PodCastError> {
|
||||
unsafe { internal::try_from_bytes(s) }
|
||||
}
|
||||
|
||||
/// Re-interprets `&mut [u8]` as `&mut T`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the slice isn't aligned for the new type
|
||||
/// * If the slice's length isn’t exactly the size of the new type
|
||||
#[inline]
|
||||
pub fn try_from_bytes_mut<T: NoUninit + AnyBitPattern>(
|
||||
s: &mut [u8],
|
||||
) -> Result<&mut T, PodCastError> {
|
||||
unsafe { internal::try_from_bytes_mut(s) }
|
||||
}
|
||||
|
||||
/// Cast `T` into `U`
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// * This is like [`try_cast`](try_cast), but will panic on a size mismatch.
|
||||
#[inline]
|
||||
pub fn cast<A: NoUninit, B: AnyBitPattern>(a: A) -> B {
|
||||
unsafe { internal::cast(a) }
|
||||
}
|
||||
|
||||
/// Cast `&mut T` into `&mut U`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn cast_mut<A: NoUninit + AnyBitPattern, B: NoUninit + AnyBitPattern>(
|
||||
a: &mut A,
|
||||
) -> &mut B {
|
||||
unsafe { internal::cast_mut(a) }
|
||||
}
|
||||
|
||||
/// Cast `&T` into `&U`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_ref`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn cast_ref<A: NoUninit, B: AnyBitPattern>(a: &A) -> &B {
|
||||
unsafe { internal::cast_ref(a) }
|
||||
}
|
||||
|
||||
/// Cast `&[A]` into `&[B]`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_slice`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn cast_slice<A: NoUninit, B: AnyBitPattern>(a: &[A]) -> &[B] {
|
||||
unsafe { internal::cast_slice(a) }
|
||||
}
|
||||
|
||||
/// Cast `&mut [T]` into `&mut [U]`.
|
||||
///
|
||||
/// ## Panics
|
||||
///
|
||||
/// This is [`try_cast_slice_mut`] but will panic on error.
|
||||
#[inline]
|
||||
pub fn cast_slice_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
a: &mut [A],
|
||||
) -> &mut [B] {
|
||||
unsafe { internal::cast_slice_mut(a) }
|
||||
}
|
||||
|
||||
/// As `align_to`, but safe because of the [`Pod`] bound.
|
||||
#[inline]
|
||||
pub fn pod_align_to<T: NoUninit, U: AnyBitPattern>(
|
||||
vals: &[T],
|
||||
) -> (&[T], &[U], &[T]) {
|
||||
unsafe { vals.align_to::<U>() }
|
||||
}
|
||||
|
||||
/// As `align_to_mut`, but safe because of the [`Pod`] bound.
|
||||
#[inline]
|
||||
pub fn pod_align_to_mut<
|
||||
T: NoUninit + AnyBitPattern,
|
||||
U: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
vals: &mut [T],
|
||||
) -> (&mut [T], &mut [U], &mut [T]) {
|
||||
unsafe { vals.align_to_mut::<U>() }
|
||||
}
|
||||
|
||||
/// Try to cast `T` into `U`.
|
||||
///
|
||||
/// Note that for this particular type of cast, alignment isn't a factor. The
|
||||
/// input value is semantically copied into the function and then returned to a
|
||||
/// new memory location which will have whatever the required alignment of the
|
||||
/// output type is.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the types don't have the same size this fails.
|
||||
#[inline]
|
||||
pub fn try_cast<A: NoUninit, B: AnyBitPattern>(
|
||||
a: A,
|
||||
) -> Result<B, PodCastError> {
|
||||
unsafe { internal::try_cast(a) }
|
||||
}
|
||||
|
||||
/// Try to convert a `&T` into `&U`.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the reference isn't aligned in the new type
|
||||
/// * If the source type and target type aren't the same size.
|
||||
#[inline]
|
||||
pub fn try_cast_ref<A: NoUninit, B: AnyBitPattern>(
|
||||
a: &A,
|
||||
) -> Result<&B, PodCastError> {
|
||||
unsafe { internal::try_cast_ref(a) }
|
||||
}
|
||||
|
||||
/// Try to convert a `&mut T` into `&mut U`.
|
||||
///
|
||||
/// As [`try_cast_ref`], but `mut`.
|
||||
#[inline]
|
||||
pub fn try_cast_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
a: &mut A,
|
||||
) -> Result<&mut B, PodCastError> {
|
||||
unsafe { internal::try_cast_mut(a) }
|
||||
}
|
||||
|
||||
/// Try to convert `&[A]` into `&[B]` (possibly with a change in length).
|
||||
///
|
||||
/// * `input.as_ptr() as usize == output.as_ptr() as usize`
|
||||
/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()`
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the target type has a greater alignment requirement and the input slice
|
||||
/// isn't aligned.
|
||||
/// * If the target element type is a different size from the current element
|
||||
/// type, and the output slice wouldn't be a whole number of elements when
|
||||
/// accounting for the size change (eg: 3 `u16` values is 1.5 `u32` values, so
|
||||
/// that's a failure).
|
||||
/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
|
||||
/// and a non-ZST.
|
||||
#[inline]
|
||||
pub fn try_cast_slice<A: NoUninit, B: AnyBitPattern>(
|
||||
a: &[A],
|
||||
) -> Result<&[B], PodCastError> {
|
||||
unsafe { internal::try_cast_slice(a) }
|
||||
}
|
||||
|
||||
/// Try to convert `&mut [A]` into `&mut [B]` (possibly with a change in
|
||||
/// length).
|
||||
///
|
||||
/// As [`try_cast_slice`], but `&mut`.
|
||||
#[inline]
|
||||
pub fn try_cast_slice_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
a: &mut [A],
|
||||
) -> Result<&mut [B], PodCastError> {
|
||||
unsafe { internal::try_cast_slice_mut(a) }
|
||||
}
|
||||
|
||||
/// Fill all bytes of `target` with zeroes (see [`Zeroable`]).
|
||||
///
|
||||
/// This is similar to `*target = Zeroable::zeroed()`, but guarantees that any
|
||||
/// padding bytes in `target` are zeroed as well.
|
||||
///
|
||||
/// See also [`fill_zeroes`], if you have a slice rather than a single value.
|
||||
#[inline]
|
||||
pub fn write_zeroes<T: Zeroable>(target: &mut T) {
|
||||
struct EnsureZeroWrite<T>(*mut T);
|
||||
impl<T> Drop for EnsureZeroWrite<T> {
|
||||
#[inline(always)]
|
||||
fn drop(&mut self) {
|
||||
unsafe {
|
||||
core::ptr::write_bytes(self.0, 0u8, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
unsafe {
|
||||
let guard = EnsureZeroWrite(target);
|
||||
core::ptr::drop_in_place(guard.0);
|
||||
drop(guard);
|
||||
}
|
||||
}
|
||||
|
||||
/// Fill all bytes of `slice` with zeroes (see [`Zeroable`]).
|
||||
///
|
||||
/// This is similar to `slice.fill(Zeroable::zeroed())`, but guarantees that any
|
||||
/// padding bytes in `slice` are zeroed as well.
|
||||
///
|
||||
/// See also [`write_zeroes`], which zeroes all bytes of a single value rather
|
||||
/// than a slice.
|
||||
#[inline]
|
||||
pub fn fill_zeroes<T: Zeroable>(slice: &mut [T]) {
|
||||
if core::mem::needs_drop::<T>() {
|
||||
// If `T` needs to be dropped then we have to do this one item at a time, in
|
||||
// case one of the intermediate drops does a panic.
|
||||
slice.iter_mut().for_each(write_zeroes);
|
||||
} else {
|
||||
// Otherwise we can be really fast and just fill everthing with zeros.
