Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
This commit is contained in:
1
vendor/color_quant/.cargo-checksum.json
vendored
Normal file
1
vendor/color_quant/.cargo-checksum.json
vendored
Normal file
@ -0,0 +1 @@
|
||||
{"files":{"CHANGELOG.md":"0647ef6e3629446892fb530dc6f49977a3a81c4d943d0028b697ffa0d98565ad","Cargo.toml":"4ec438714084877d63c79e99191599a3694839c74842f81ca69de836a5889c75","LICENSE":"592dc80f1a865d20d61a2006a2d29ce34a2bc28cd7e868ab300fdeed6da154ca","README.md":"af03438f3b349f8e32ae2cf77c026948bd6493e7631ddd908ee0d225385c7894","src/lib.rs":"17a7ed7a6c994b475976558f3492c8890d089c1ee19f4ea3cd246c28145c895a","src/math.rs":"1fef0855d7d7defb8af69a033a2ce7e5f64367f48ba673cb4ce8e85e2006a124"},"package":"3d7b894f5411737b7867f4827955924d7c254fc9f4d91a6aad6b097804b1018b"}
|
7
vendor/color_quant/CHANGELOG.md
vendored
Normal file
7
vendor/color_quant/CHANGELOG.md
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
## 1.1.0
|
||||
|
||||
- Unify with `image::math::nq` as per https://github.com/image-rs/image/issues/1338 (https://github.com/image-rs/color_quant/pull/10)
|
||||
- A new method `lookup` from `image::math::nq` is added
|
||||
- More references in docs
|
||||
- Some style improvements and better names for functions borrowed from `image::math::nq`
|
||||
- Replace the internal `clamp!` macro with the `clamp` function (https://github.com/image-rs/color_quant/pull/8)
|
20
vendor/color_quant/Cargo.toml
vendored
Normal file
20
vendor/color_quant/Cargo.toml
vendored
Normal file
@ -0,0 +1,20 @@
|
||||
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
|
||||
#
|
||||
# When uploading crates to the registry Cargo will automatically
|
||||
# "normalize" Cargo.toml files for maximal compatibility
|
||||
# with all versions of Cargo and also rewrite `path` dependencies
|
||||
# to registry (e.g., crates.io) dependencies
|
||||
#
|
||||
# If you believe there's an error in this file please file an
|
||||
# issue against the rust-lang/cargo repository. If you're
|
||||
# editing this file be aware that the upstream Cargo.toml
|
||||
# will likely look very different (and much more reasonable)
|
||||
|
||||
[package]
|
||||
name = "color_quant"
|
||||
version = "1.1.0"
|
||||
authors = ["nwin <nwin@users.noreply.github.com>"]
|
||||
description = "Color quantization library to reduce n colors to 256 colors."
|
||||
readme = "README.md"
|
||||
license = "MIT"
|
||||
repository = "https://github.com/image-rs/color_quant.git"
|
21
vendor/color_quant/LICENSE
vendored
Normal file
21
vendor/color_quant/LICENSE
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2016 PistonDevelopers
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
11
vendor/color_quant/README.md
vendored
Normal file
11
vendor/color_quant/README.md
vendored
Normal file
@ -0,0 +1,11 @@
|
||||
# Color quantization library
|
||||
This library provides a color quantizer based on the [NEUQUANT](https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/)
|
||||
quantization algorithm by Anthony Dekker.
|
||||
|
||||
### Usage
|
||||
|
||||
let data = vec![0; 40];
|
||||
let nq = color_quant::NeuQuant::new(10, 256, &data);
|
||||
let indixes: Vec<u8> = data.chunks(4).map(|pix| nq.index_of(pix) as u8).collect();
|
||||
let color_map = nq.color_map_rgba();
|
||||
|
480
vendor/color_quant/src/lib.rs
vendored
Normal file
480
vendor/color_quant/src/lib.rs
vendored
Normal file
@ -0,0 +1,480 @@
|
||||
/*
|
||||
NeuQuant Neural-Net Quantization Algorithm by Anthony Dekker, 1994.
|
||||
See "Kohonen neural networks for optimal colour quantization"
|
||||
in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
|
||||
for a discussion of the algorithm.