|
||||
let len = core::mem::size_of_val::<[T]>(slice);
|
||||
unsafe { core::ptr::write_bytes(slice.as_mut_ptr() as *mut u8, 0u8, len) }
|
||||
}
|
||||
}
|
203
vendor/bytemuck/src/must.rs
vendored
Normal file
203
vendor/bytemuck/src/must.rs
vendored
Normal file
@@ -0,0 +1,203 @@
|
||||
#![allow(clippy::module_name_repetitions)]
|
||||
#![allow(clippy::let_unit_value)]
|
||||
#![allow(clippy::let_underscore_untyped)]
|
||||
#![allow(clippy::ptr_as_ptr)]
|
||||
|
||||
use crate::{AnyBitPattern, NoUninit};
|
||||
use core::mem::{align_of, size_of};
|
||||
|
||||
struct Cast<A, B>((A, B));
|
||||
impl<A, B> Cast<A, B> {
|
||||
const ASSERT_ALIGN_GREATER_THAN_EQUAL: () =
|
||||
assert!(align_of::<A>() >= align_of::<B>());
|
||||
const ASSERT_SIZE_EQUAL: () = assert!(size_of::<A>() == size_of::<B>());
|
||||
const ASSERT_SIZE_MULTIPLE_OF: () = assert!(
|
||||
(size_of::<A>() == 0) == (size_of::<B>() == 0)
|
||||
&& (size_of::<A>() % size_of::<B>() == 0)
|
||||
);
|
||||
}
|
||||
|
||||
// Workaround for https://github.com/rust-lang/miri/issues/2423.
|
||||
// Miri currently doesn't see post-monomorphization errors until runtime,
|
||||
// so `compile_fail` tests relying on post-monomorphization errors don't
|
||||
// actually fail. Instead use `should_panic` under miri as a workaround.
|
||||
#[cfg(miri)]
|
||||
macro_rules! post_mono_compile_fail_doctest {
|
||||
() => {
|
||||
"```should_panic"
|
||||
};
|
||||
}
|
||||
#[cfg(not(miri))]
|
||||
macro_rules! post_mono_compile_fail_doctest {
|
||||
() => {
|
||||
"```compile_fail,E0080"
|
||||
};
|
||||
}
|
||||
|
||||
/// Cast `A` into `B` if infalliable, or fail to compile.
|
||||
///
|
||||
/// Note that for this particular type of cast, alignment isn't a factor. The
|
||||
/// input value is semantically copied into the function and then returned to a
|
||||
/// new memory location which will have whatever the required alignment of the
|
||||
/// output type is.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the types don't have the same size this fails to compile.
|
||||
///
|
||||
/// ## Examples
|
||||
/// ```
|
||||
/// // compiles:
|
||||
/// let bytes: [u8; 2] = bytemuck::must_cast(12_u16);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// // fails to compile (size mismatch):
|
||||
/// let bytes : [u8; 3] = bytemuck::must_cast(12_u16);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn must_cast<A: NoUninit, B: AnyBitPattern>(a: A) -> B {
|
||||
let _ = Cast::<A, B>::ASSERT_SIZE_EQUAL;
|
||||
unsafe { transmute!(a) }
|
||||
}
|
||||
|
||||
/// Convert `&A` into `&B` if infalliable, or fail to compile.
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the target type has a greater alignment requirement.
|
||||
/// * If the source type and target type aren't the same size.
|
||||
///
|
||||
/// ## Examples
|
||||
/// ```
|
||||
/// // compiles:
|
||||
/// let bytes: &[u8; 2] = bytemuck::must_cast_ref(&12_u16);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// // fails to compile (size mismatch):
|
||||
/// let bytes : &[u8; 3] = bytemuck::must_cast_ref(&12_u16);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// // fails to compile (alignment requirements increased):
|
||||
/// let bytes : &u16 = bytemuck::must_cast_ref(&[1u8, 2u8]);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn must_cast_ref<A: NoUninit, B: AnyBitPattern>(a: &A) -> &B {
|
||||
let _ = Cast::<A, B>::ASSERT_SIZE_EQUAL;
|
||||
let _ = Cast::<A, B>::ASSERT_ALIGN_GREATER_THAN_EQUAL;
|
||||
unsafe { &*(a as *const A as *const B) }
|
||||
}
|
||||
|
||||
/// Convert a `&mut A` into `&mut B` if infalliable, or fail to compile.
|
||||
///
|
||||
/// As [`must_cast_ref`], but `mut`.
|
||||
///
|
||||
/// ## Examples
|
||||
/// ```
|
||||
/// let mut i = 12_u16;
|
||||
/// // compiles:
|
||||
/// let bytes: &mut [u8; 2] = bytemuck::must_cast_mut(&mut i);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// # let mut bytes: &mut [u8; 2] = &mut [1, 2];
|
||||
/// // fails to compile (alignment requirements increased):
|
||||
/// let i : &mut u16 = bytemuck::must_cast_mut(bytes);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// # let mut i = 12_u16;
|
||||
/// // fails to compile (size mismatch):
|
||||
/// let bytes : &mut [u8; 3] = bytemuck::must_cast_mut(&mut i);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn must_cast_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
a: &mut A,
|
||||
) -> &mut B {
|
||||
let _ = Cast::<A, B>::ASSERT_SIZE_EQUAL;
|
||||
let _ = Cast::<A, B>::ASSERT_ALIGN_GREATER_THAN_EQUAL;
|
||||
unsafe { &mut *(a as *mut A as *mut B) }
|
||||
}
|
||||
|
||||
/// Convert `&[A]` into `&[B]` (possibly with a change in length) if
|
||||
/// infalliable, or fail to compile.
|
||||
///
|
||||
/// * `input.as_ptr() as usize == output.as_ptr() as usize`
|
||||
/// * `input.len() * size_of::<A>() == output.len() * size_of::<B>()`
|
||||
///
|
||||
/// ## Failure
|
||||
///
|
||||
/// * If the target type has a greater alignment requirement.
|
||||
/// * If the target element type doesn't evenly fit into the the current element
|
||||
/// type (eg: 3 `u16` values is 1.5 `u32` values, so that's a failure).
|
||||
/// * Similarly, you can't convert between a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
|
||||
/// and a non-ZST.
|
||||
///
|
||||
/// ## Examples
|
||||
/// ```
|
||||
/// let indicies: &[u16] = &[1, 2, 3];
|
||||
/// // compiles:
|
||||
/// let bytes: &[u8] = bytemuck::must_cast_slice(indicies);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// # let bytes : &[u8] = &[1, 0, 2, 0, 3, 0];
|
||||
/// // fails to compile (bytes.len() might not be a multiple of 2):
|
||||
/// let byte_pairs : &[[u8; 2]] = bytemuck::must_cast_slice(bytes);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// # let byte_pairs : &[[u8; 2]] = &[[1, 0], [2, 0], [3, 0]];
|
||||
/// // fails to compile (alignment requirements increased):
|
||||
/// let indicies : &[u16] = bytemuck::must_cast_slice(byte_pairs);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn must_cast_slice<A: NoUninit, B: AnyBitPattern>(a: &[A]) -> &[B] {
|
||||
let _ = Cast::<A, B>::ASSERT_SIZE_MULTIPLE_OF;
|
||||
let _ = Cast::<A, B>::ASSERT_ALIGN_GREATER_THAN_EQUAL;
|
||||
let new_len = if size_of::<A>() == size_of::<B>() {
|
||||
a.len()
|
||||
} else {
|
||||
a.len() * (size_of::<A>() / size_of::<B>())
|
||||
};
|
||||
unsafe { core::slice::from_raw_parts(a.as_ptr() as *const B, new_len) }
|
||||
}
|
||||
|
||||
/// Convert `&mut [A]` into `&mut [B]` (possibly with a change in length) if
|
||||
/// infalliable, or fail to compile.
|
||||
///
|
||||
/// As [`must_cast_slice`], but `&mut`.
|
||||
///
|
||||
/// ## Examples
|
||||
/// ```
|
||||
/// let mut indicies = [1, 2, 3];
|
||||
/// let indicies: &mut [u16] = &mut indicies;
|
||||
/// // compiles:
|
||||
/// let bytes: &mut [u8] = bytemuck::must_cast_slice_mut(indicies);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// # let mut bytes = [1, 0, 2, 0, 3, 0];
|
||||
/// # let bytes : &mut [u8] = &mut bytes[..];
|
||||
/// // fails to compile (bytes.len() might not be a multiple of 2):
|
||||
/// let byte_pairs : &mut [[u8; 2]] = bytemuck::must_cast_slice_mut(bytes);
|
||||
/// ```
|
||||
#[doc = post_mono_compile_fail_doctest!()]
|
||||
/// # let mut byte_pairs = [[1, 0], [2, 0], [3, 0]];
|
||||
/// # let byte_pairs : &mut [[u8; 2]] = &mut byte_pairs[..];
|
||||
/// // fails to compile (alignment requirements increased):
|
||||
/// let indicies : &mut [u16] = bytemuck::must_cast_slice_mut(byte_pairs);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn must_cast_slice_mut<
|
||||
A: NoUninit + AnyBitPattern,
|
||||
B: NoUninit + AnyBitPattern,
|
||||
>(
|
||||
a: &mut [A],
|
||||
) -> &mut [B] {
|
||||
let _ = Cast::<A, B>::ASSERT_SIZE_MULTIPLE_OF;
|
||||
let _ = Cast::<A, B>::ASSERT_ALIGN_GREATER_THAN_EQUAL;
|
||||
let new_len = if size_of::<A>() == size_of::<B>() {
|
||||
a.len()
|
||||
} else {
|
||||
a.len() * (size_of::<A>() / size_of::<B>())
|
||||
};
|
||||
unsafe { core::slice::from_raw_parts_mut(a.as_mut_ptr() as *mut B, new_len) }
|
||||
}
|
80
vendor/bytemuck/src/no_uninit.rs
vendored
Normal file
80
vendor/bytemuck/src/no_uninit.rs
vendored
Normal file
@@ -0,0 +1,80 @@
|
||||
use crate::Pod;
|
||||
use core::num::{
|
||||
NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize,
|
||||
NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize,
|
||||
};
|
||||
|
||||
/// Marker trait for "plain old data" types with no uninit (or padding) bytes.
|
||||
///
|
||||
/// The requirements for this is very similar to [`Pod`],
|
||||
/// except that it doesn't require that all bit patterns of the type are valid,
|
||||
/// i.e. it does not require the type to be [`Zeroable`][crate::Zeroable].
|
||||
/// This limits what you can do with a type of this kind, but also broadens the
|
||||
/// included types to things like C-style enums. Notably, you can only cast from
|
||||
/// *immutable* references to a [`NoUninit`] type into *immutable* references of
|
||||
/// any other type, no casting of mutable references or mutable references to
|
||||
/// slices etc.
|
||||
///
|
||||
/// [`Pod`] is a subset of [`NoUninit`], meaning that any `T: Pod` is also
|
||||
/// [`NoUninit`] but any `T: NoUninit` is not necessarily [`Pod`]. If possible,
|
||||
/// prefer implementing [`Pod`] directly. To get more [`Pod`]-like functionality
|
||||
/// for a type that is only [`NoUninit`], consider also implementing
|
||||
/// [`CheckedBitPattern`][crate::CheckedBitPattern].
|
||||
///
|
||||
/// # Derive
|
||||
///
|
||||
/// A `#[derive(NoUninit)]` macro is provided under the `derive` feature flag
|
||||
/// which will automatically validate the requirements of this trait and
|
||||
/// implement the trait for you for both enums and structs. This is the
|
||||
/// recommended method for implementing the trait, however it's also possible to
|
||||
/// do manually. If you implement it manually, you *must* carefully follow the
|
||||
/// below safety rules.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The same as [`Pod`] except we disregard the rule about it must
|
||||
/// allow any bit pattern (i.e. it does not need to be
|
||||
/// [`Zeroable`][crate::Zeroable]). Still, this is a quite strong guarantee
|
||||
/// about a type, so *be careful* whem implementing it manually.
|
||||
///
|
||||
/// * The type must be inhabited (eg: no
|
||||
/// [Infallible](core::convert::Infallible)).
|
||||
/// * The type must not contain any uninit (or padding) bytes, either in the
|
||||
/// middle or on the end (eg: no `#[repr(C)] struct Foo(u8, u16)`, which has
|
||||
/// padding in the middle, and also no `#[repr(C)] struct Foo(u16, u8)`, which
|
||||
/// has padding on the end).
|
||||
/// * Structs need to have all fields also be `NoUninit`.
|
||||
/// * Structs need to be `repr(C)` or `repr(transparent)`. In the case of
|
||||
/// `repr(C)`, the `packed` and `align` repr modifiers can be used as long as
|
||||
/// all other rules end up being followed.
|
||||
/// * Enums need to have an explicit `#[repr(Int)]`
|
||||
/// * Enums must have only fieldless variants
|
||||
/// * It is disallowed for types to contain pointer types, `Cell`, `UnsafeCell`,
|
||||
/// atomics, and any other forms of interior mutability.
|
||||
/// * More precisely: A shared reference to the type must allow reads, and
|
||||
/// *only* reads. RustBelt's separation logic is based on the notion that a
|
||||
/// type is allowed to define a sharing predicate, its own invariant that must
|
||||
/// hold for shared references, and this predicate is the reasoning that allow
|
||||
/// it to deal with atomic and cells etc. We require the sharing predicate to
|
||||
/// be trivial and permit only read-only access.
|
||||
/// * There's probably more, don't mess it up (I mean it).
|
||||
pub unsafe trait NoUninit: Sized + Copy + 'static {}
|
||||
|
||||
unsafe impl<T: Pod> NoUninit for T {}
|
||||
|
||||
unsafe impl NoUninit for char {}
|
||||
|
||||
unsafe impl NoUninit for bool {}
|
||||
|
||||
unsafe impl NoUninit for NonZeroU8 {}
|
||||
unsafe impl NoUninit for NonZeroI8 {}
|
||||
unsafe impl NoUninit for NonZeroU16 {}
|
||||
unsafe impl NoUninit for NonZeroI16 {}
|
||||
unsafe impl NoUninit for NonZeroU32 {}
|
||||
unsafe impl NoUninit for NonZeroI32 {}
|
||||
unsafe impl NoUninit for NonZeroU64 {}
|
||||
unsafe impl NoUninit for NonZeroI64 {}
|
||||
unsafe impl NoUninit for NonZeroU128 {}
|
||||
unsafe impl NoUninit for NonZeroI128 {}
|
||||
unsafe impl NoUninit for NonZeroUsize {}
|
||||
unsafe impl NoUninit for NonZeroIsize {}
|
135
vendor/bytemuck/src/offset_of.rs
vendored
Normal file
135
vendor/bytemuck/src/offset_of.rs
vendored
Normal file
@@ -0,0 +1,135 @@
|
||||
#![forbid(unsafe_code)]
|
||||
|
||||
/// Find the offset in bytes of the given `$field` of `$Type`. Requires an
|
||||
/// already initialized `$instance` value to work with.
|
||||
///
|
||||
/// This is similar to the macro from [`memoffset`](https://docs.rs/memoffset),
|
||||
/// however it uses no `unsafe` code.
|
||||
///
|
||||
/// This macro has a 3-argument and 2-argument version.
|
||||
/// * In the 3-arg version you specify an instance of the type, the type itself,
|
||||
/// and the field name.
|
||||
/// * In the 2-arg version the macro will call the [`default`](Default::default)
|
||||
/// method to make a temporary instance of the type for you.
|
||||
///
|
||||
/// The output of this macro is the byte offset of the field (as a `usize`). The
|
||||
/// calculations of the macro are fixed across the entire program, but if the
|
||||
/// type used is `repr(Rust)` then they're *not* fixed across compilations or
|
||||
/// compilers.
|
||||
///
|
||||
/// ## Examples
|
||||
///
|
||||
/// ### 3-arg Usage
|
||||
///
|
||||
/// ```rust
|
||||
/// # use bytemuck::offset_of;
|
||||
/// // enums can't derive default, and for this example we don't pick one
|
||||
/// enum MyExampleEnum {
|
||||
/// A,
|
||||
/// B,
|
||||
/// C,
|
||||
/// }
|
||||
///
|
||||
/// // so now our struct here doesn't have Default
|
||||
/// #[repr(C)]
|
||||
/// struct MyNotDefaultType {
|
||||
/// pub counter: i32,
|
||||
/// pub some_field: MyExampleEnum,
|
||||
/// }
|
||||
///
|
||||
/// // but we provide an instance of the type and it's all good.
|
||||
/// let val = MyNotDefaultType { counter: 5, some_field: MyExampleEnum::A };
|
||||
/// assert_eq!(offset_of!(val, MyNotDefaultType, some_field), 4);
|
||||
/// ```
|
||||
///
|
||||
/// ### 2-arg Usage
|
||||
///
|
||||
/// ```rust
|
||||
/// # use bytemuck::offset_of;
|
||||
/// #[derive(Default)]
|
||||
/// #[repr(C)]
|
||||
/// struct Vertex {
|
||||
/// pub loc: [f32; 3],
|
||||
/// pub color: [f32; 3],
|
||||
/// }
|
||||
/// // if the type impls Default the macro can make its own default instance.