|
||||
See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
|
||||
|
||||
Incorporated bugfixes and alpha channel handling from pngnq
|
||||
http://pngnq.sourceforge.net
|
||||
|
||||
Copyright (c) 2014 The Piston Developers
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
NeuQuant Neural-Net Quantization Algorithm
|
||||
------------------------------------------
|
||||
|
||||
Copyright (c) 1994 Anthony Dekker
|
||||
|
||||
NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
|
||||
See "Kohonen neural networks for optimal colour quantization"
|
||||
in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
|
||||
for a discussion of the algorithm.
|
||||
See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
|
||||
|
||||
Any party obtaining a copy of these files from the author, directly or
|
||||
indirectly, is granted, free of charge, a full and unrestricted irrevocable,
|
||||
world-wide, paid up, royalty-free, nonexclusive right and license to deal
|
||||
in this software and documentation files (the "Software"), including without
|
||||
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
and/or sell copies of the Software, and to permit persons who receive
|
||||
copies from any such party to do so, with the only requirement being
|
||||
that this copyright notice remain intact.
|
||||
|
||||
*/
|
||||
|
||||
//! # Color quantization library
|
||||
//!
|
||||
//! This library provides a color quantizer based on the [NEUQUANT](http://members.ozemail.com.au/~dekker/NEUQUANT.HTML)
|
||||
//!
|
||||
//! Original literature: Dekker, A. H. (1994). Kohonen neural networks for
|
||||
//! optimal colour quantization. *Network: Computation in Neural Systems*, 5(3), 351-367.
|
||||
//! [doi: 10.1088/0954-898X_5_3_003](https://doi.org/10.1088/0954-898X_5_3_003)
|
||||
//!
|
||||
//! See also <https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/>
|
||||
//!
|
||||
//! ## Usage
|
||||
//!
|
||||
//! ```
|
||||
//! let data = vec![0; 40];
|
||||
//! let nq = color_quant::NeuQuant::new(10, 256, &data);
|
||||
//! let indixes: Vec<u8> = data.chunks(4).map(|pix| nq.index_of(pix) as u8).collect();
|
||||
//! let color_map = nq.color_map_rgba();
|
||||
//! ```
|
||||
|
||||
mod math;
|
||||
use crate::math::clamp;
|
||||
|
||||
use std::cmp::{max, min};
|
||||
|
||||
const CHANNELS: usize = 4;
|
||||
|
||||
const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle
|
||||
|
||||
const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1
|
||||
const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits
|
||||
|
||||
const GAMMA: f64 = 1024.0;
|
||||
const BETA: f64 = 1.0 / GAMMA;
|
||||
const BETAGAMMA: f64 = BETA * GAMMA;
|
||||
|
||||
// four primes near 500 - assume no image has a length so large
|
||||
// that it is divisible by all four primes
|
||||
const PRIMES: [usize; 4] = [499, 491, 478, 503];
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct Quad<T> {
|
||||
r: T,
|
||||
g: T,
|
||||
b: T,
|
||||
a: T,
|
||||
}
|
||||
|
||||
type Neuron = Quad<f64>;
|
||||
type Color = Quad<i32>;
|
||||
|
||||
pub struct NeuQuant {
|
||||
network: Vec<Neuron>,
|
||||
colormap: Vec<Color>,
|
||||
netindex: Vec<usize>,
|
||||
bias: Vec<f64>, // bias and freq arrays for learning
|
||||
freq: Vec<f64>,
|
||||
samplefac: i32,
|
||||
netsize: usize,
|
||||
}
|
||||
|
||||
impl NeuQuant {
|
||||
/// Creates a new neuronal network and trains it with the supplied data.
|
||||
///
|
||||
/// Pixels are assumed to be in RGBA format.
|
||||
/// `colors` should be $>=64$. `samplefac` determines the faction of
|
||||
/// the sample that will be used to train the network. Its value must be in the
|
||||
/// range $[1, 30]$. A value of $1$ thus produces the best result but is also
|
||||
/// slowest. $10$ is a good compromise between speed and quality.
|
||||
pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self {
|
||||
let netsize = colors;
|
||||
let mut this = NeuQuant {
|
||||
network: Vec::with_capacity(netsize),
|
||||
colormap: Vec::with_capacity(netsize),
|
||||
netindex: vec![0; 256],
|
||||
bias: Vec::with_capacity(netsize),
|
||||
freq: Vec::with_capacity(netsize),
|
||||
samplefac: samplefac,
|
||||
netsize: colors,
|
||||
};
|
||||
this.init(pixels);
|
||||
this
|
||||
}
|
||||
|
||||
/// Initializes the neuronal network and trains it with the supplied data.