|
||||
/// assert_eq!(offset_of!(Vertex, loc), 0);
|
||||
/// assert_eq!(offset_of!(Vertex, color), 12);
|
||||
/// ```
|
||||
///
|
||||
/// # Usage with `#[repr(packed)]` structs
|
||||
///
|
||||
/// Attempting to compute the offset of a `#[repr(packed)]` struct with
|
||||
/// `bytemuck::offset_of!` requires an `unsafe` block. We hope to relax this in
|
||||
/// the future, but currently it is required to work around a soundness hole in
|
||||
/// Rust (See [rust-lang/rust#27060]).
|
||||
///
|
||||
/// [rust-lang/rust#27060]: https://github.com/rust-lang/rust/issues/27060
|
||||
///
|
||||
/// <p style="background:rgba(255,181,77,0.16);padding:0.75em;">
|
||||
/// <strong>Warning:</strong> This is only true for versions of bytemuck >
|
||||
/// 1.4.0. Previous versions of
|
||||
/// <code style="background:rgba(41,24,0,0.1);">bytemuck::offset_of!</code>
|
||||
/// will only emit a warning when used on the field of a packed struct in safe
|
||||
/// code, which can lead to unsoundness.
|
||||
/// </p>
|
||||
///
|
||||
/// For example, the following will fail to compile:
|
||||
///
|
||||
/// ```compile_fail
|
||||
/// #[repr(C, packed)]
|
||||
/// #[derive(Default)]
|
||||
/// struct Example {
|
||||
/// field: u32,
|
||||
/// }
|
||||
/// // Doesn't compile:
|
||||
/// let _offset = bytemuck::offset_of!(Example, field);
|
||||
/// ```
|
||||
///
|
||||
/// While the error message this generates will mention the
|
||||
/// `safe_packed_borrows` lint, the macro will still fail to compile even if
|
||||
/// that lint is `#[allow]`ed:
|
||||
///
|
||||
/// ```compile_fail
|
||||
/// # #[repr(C, packed)] #[derive(Default)] struct Example { field: u32 }
|
||||
/// // Still doesn't compile:
|
||||
/// #[allow(safe_packed_borrows)]
|
||||
/// {
|
||||
/// let _offset = bytemuck::offset_of!(Example, field);
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// This *can* be worked around by using `unsafe`, but it is only sound to do so
|
||||
/// if you can guarantee that taking a reference to the field is sound.
|
||||
///
|
||||
/// In practice, this means it only works for fields of align(1) types, or if
|
||||
/// you know the field's offset in advance (defeating the point of `offset_of`)
|
||||
/// and can prove that the struct's alignment and the field's offset are enough
|
||||
/// to prove the field's alignment.
|
||||
///
|
||||
/// Once the `raw_ref` macros are available, a future version of this crate will
|
||||
/// use them to lift the limitations of packed structs. For the duration of the
|
||||
/// `1.x` version of this crate that will be behind an on-by-default cargo
|
||||
/// feature (to maintain minimum rust version support).
|
||||
#[macro_export]
|
||||
macro_rules! offset_of {
|
||||
($instance:expr, $Type:path, $field:tt) => {{
|
||||
#[forbid(safe_packed_borrows)]
|
||||
{
|
||||
// This helps us guard against field access going through a Deref impl.
|
||||
#[allow(clippy::unneeded_field_pattern)]
|
||||
let $Type { $field: _, .. };
|
||||
let reference: &$Type = &$instance;
|
||||
let address = reference as *const _ as usize;
|
||||
let field_pointer = &reference.$field as *const _ as usize;
|
||||
// These asserts/unwraps are compiled away at release, and defend against
|
||||
// the case where somehow a deref impl is still invoked.
|
||||
let result = field_pointer.checked_sub(address).unwrap();
|
||||
assert!(result <= $crate::__core::mem::size_of::<$Type>());
|
||||
result
|
||||
}
|
||||
}};
|
||||
($Type:path, $field:tt) => {{
|
||||
$crate::offset_of!(<$Type as Default>::default(), $Type, $field)
|
||||
}};
|
||||
}
|
165
vendor/bytemuck/src/pod.rs
vendored
Normal file
165
vendor/bytemuck/src/pod.rs
vendored
Normal file
@@ -0,0 +1,165 @@
|
||||
use super::*;
|
||||
|
||||
/// Marker trait for "plain old data".
|
||||
///
|
||||
/// The point of this trait is that once something is marked "plain old data"
|
||||
/// you can really go to town with the bit fiddling and bit casting. Therefore,
|
||||
/// it's a relatively strong claim to make about a type. Do not add this to your
|
||||
/// type casually.
|
||||
///
|
||||
/// **Reminder:** The results of casting around bytes between data types are
|
||||
/// _endian dependant_. Little-endian machines are the most common, but
|
||||
/// big-endian machines do exist (and big-endian is also used for "network
|
||||
/// order" bytes).
|
||||
///
|
||||
/// ## Safety
|
||||
///
|
||||
/// * The type must be inhabited (eg: no
|
||||
/// [Infallible](core::convert::Infallible)).
|
||||
/// * The type must allow any bit pattern (eg: no `bool` or `char`, which have
|
||||
/// illegal bit patterns).
|
||||
/// * The type must not contain any uninit (or padding) bytes, either in the
|
||||
/// middle or on the end (eg: no `#[repr(C)] struct Foo(u8, u16)`, which has
|
||||
/// padding in the middle, and also no `#[repr(C)] struct Foo(u16, u8)`, which
|
||||
/// has padding on the end).
|
||||
/// * The type needs to have all fields also be `Pod`.
|
||||
/// * The type needs to be `repr(C)` or `repr(transparent)`. In the case of
|
||||
/// `repr(C)`, the `packed` and `align` repr modifiers can be used as long as
|
||||
/// all other rules end up being followed.
|
||||
/// * It is disallowed for types to contain pointer types, `Cell`, `UnsafeCell`,
|
||||
/// atomics, and any other forms of interior mutability.
|
||||
/// * More precisely: A shared reference to the type must allow reads, and
|
||||
/// *only* reads. RustBelt's separation logic is based on the notion that a
|
||||
/// type is allowed to define a sharing predicate, its own invariant that must
|
||||
/// hold for shared references, and this predicate is the reasoning that allow
|
||||
/// it to deal with atomic and cells etc. We require the sharing predicate to
|
||||
/// be trivial and permit only read-only access.
|
||||
pub unsafe trait Pod: Zeroable + Copy + 'static {}
|
||||
|
||||
unsafe impl Pod for () {}
|
||||
unsafe impl Pod for u8 {}
|
||||
unsafe impl Pod for i8 {}
|
||||
unsafe impl Pod for u16 {}
|
||||
unsafe impl Pod for i16 {}
|
||||
unsafe impl Pod for u32 {}
|
||||
unsafe impl Pod for i32 {}
|
||||
unsafe impl Pod for u64 {}
|
||||
unsafe impl Pod for i64 {}
|
||||
unsafe impl Pod for usize {}
|
||||
unsafe impl Pod for isize {}
|
||||
unsafe impl Pod for u128 {}
|
||||
unsafe impl Pod for i128 {}
|
||||
unsafe impl Pod for f32 {}
|
||||
unsafe impl Pod for f64 {}
|
||||
unsafe impl<T: Pod> Pod for Wrapping<T> {}
|
||||
|
||||
#[cfg(feature = "unsound_ptr_pod_impl")]
|
||||
#[cfg_attr(
|
||||
feature = "nightly_docs",
|
||||
doc(cfg(feature = "unsound_ptr_pod_impl"))
|
||||
)]
|
||||
unsafe impl<T: 'static> Pod for *mut T {}
|
||||
#[cfg(feature = "unsound_ptr_pod_impl")]
|
||||
#[cfg_attr(
|
||||
feature = "nightly_docs",
|
||||
doc(cfg(feature = "unsound_ptr_pod_impl"))
|
||||
)]
|
||||
unsafe impl<T: 'static> Pod for *const T {}
|
||||
#[cfg(feature = "unsound_ptr_pod_impl")]
|
||||
#[cfg_attr(
|
||||
feature = "nightly_docs",
|
||||
doc(cfg(feature = "unsound_ptr_pod_impl"))
|
||||
)]
|
||||
unsafe impl<T: 'static> PodInOption for NonNull<T> {}
|
||||
|
||||
unsafe impl<T: ?Sized + 'static> Pod for PhantomData<T> {}
|
||||
unsafe impl Pod for PhantomPinned {}
|
||||
unsafe impl<T: Pod> Pod for ManuallyDrop<T> {}
|
||||
|
||||
// Note(Lokathor): MaybeUninit can NEVER be Pod.