|
||||
///
|
||||
/// This method gets called by `Self::new`.
|
||||
pub fn init(&mut self, pixels: &[u8]) {
|
||||
self.network.clear();
|
||||
self.colormap.clear();
|
||||
self.bias.clear();
|
||||
self.freq.clear();
|
||||
let freq = (self.netsize as f64).recip();
|
||||
for i in 0..self.netsize {
|
||||
let tmp = (i as f64) * 256.0 / (self.netsize as f64);
|
||||
// Sets alpha values at 0 for dark pixels.
|
||||
let a = if i < 16 { i as f64 * 16.0 } else { 255.0 };
|
||||
self.network.push(Neuron {
|
||||
r: tmp,
|
||||
g: tmp,
|
||||
b: tmp,
|
||||
a: a,
|
||||
});
|
||||
self.colormap.push(Color {
|
||||
r: 0,
|
||||
g: 0,
|
||||
b: 0,
|
||||
a: 255,
|
||||
});
|
||||
self.freq.push(freq);
|
||||
self.bias.push(0.0);
|
||||
}
|
||||
self.learn(pixels);
|
||||
self.build_colormap();
|
||||
self.build_netindex();
|
||||
}
|
||||
|
||||
/// Maps the rgba-pixel in-place to the best-matching color in the color map.
|
||||
#[inline(always)]
|
||||
pub fn map_pixel(&self, pixel: &mut [u8]) {
|
||||
assert!(pixel.len() == 4);
|
||||
let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]);
|
||||
let i = self.search_netindex(b, g, r, a);
|
||||
pixel[0] = self.colormap[i].r as u8;
|
||||
pixel[1] = self.colormap[i].g as u8;
|
||||
pixel[2] = self.colormap[i].b as u8;
|
||||
pixel[3] = self.colormap[i].a as u8;
|
||||
}
|
||||
|
||||
/// Finds the best-matching index in the color map.
|
||||
///
|
||||
/// `pixel` is assumed to be in RGBA format.
|
||||
#[inline(always)]
|
||||
pub fn index_of(&self, pixel: &[u8]) -> usize {
|
||||
assert!(pixel.len() == 4);
|
||||
let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]);
|
||||
self.search_netindex(b, g, r, a)
|
||||
}
|
||||
|
||||
/// Lookup pixel values for color at `idx` in the colormap.
|
||||
pub fn lookup(&self, idx: usize) -> Option<[u8; 4]> {
|
||||
self.colormap
|
||||
.get(idx)
|
||||
.map(|p| [p.r as u8, p.g as u8, p.b as u8, p.a as u8])
|
||||
}
|
||||
|
||||
/// Returns the RGBA color map calculated from the sample.
|
||||
pub fn color_map_rgba(&self) -> Vec<u8> {
|
||||
let mut map = Vec::with_capacity(self.netsize * 4);
|
||||
for entry in &self.colormap {
|
||||
map.push(entry.r as u8);
|
||||
map.push(entry.g as u8);
|
||||
map.push(entry.b as u8);
|
||||
map.push(entry.a as u8);
|
||||
}
|
||||
map
|
||||
}
|
||||
|
||||
/// Returns the RGBA color map calculated from the sample.