|
||||
|
||||
#[cfg(feature = "min_const_generics")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "min_const_generics")))]
|
||||
unsafe impl<T, const N: usize> Pod for [T; N] where T: Pod {}
|
||||
|
||||
#[cfg(not(feature = "min_const_generics"))]
|
||||
impl_unsafe_marker_for_array!(
|
||||
Pod, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
||||
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 48, 64, 96, 128, 256,
|
||||
512, 1024, 2048, 4096
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(all(target_arch = "wasm32", feature = "wasm_simd"))]
|
||||
unsafe impl Pod for wasm32::{v128}
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(all(target_arch = "aarch64", feature = "aarch64_simd"))]
|
||||
unsafe impl Pod for aarch64::{
|
||||
float32x2_t, float32x2x2_t, float32x2x3_t, float32x2x4_t, float32x4_t,
|
||||
float32x4x2_t, float32x4x3_t, float32x4x4_t, float64x1_t, float64x1x2_t,
|
||||
float64x1x3_t, float64x1x4_t, float64x2_t, float64x2x2_t, float64x2x3_t,
|
||||
float64x2x4_t, int16x4_t, int16x4x2_t, int16x4x3_t, int16x4x4_t, int16x8_t,
|
||||
int16x8x2_t, int16x8x3_t, int16x8x4_t, int32x2_t, int32x2x2_t, int32x2x3_t,
|
||||
int32x2x4_t, int32x4_t, int32x4x2_t, int32x4x3_t, int32x4x4_t, int64x1_t,
|
||||
int64x1x2_t, int64x1x3_t, int64x1x4_t, int64x2_t, int64x2x2_t, int64x2x3_t,
|
||||
int64x2x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int8x8_t,
|
||||
int8x8x2_t, int8x8x3_t, int8x8x4_t, poly16x4_t, poly16x4x2_t, poly16x4x3_t,
|
||||
poly16x4x4_t, poly16x8_t, poly16x8x2_t, poly16x8x3_t, poly16x8x4_t,
|
||||
poly64x1_t, poly64x1x2_t, poly64x1x3_t, poly64x1x4_t, poly64x2_t,
|
||||
poly64x2x2_t, poly64x2x3_t, poly64x2x4_t, poly8x16_t, poly8x16x2_t,
|
||||
poly8x16x3_t, poly8x16x4_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t, poly8x8x4_t,
|
||||
uint16x4_t, uint16x4x2_t, uint16x4x3_t, uint16x4x4_t, uint16x8_t,
|
||||
uint16x8x2_t, uint16x8x3_t, uint16x8x4_t, uint32x2_t, uint32x2x2_t,
|
||||
uint32x2x3_t, uint32x2x4_t, uint32x4_t, uint32x4x2_t, uint32x4x3_t,
|
||||
uint32x4x4_t, uint64x1_t, uint64x1x2_t, uint64x1x3_t, uint64x1x4_t,
|
||||
uint64x2_t, uint64x2x2_t, uint64x2x3_t, uint64x2x4_t, uint8x16_t,
|
||||
uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint8x8_t, uint8x8x2_t,
|
||||
uint8x8x3_t, uint8x8x4_t,
|
||||
}
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(target_arch = "x86")]
|
||||
unsafe impl Pod for x86::{
|
||||
__m128i, __m128, __m128d,
|
||||
__m256i, __m256, __m256d,
|
||||
}
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
unsafe impl Pod for x86_64::{
|
||||
__m128i, __m128, __m128d,
|
||||
__m256i, __m256, __m256d,
|
||||
}
|
||||
);
|
||||
|
||||
#[cfg(feature = "nightly_portable_simd")]
|
||||
#[cfg_attr(
|
||||
feature = "nightly_docs",
|
||||
doc(cfg(feature = "nightly_portable_simd"))
|
||||
)]
|
||||
unsafe impl<T, const N: usize> Pod for core::simd::Simd<T, N>
|
||||
where
|
||||
T: core::simd::SimdElement + Pod,
|
||||
core::simd::LaneCount<N>: core::simd::SupportedLaneCount,
|
||||
{
|
||||
}
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(all(target_arch = "x86", feature = "nightly_stdsimd"))]
|
||||
unsafe impl Pod for x86::{
|
||||
__m128bh, __m256bh, __m512,
|
||||
__m512bh, __m512d, __m512i,
|
||||
}
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(all(target_arch = "x86_64", feature = "nightly_stdsimd"))]
|
||||
unsafe impl Pod for x86_64::{
|
||||
__m128bh, __m256bh, __m512,
|
||||
__m512bh, __m512d, __m512i,
|
||||
}
|
||||
);
|
27
vendor/bytemuck/src/pod_in_option.rs
vendored
Normal file
27
vendor/bytemuck/src/pod_in_option.rs
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
use super::*;
|
||||
|
||||
// Note(Lokathor): This is the neat part!!
|
||||
unsafe impl<T: PodInOption> Pod for Option<T> {}
|
||||
|
||||
/// Trait for types which are [Pod](Pod) when wrapped in
|
||||
/// [Option](core::option::Option).
|
||||
///
|
||||
/// ## Safety
|
||||
///
|
||||
/// * `Option<T>` must uphold the same invariants as [Pod](Pod).
|
||||
/// * **Reminder:** pointers are **not** pod! **Do not** mix this trait with a
|
||||
/// newtype over [NonNull](core::ptr::NonNull).
|
||||
pub unsafe trait PodInOption: ZeroableInOption + Copy + 'static {}
|
||||
|
||||
unsafe impl PodInOption for NonZeroI8 {}
|
||||
unsafe impl PodInOption for NonZeroI16 {}
|
||||
unsafe impl PodInOption for NonZeroI32 {}
|
||||
unsafe impl PodInOption for NonZeroI64 {}
|
||||
unsafe impl PodInOption for NonZeroI128 {}
|
||||
unsafe impl PodInOption for NonZeroIsize {}
|
||||
unsafe impl PodInOption for NonZeroU8 {}
|
||||
unsafe impl PodInOption for NonZeroU16 {}
|
||||
unsafe impl PodInOption for NonZeroU32 {}
|
||||
unsafe impl PodInOption for NonZeroU64 {}
|
||||
unsafe impl PodInOption for NonZeroU128 {}
|
||||
unsafe impl PodInOption for NonZeroUsize {}
|
288
vendor/bytemuck/src/transparent.rs
vendored
Normal file
288
vendor/bytemuck/src/transparent.rs
vendored
Normal file
@@ -0,0 +1,288 @@
|
||||
use super::*;
|
||||
|
||||
/// A trait which indicates that a type is a `#[repr(transparent)]` wrapper
|
||||
/// around the `Inner` value.
|
||||
///
|
||||
/// This allows safely copy transmuting between the `Inner` type and the
|
||||
/// `TransparentWrapper` type. Functions like `wrap_{}` convert from the inner
|
||||
/// type to the wrapper type and `peel_{}` functions do the inverse conversion
|
||||
/// from the wrapper type to the inner type. We deliberately do not call the
|
||||
/// wrapper-removing methods "unwrap" because at this point that word is too
|
||||
/// strongly tied to the Option/ Result methods.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// The safety contract of `TransparentWrapper` is relatively simple:
|
||||
///
|
||||
/// For a given `Wrapper` which implements `TransparentWrapper<Inner>`:
|
||||
///
|
||||
/// 1. `Wrapper` must be a wrapper around `Inner` with an identical data
|
||||
/// representations. This either means that it must be a
|
||||
/// `#[repr(transparent)]` struct which contains a either a field of type
|
||||
/// `Inner` (or a field of some other transparent wrapper for `Inner`) as
|
||||
/// the only non-ZST field.
|
||||
///
|
||||
/// 2. Any fields *other* than the `Inner` field must be trivially constructable
|
||||
/// ZSTs, for example `PhantomData`, `PhantomPinned`, etc. (When deriving
|
||||
/// `TransparentWrapper` on a type with ZST fields, the ZST fields must be
|
||||
/// [`Zeroable`]).
|
||||
///
|
||||
/// 3. The `Wrapper` may not impose additional alignment requirements over
|
||||
/// `Inner`.