|
||||
pub fn color_map_rgb(&self) -> Vec<u8> {
|
||||
let mut map = Vec::with_capacity(self.netsize * 3);
|
||||
for entry in &self.colormap {
|
||||
map.push(entry.r as u8);
|
||||
map.push(entry.g as u8);
|
||||
map.push(entry.b as u8);
|
||||
}
|
||||
map
|
||||
}
|
||||
|
||||
/// Move neuron i towards biased (a,b,g,r) by factor alpha
|
||||
fn salter_single(&mut self, alpha: f64, i: i32, quad: Quad<f64>) {
|
||||
let n = &mut self.network[i as usize];
|
||||
n.b -= alpha * (n.b - quad.b);
|
||||
n.g -= alpha * (n.g - quad.g);
|
||||
n.r -= alpha * (n.r - quad.r);
|
||||
n.a -= alpha * (n.a - quad.a);
|
||||
}
|
||||
|
||||
/// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha
|
||||
fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) {
|
||||
let lo = max(i - rad, 0);
|
||||
let hi = min(i + rad, self.netsize as i32);
|
||||
let mut j = i + 1;
|
||||
let mut k = i - 1;
|
||||
let mut q = 0;
|
||||
|
||||
while (j < hi) || (k > lo) {
|
||||
let rad_sq = rad as f64 * rad as f64;
|
||||
let alpha = (alpha * (rad_sq - q as f64 * q as f64)) / rad_sq;
|
||||
q += 1;
|
||||
if j < hi {
|
||||
let p = &mut self.network[j as usize];
|
||||
p.b -= alpha * (p.b - quad.b);
|
||||
p.g -= alpha * (p.g - quad.g);
|
||||
p.r -= alpha * (p.r - quad.r);
|
||||
p.a -= alpha * (p.a - quad.a);
|
||||
j += 1;
|
||||
}
|
||||
if k > lo {
|
||||
let p = &mut self.network[k as usize];
|
||||
p.b -= alpha * (p.b - quad.b);
|
||||
p.g -= alpha * (p.g - quad.g);
|
||||
p.r -= alpha * (p.r - quad.r);
|
||||
p.a -= alpha * (p.a - quad.a);
|
||||
k -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Search for biased BGR values
|
||||
/// finds closest neuron (min dist) and updates freq
|
||||
/// finds best neuron (min dist-bias) and returns position
|
||||
/// for frequently chosen neurons, freq[i] is high and bias[i] is negative
|
||||
/// bias[i] = gamma*((1/self.netsize)-freq[i])
|
||||
fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 {
|
||||
use std::f64;
|
||||
|
||||
let mut bestd = f64::MAX;
|
||||
let mut bestbiasd: f64 = bestd;
|
||||
let mut bestpos = -1;
|
||||
let mut bestbiaspos: i32 = bestpos;
|
||||
|
||||
for i in 0..self.netsize {
|
||||
let bestbiasd_biased = bestbiasd + self.bias[i];
|
||||
let mut dist;
|
||||
let n = &self.network[i];
|
||||
dist = (n.b - b).abs();
|
||||
dist += (n.r - r).abs();
|
||||
if dist < bestd || dist < bestbiasd_biased {
|
||||
dist += (n.g - g).abs();
|
||||
dist += (n.a - a).abs();
|
||||
if dist < bestd {
|
||||
bestd = dist;
|
||||
bestpos = i as i32;
|
||||
}
|
||||
let biasdist = dist - self.bias[i];
|
||||
if biasdist < bestbiasd {
|
||||
bestbiasd = biasdist;
|
||||
bestbiaspos = i as i32;
|
||||
}
|
||||
}
|
||||
self.freq[i] -= BETA * self.freq[i];
|
||||
self.bias[i] += BETAGAMMA * self.freq[i];
|
||||
}
|
||||
self.freq[bestpos as usize] += BETA;
|
||||
self.bias[bestpos as usize] -= BETAGAMMA;
|
||||
return bestbiaspos;
|
||||
}
|
||||
|
||||
/// Main learning loop
|
||||
/// Note: the number of learning cycles is crucial and the parameters are not
|
||||
/// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine
|
||||
fn learn(&mut self, pixels: &[u8]) {
|
||||
let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32
|
||||
let radiusbiasshift: i32 = 6;
|
||||
let radiusbias: i32 = 1 << radiusbiasshift;
|
||||
let init_bias_radius: i32 = initrad * radiusbias;
|
||||
let mut bias_radius = init_bias_radius;
|
||||
let alphadec = 30 + ((self.samplefac - 1) / 3);
|
||||
let lengthcount = pixels.len() / CHANNELS;
|
||||
let samplepixels = lengthcount / self.samplefac as usize;