|
||||
/// - Note: this is currently guaranteed by `repr(transparent)`, but there
|
||||
/// have been discussions of lifting it, so it's stated here explicitly.
|
||||
///
|
||||
/// 4. All functions on `TransparentWrapper` **may not** be overridden.
|
||||
///
|
||||
/// ## Caveats
|
||||
///
|
||||
/// If the wrapper imposes additional constraints upon the inner type which are
|
||||
/// required for safety, it's responsible for ensuring those still hold -- this
|
||||
/// generally requires preventing access to instances of the inner type, as
|
||||
/// implementing `TransparentWrapper<U> for T` means anybody can call
|
||||
/// `T::cast_ref(any_instance_of_u)`.
|
||||
///
|
||||
/// For example, it would be invalid to implement TransparentWrapper for `str`
|
||||
/// to implement `TransparentWrapper` around `[u8]` because of this.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ## Basic
|
||||
///
|
||||
/// ```
|
||||
/// use bytemuck::TransparentWrapper;
|
||||
/// # #[derive(Default)]
|
||||
/// # struct SomeStruct(u32);
|
||||
///
|
||||
/// #[repr(transparent)]
|
||||
/// struct MyWrapper(SomeStruct);
|
||||
///
|
||||
/// unsafe impl TransparentWrapper<SomeStruct> for MyWrapper {}
|
||||
///
|
||||
/// // interpret a reference to &SomeStruct as a &MyWrapper
|
||||
/// let thing = SomeStruct::default();
|
||||
/// let inner_ref: &MyWrapper = MyWrapper::wrap_ref(&thing);
|
||||
///
|
||||
/// // Works with &mut too.
|
||||
/// let mut mut_thing = SomeStruct::default();
|
||||
/// let inner_mut: &mut MyWrapper = MyWrapper::wrap_mut(&mut mut_thing);
|
||||
///
|
||||
/// # let _ = (inner_ref, inner_mut); // silence warnings
|
||||
/// ```
|
||||
///
|
||||
/// ## Use with dynamically sized types
|
||||
///
|
||||
/// ```
|
||||
/// use bytemuck::TransparentWrapper;
|
||||
///
|
||||
/// #[repr(transparent)]
|
||||
/// struct Slice<T>([T]);
|
||||
///
|
||||
/// unsafe impl<T> TransparentWrapper<[T]> for Slice<T> {}
|
||||
///
|
||||
/// let s = Slice::wrap_ref(&[1u32, 2, 3]);
|
||||
/// assert_eq!(&s.0, &[1, 2, 3]);
|
||||
///
|
||||
/// let mut buf = [1, 2, 3u8];
|
||||
/// let sm = Slice::wrap_mut(&mut buf);
|
||||
/// ```
|
||||
///
|
||||
/// ## Deriving
|
||||
///
|
||||
/// When deriving, the non-wrapped fields must uphold all the normal requirements,
|
||||
/// and must also be `Zeroable`.
|
||||
///
|
||||
#[cfg_attr(feature = "derive", doc = "```")]
|
||||
#[cfg_attr(
|
||||
not(feature = "derive"),
|
||||
doc = "```ignore
|
||||
// This example requires the `derive` feature."
|
||||
)]
|
||||
/// use bytemuck::TransparentWrapper;
|
||||
/// use std::marker::PhantomData;
|
||||
///
|
||||
/// #[derive(TransparentWrapper)]
|
||||
/// #[repr(transparent)]
|
||||
/// #[transparent(usize)]
|
||||
/// struct Wrapper<T: ?Sized>(usize, PhantomData<T>); // PhantomData<T> implements Zeroable for all T
|
||||
/// ```
|
||||
///
|
||||
/// Here, an error will occur, because `MyZst` does not implement `Zeroable`.
|
||||
///
|
||||
#[cfg_attr(feature = "derive", doc = "```compile_fail")]
|
||||
#[cfg_attr(
|
||||
not(feature = "derive"),
|
||||
doc = "```ignore
|
||||
// This example requires the `derive` feature."
|
||||
)]
|
||||
/// use bytemuck::TransparentWrapper;
|
||||
/// struct MyZst;
|
||||
///
|
||||
/// #[derive(TransparentWrapper)]
|
||||
/// #[repr(transparent)]
|
||||
/// #[transparent(usize)]
|
||||
/// struct Wrapper(usize, MyZst); // MyZst does not implement Zeroable
|
||||
/// ```
|
||||
pub unsafe trait TransparentWrapper<Inner: ?Sized> {
|
||||
/// Convert the inner type into the wrapper type.
|
||||
#[inline]
|
||||
fn wrap(s: Inner) -> Self
|
||||
where
|
||||
Self: Sized,
|
||||
Inner: Sized,
|
||||
{
|
||||
// SAFETY: The unsafe contract requires that `Self` and `Inner` have
|
||||
// identical representations.
|
||||
unsafe { transmute!(s) }
|
||||
}
|
||||
|
||||
/// Convert a reference to the inner type into a reference to the wrapper
|
||||
/// type.
|
||||
#[inline]
|
||||
fn wrap_ref(s: &Inner) -> &Self {
|
||||
unsafe {
|
||||
assert!(size_of::<*const Inner>() == size_of::<*const Self>());
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the sizes are unspecified.
|
||||
//
|
||||
// SAFETY: The unsafe contract requires that these two have
|
||||
// identical representations.
|
||||
let inner_ptr = s as *const Inner;
|
||||
let wrapper_ptr: *const Self = transmute!(inner_ptr);
|
||||
&*wrapper_ptr
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a mutable reference to the inner type into a mutable reference to
|
||||
/// the wrapper type.
|
||||
#[inline]
|
||||
fn wrap_mut(s: &mut Inner) -> &mut Self {
|
||||
unsafe {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the sizes are unspecified.
|
||||
//
|
||||
// SAFETY: The unsafe contract requires that these two have
|
||||
// identical representations.
|
||||
let inner_ptr = s as *mut Inner;
|
||||
let wrapper_ptr: *mut Self = transmute!(inner_ptr);
|
||||
&mut *wrapper_ptr
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a slice to the inner type into a slice to the wrapper type.
|
||||
#[inline]
|
||||
fn wrap_slice(s: &[Inner]) -> &[Self]
|
||||
where
|
||||
Self: Sized,
|
||||
Inner: Sized,
|
||||
{
|
||||
unsafe {
|
||||
assert!(size_of::<*const Inner>() == size_of::<*const Self>());
|
||||
assert!(align_of::<*const Inner>() == align_of::<*const Self>());
|
||||
// SAFETY: The unsafe contract requires that these two have
|
||||
// identical representations (size and alignment).
|
||||
core::slice::from_raw_parts(s.as_ptr() as *const Self, s.len())
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a mutable slice to the inner type into a mutable slice to the
|
||||
/// wrapper type.
|
||||
#[inline]
|
||||
fn wrap_slice_mut(s: &mut [Inner]) -> &mut [Self]
|
||||
where
|
||||
Self: Sized,
|
||||
Inner: Sized,
|
||||
{
|
||||
unsafe {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
assert!(align_of::<*mut Inner>() == align_of::<*mut Self>());
|
||||
// SAFETY: The unsafe contract requires that these two have
|
||||
// identical representations (size and alignment).
|
||||
core::slice::from_raw_parts_mut(s.as_mut_ptr() as *mut Self, s.len())
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert the wrapper type into the inner type.
|
||||
#[inline]
|
||||
fn peel(s: Self) -> Inner
|
||||
where
|
||||
Self: Sized,
|
||||
Inner: Sized,
|
||||
{
|
||||
unsafe { transmute!(s) }
|
||||
}
|
||||
|
||||
/// Convert a reference to the wrapper type into a reference to the inner
|
||||
/// type.
|
||||
#[inline]
|
||||
fn peel_ref(s: &Self) -> &Inner {
|
||||
unsafe {
|
||||
assert!(size_of::<*const Inner>() == size_of::<*const Self>());
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the sizes are unspecified.
|
||||
//
|
||||
// SAFETY: The unsafe contract requires that these two have
|
||||
// identical representations.
|
||||
let wrapper_ptr = s as *const Self;
|
||||
let inner_ptr: *const Inner = transmute!(wrapper_ptr);
|
||||
&*inner_ptr
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a mutable reference to the wrapper type into a mutable reference
|
||||
/// to the inner type.
|
||||
#[inline]
|
||||
fn peel_mut(s: &mut Self) -> &mut Inner {
|
||||
unsafe {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
// A pointer cast doesn't work here because rustc can't tell that
|
||||
// the vtables match (because of the `?Sized` restriction relaxation).
|
||||
// A `transmute` doesn't work because the sizes are unspecified.
|
||||
//
|
||||
// SAFETY: The unsafe contract requires that these two have
|
||||
// identical representations.
|
||||
let wrapper_ptr = s as *mut Self;
|
||||
let inner_ptr: *mut Inner = transmute!(wrapper_ptr);
|
||||
&mut *inner_ptr
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a slice to the wrapped type into a slice to the inner type.
|
||||
#[inline]
|
||||
fn peel_slice(s: &[Self]) -> &[Inner]
|
||||
where
|
||||
Self: Sized,
|
||||
Inner: Sized,
|
||||
{
|
||||
unsafe {
|
||||
assert!(size_of::<*const Inner>() == size_of::<*const Self>());
|
||||
assert!(align_of::<*const Inner>() == align_of::<*const Self>());
|
||||
// SAFETY: The unsafe contract requires that these two have
|
||||
// identical representations (size and alignment).
|
||||
core::slice::from_raw_parts(s.as_ptr() as *const Inner, s.len())
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a mutable slice to the wrapped type into a mutable slice to the
|
||||
/// inner type.
|
||||
#[inline]
|
||||
fn peel_slice_mut(s: &mut [Self]) -> &mut [Inner]
|
||||
where
|
||||
Self: Sized,
|
||||
Inner: Sized,
|
||||
{
|
||||
unsafe {
|
||||
assert!(size_of::<*mut Inner>() == size_of::<*mut Self>());
|
||||
assert!(align_of::<*mut Inner>() == align_of::<*mut Self>());
|
||||
// SAFETY: The unsafe contract requires that these two have
|
||||
// identical representations (size and alignment).
|
||||
core::slice::from_raw_parts_mut(s.as_mut_ptr() as *mut Inner, s.len())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<T> TransparentWrapper<T> for core::num::Wrapping<T> {}
|
245
vendor/bytemuck/src/zeroable.rs
vendored
Normal file
245
vendor/bytemuck/src/zeroable.rs
vendored
Normal file
@@ -0,0 +1,245 @@
|
||||
use super::*;
|
||||
|
||||
/// Trait for types that can be safely created with
|
||||
/// [`zeroed`](core::mem::zeroed).
|
||||
///
|
||||
/// An all-zeroes value may or may not be the same value as the
|
||||
/// [Default](core::default::Default) value of the type.
|
||||
///
|
||||
/// ## Safety
|
||||
///
|
||||
/// * Your type must be inhabited (eg: no
|
||||
/// [Infallible](core::convert::Infallible)).
|
||||
/// * Your type must be allowed to be an "all zeroes" bit pattern (eg: no
|
||||
/// [`NonNull<T>`](core::ptr::NonNull)).
|
||||
///
|
||||
/// ## Features
|
||||
///
|
||||
/// Some `impl`s are feature gated due to the MSRV policy:
|
||||
///
|
||||
/// * `MaybeUninit<T>` was not available in 1.34.0, but is available under the
|
||||
/// `zeroable_maybe_uninit` feature flag.
|
||||
/// * `Atomic*` types require Rust 1.60.0 or later to work on certain platforms,
|
||||
/// but is available under the `zeroable_atomics` feature flag.
|
||||
/// * `[T; N]` for arbitrary `N` requires the `min_const_generics` feature flag.
|
||||
pub unsafe trait Zeroable: Sized {
|
||||
/// Calls [`zeroed`](core::mem::zeroed).
|
||||
///
|
||||
/// This is a trait method so that you can write `MyType::zeroed()` in your
|
||||
/// code. It is a contract of this trait that if you implement it on your type
|
||||
/// you **must not** override this method.
|
||||
#[inline]
|
||||
fn zeroed() -> Self {
|
||||
unsafe { core::mem::zeroed() }
|
||||
}
|
||||
}
|
||||
unsafe impl Zeroable for () {}
|
||||
unsafe impl Zeroable for bool {}
|
||||
unsafe impl Zeroable for char {}
|
||||
unsafe impl Zeroable for u8 {}
|
||||
unsafe impl Zeroable for i8 {}
|
||||
unsafe impl Zeroable for u16 {}
|
||||
unsafe impl Zeroable for i16 {}
|
||||
unsafe impl Zeroable for u32 {}
|
||||
unsafe impl Zeroable for i32 {}
|
||||
unsafe impl Zeroable for u64 {}
|
||||
unsafe impl Zeroable for i64 {}
|
||||
unsafe impl Zeroable for usize {}
|
||||
unsafe impl Zeroable for isize {}
|
||||
unsafe impl Zeroable for u128 {}
|
||||
unsafe impl Zeroable for i128 {}
|
||||
unsafe impl Zeroable for f32 {}
|
||||
unsafe impl Zeroable for f64 {}
|
||||
unsafe impl<T: Zeroable> Zeroable for Wrapping<T> {}
|
||||
unsafe impl<T: Zeroable> Zeroable for core::cmp::Reverse<T> {}
|
||||
|
||||
// Note: we can't implement this for all `T: ?Sized` types because it would
|
||||
// create NULL pointers for vtables.
|
||||
// Maybe one day this could be changed to be implemented for
|
||||
// `T: ?Sized where <T as core::ptr::Pointee>::Metadata: Zeroable`.
|
||||
unsafe impl<T> Zeroable for *mut T {}
|
||||
unsafe impl<T> Zeroable for *const T {}
|
||||
unsafe impl<T> Zeroable for *mut [T] {}
|
||||
unsafe impl<T> Zeroable for *const [T] {}
|
||||
unsafe impl Zeroable for *mut str {}
|
||||
unsafe impl Zeroable for *const str {}
|
||||
|
||||
unsafe impl<T: ?Sized> Zeroable for PhantomData<T> {}
|
||||
unsafe impl Zeroable for PhantomPinned {}
|
||||
unsafe impl<T: Zeroable> Zeroable for ManuallyDrop<T> {}
|
||||
unsafe impl<T: Zeroable> Zeroable for core::cell::UnsafeCell<T> {}
|
||||
unsafe impl<T: Zeroable> Zeroable for core::cell::Cell<T> {}
|
||||
|
||||
#[cfg(feature = "zeroable_atomics")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "zeroable_atomics")))]
|
||||
mod atomic_impls {
|
||||
use super::Zeroable;
|
||||
|
||||
#[cfg(target_has_atomic = "8")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicBool {}
|
||||
#[cfg(target_has_atomic = "8")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicU8 {}
|
||||
#[cfg(target_has_atomic = "8")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicI8 {}
|
||||
|
||||
#[cfg(target_has_atomic = "16")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicU16 {}
|
||||
#[cfg(target_has_atomic = "16")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicI16 {}
|
||||
|
||||
#[cfg(target_has_atomic = "32")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicU32 {}
|
||||
#[cfg(target_has_atomic = "32")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicI32 {}
|
||||
|
||||
#[cfg(target_has_atomic = "64")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicU64 {}
|
||||
#[cfg(target_has_atomic = "64")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicI64 {}
|
||||
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicUsize {}
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
unsafe impl Zeroable for core::sync::atomic::AtomicIsize {}
|
||||
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
unsafe impl<T> Zeroable for core::sync::atomic::AtomicPtr<T> {}
|
||||
}
|
||||
|
||||
#[cfg(feature = "zeroable_maybe_uninit")]
|
||||
#[cfg_attr(
|
||||
feature = "nightly_docs",
|
||||
doc(cfg(feature = "zeroable_maybe_uninit"))
|
||||
)]
|
||||
unsafe impl<T> Zeroable for core::mem::MaybeUninit<T> {}
|
||||
|
||||
unsafe impl<A: Zeroable> Zeroable for (A,) {}
|
||||
unsafe impl<A: Zeroable, B: Zeroable> Zeroable for (A, B) {}
|
||||
unsafe impl<A: Zeroable, B: Zeroable, C: Zeroable> Zeroable for (A, B, C) {}
|
||||
unsafe impl<A: Zeroable, B: Zeroable, C: Zeroable, D: Zeroable> Zeroable
|
||||
for (A, B, C, D)
|
||||
{
|
||||
}
|
||||
unsafe impl<A: Zeroable, B: Zeroable, C: Zeroable, D: Zeroable, E: Zeroable>
|
||||
Zeroable for (A, B, C, D, E)
|
||||
{
|
||||
}
|
||||
unsafe impl<
|
||||
A: Zeroable,
|
||||
B: Zeroable,
|
||||
C: Zeroable,
|
||||
D: Zeroable,
|
||||
E: Zeroable,
|
||||
F: Zeroable,
|
||||
> Zeroable for (A, B, C, D, E, F)
|
||||
{
|
||||
}
|
||||
unsafe impl<
|
||||
A: Zeroable,
|
||||
B: Zeroable,
|
||||
C: Zeroable,
|
||||
D: Zeroable,
|
||||
E: Zeroable,
|
||||
F: Zeroable,
|
||||
G: Zeroable,
|
||||
> Zeroable for (A, B, C, D, E, F, G)
|
||||
{
|
||||
}
|
||||
unsafe impl<
|
||||
A: Zeroable,
|
||||
B: Zeroable,
|
||||
C: Zeroable,
|
||||
D: Zeroable,
|
||||
E: Zeroable,
|
||||
F: Zeroable,
|
||||
G: Zeroable,
|
||||
H: Zeroable,
|
||||
> Zeroable for (A, B, C, D, E, F, G, H)
|
||||
{
|
||||
}
|
||||
|
||||
#[cfg(feature = "min_const_generics")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "min_const_generics")))]
|
||||
unsafe impl<T, const N: usize> Zeroable for [T; N] where T: Zeroable {}
|
||||
|
||||
#[cfg(not(feature = "min_const_generics"))]
|
||||
impl_unsafe_marker_for_array!(
|
||||
Zeroable, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
|
||||
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 48, 64, 96, 128, 256,
|
||||
512, 1024, 2048, 4096
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(all(target_arch = "wasm32", feature = "wasm_simd"))]
|
||||
unsafe impl Zeroable for wasm32::{v128}
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(all(target_arch = "aarch64", feature = "aarch64_simd"))]
|
||||
unsafe impl Zeroable for aarch64::{
|
||||
float32x2_t, float32x2x2_t, float32x2x3_t, float32x2x4_t, float32x4_t,
|
||||
float32x4x2_t, float32x4x3_t, float32x4x4_t, float64x1_t, float64x1x2_t,
|
||||
float64x1x3_t, float64x1x4_t, float64x2_t, float64x2x2_t, float64x2x3_t,
|
||||
float64x2x4_t, int16x4_t, int16x4x2_t, int16x4x3_t, int16x4x4_t, int16x8_t,
|
||||
int16x8x2_t, int16x8x3_t, int16x8x4_t, int32x2_t, int32x2x2_t, int32x2x3_t,
|
||||
int32x2x4_t, int32x4_t, int32x4x2_t, int32x4x3_t, int32x4x4_t, int64x1_t,
|
||||
int64x1x2_t, int64x1x3_t, int64x1x4_t, int64x2_t, int64x2x2_t, int64x2x3_t,
|
||||
int64x2x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int8x8_t,
|
||||
int8x8x2_t, int8x8x3_t, int8x8x4_t, poly16x4_t, poly16x4x2_t, poly16x4x3_t,
|
||||
poly16x4x4_t, poly16x8_t, poly16x8x2_t, poly16x8x3_t, poly16x8x4_t,
|
||||
poly64x1_t, poly64x1x2_t, poly64x1x3_t, poly64x1x4_t, poly64x2_t,
|
||||
poly64x2x2_t, poly64x2x3_t, poly64x2x4_t, poly8x16_t, poly8x16x2_t,
|
||||
poly8x16x3_t, poly8x16x4_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t, poly8x8x4_t,
|
||||
uint16x4_t, uint16x4x2_t, uint16x4x3_t, uint16x4x4_t, uint16x8_t,
|
||||
uint16x8x2_t, uint16x8x3_t, uint16x8x4_t, uint32x2_t, uint32x2x2_t,
|
||||
uint32x2x3_t, uint32x2x4_t, uint32x4_t, uint32x4x2_t, uint32x4x3_t,
|
||||
uint32x4x4_t, uint64x1_t, uint64x1x2_t, uint64x1x3_t, uint64x1x4_t,
|
||||
uint64x2_t, uint64x2x2_t, uint64x2x3_t, uint64x2x4_t, uint8x16_t,
|
||||
uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint8x8_t, uint8x8x2_t,
|
||||
uint8x8x3_t, uint8x8x4_t,
|
||||
}
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(target_arch = "x86")]
|
||||
unsafe impl Zeroable for x86::{
|
||||
__m128i, __m128, __m128d,
|
||||
__m256i, __m256, __m256d,
|
||||
}
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
unsafe impl Zeroable for x86_64::{
|
||||
__m128i, __m128, __m128d,
|
||||
__m256i, __m256, __m256d,
|
||||
}
|
||||
);
|
||||
|
||||
#[cfg(feature = "nightly_portable_simd")]
|
||||
#[cfg_attr(
|
||||
feature = "nightly_docs",
|
||||
doc(cfg(feature = "nightly_portable_simd"))
|
||||
)]
|
||||
unsafe impl<T, const N: usize> Zeroable for core::simd::Simd<T, N>
|
||||
where
|
||||
T: core::simd::SimdElement + Zeroable,
|
||||
core::simd::LaneCount<N>: core::simd::SupportedLaneCount,
|
||||
{
|
||||
}
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(all(target_arch = "x86", feature = "nightly_stdsimd"))]
|
||||
unsafe impl Zeroable for x86::{
|
||||
__m128bh, __m256bh, __m512,
|
||||
__m512bh, __m512d, __m512i,
|
||||
}
|
||||
);
|
||||
|
||||
impl_unsafe_marker_for_simd!(
|
||||
#[cfg(all(target_arch = "x86_64", feature = "nightly_stdsimd"))]
|
||||
unsafe impl Zeroable for x86_64::{
|
||||
__m128bh, __m256bh, __m512,
|
||||
__m512bh, __m512d, __m512i,
|
||||
}
|
||||
);
|
35
vendor/bytemuck/src/zeroable_in_option.rs
vendored
Normal file
35
vendor/bytemuck/src/zeroable_in_option.rs
vendored
Normal file
@@ -0,0 +1,35 @@
|
||||
use super::*;
|
||||
|
||||
// Note(Lokathor): This is the neat part!!
|
||||
unsafe impl<T: ZeroableInOption> Zeroable for Option<T> {}
|
||||
|
||||
/// Trait for types which are [Zeroable](Zeroable) when wrapped in
|
||||
/// [Option](core::option::Option).
|
||||
///
|
||||
/// ## Safety
|
||||
///
|
||||
/// * `Option<YourType>` must uphold the same invariants as
|
||||
/// [Zeroable](Zeroable).
|
||||
pub unsafe trait ZeroableInOption: Sized {}
|
||||
|
||||
unsafe impl ZeroableInOption for NonZeroI8 {}
|
||||
unsafe impl ZeroableInOption for NonZeroI16 {}
|
||||
unsafe impl ZeroableInOption for NonZeroI32 {}
|
||||
unsafe impl ZeroableInOption for NonZeroI64 {}
|
||||
unsafe impl ZeroableInOption for NonZeroI128 {}
|
||||
unsafe impl ZeroableInOption for NonZeroIsize {}
|
||||
unsafe impl ZeroableInOption for NonZeroU8 {}
|
||||
unsafe impl ZeroableInOption for NonZeroU16 {}
|
||||
unsafe impl ZeroableInOption for NonZeroU32 {}
|
||||
unsafe impl ZeroableInOption for NonZeroU64 {}
|
||||
unsafe impl ZeroableInOption for NonZeroU128 {}
|
||||
unsafe impl ZeroableInOption for NonZeroUsize {}
|
||||
|
||||
// Note: this does not create NULL vtable because we get `None` anyway.
|
||||
unsafe impl<T: ?Sized> ZeroableInOption for NonNull<T> {}
|
||||
unsafe impl<T: ?Sized> ZeroableInOption for &'_ T {}
|
||||
unsafe impl<T: ?Sized> ZeroableInOption for &'_ mut T {}
|
||||
|
||||
#[cfg(feature = "extern_crate_alloc")]
|
||||
#[cfg_attr(feature = "nightly_docs", doc(cfg(feature = "extern_crate_alloc")))]
|
||||
unsafe impl<T: ?Sized> ZeroableInOption for alloc::boxed::Box<T> {}
|
Reference in New Issue
Block a user