|
||||
// learning cycles
|
||||
let n_cycles = match self.netsize >> 1 {
|
||||
n if n <= 100 => 100,
|
||||
n => n,
|
||||
};
|
||||
let delta = match samplepixels / n_cycles {
|
||||
0 => 1,
|
||||
n => n,
|
||||
};
|
||||
let mut alpha = INIT_ALPHA;
|
||||
|
||||
let mut rad = bias_radius >> radiusbiasshift;
|
||||
if rad <= 1 {
|
||||
rad = 0
|
||||
};
|
||||
|
||||
let mut pos = 0;
|
||||
let step = *PRIMES
|
||||
.iter()
|
||||
.find(|&&prime| lengthcount % prime != 0)
|
||||
.unwrap_or(&PRIMES[3]);
|
||||
|
||||
let mut i = 0;
|
||||
while i < samplepixels {
|
||||
let (r, g, b, a) = {
|
||||
let p = &pixels[CHANNELS * pos..][..CHANNELS];
|
||||
(p[0] as f64, p[1] as f64, p[2] as f64, p[3] as f64)
|
||||
};
|
||||
|
||||
let j = self.contest(b, g, r, a);
|
||||
|
||||
let alpha_ = (1.0 * alpha as f64) / INIT_ALPHA as f64;
|
||||
self.salter_single(alpha_, j, Quad { b, g, r, a });
|
||||
if rad > 0 {
|
||||
self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a })
|
||||
};
|
||||
|
||||
pos += step;
|
||||
while pos >= lengthcount {
|
||||
pos -= lengthcount
|
||||
}
|
||||
|
||||
i += 1;
|
||||
if i % delta == 0 {
|
||||
alpha -= alpha / alphadec;
|
||||
bias_radius -= bias_radius / RADIUS_DEC;
|
||||
rad = bias_radius >> radiusbiasshift;
|
||||
if rad <= 1 {
|
||||
rad = 0
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// initializes the color map
|
||||
fn build_colormap(&mut self) {
|
||||
for i in 0usize..self.netsize {
|
||||
self.colormap[i].b = clamp(self.network[i].b.round() as i32);
|
||||
self.colormap[i].g = clamp(self.network[i].g.round() as i32);
|
||||
self.colormap[i].r = clamp(self.network[i].r.round() as i32);
|
||||
self.colormap[i].a = clamp(self.network[i].a.round() as i32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Insertion sort of network and building of netindex[0..255]
|
||||
fn build_netindex(&mut self) {
|
||||
let mut previouscol = 0;
|
||||
let mut startpos = 0;
|
||||
|
||||
for i in 0..self.netsize {
|
||||
let mut p = self.colormap[i];
|
||||
let mut q;
|
||||
let mut smallpos = i;
|
||||
let mut smallval = p.g as usize; // index on g
|
||||
// find smallest in i..netsize-1
|
||||
for j in (i + 1)..self.netsize {
|
||||
q = self.colormap[j];
|
||||
if (q.g as usize) < smallval {
|
||||
// index on g
|
||||
smallpos = j;
|
||||
smallval = q.g as usize; // index on g
|
||||
}
|
||||
}
|
||||
q = self.colormap[smallpos];
|
||||
// swap p (i) and q (smallpos) entries
|
||||
if i != smallpos {
|
||||
::std::mem::swap(&mut p, &mut q);
|
||||
self.colormap[i] = p;
|
||||
self.colormap[smallpos] = q;
|
||||
}
|
||||
// smallval entry is now in position i
|
||||
if smallval != previouscol {
|
||||
self.netindex[previouscol] = (startpos + i) >> 1;
|
||||
for j in (previouscol + 1)..smallval {
|
||||
self.netindex[j] = i
|
||||
}
|
||||
previouscol = smallval;
|
||||
startpos = i;
|
||||
}
|
||||
}
|
||||
let max_netpos = self.netsize - 1;
|
||||
self.netindex[previouscol] = (startpos + max_netpos) >> 1;
|
||||
for j in (previouscol + 1)..256 {
|
||||
self.netindex[j] = max_netpos
|
||||
} // really 256
|
||||
}
|
||||
|
||||
/// Search for best matching color
|
||||
fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize {
|
||||
let mut bestd = 1 << 30; // ~ 1_000_000
|
||||
let mut best = 0;
|
||||
// start at netindex[g] and work outwards
|
||||
let mut i = self.netindex[g as usize];
|
||||
let mut j = if i > 0 { i - 1 } else { 0 };
|
||||
|
||||
while (i < self.netsize) || (j > 0) {
|
||||
if i < self.netsize {
|
||||
let p = self.colormap[i];
|
||||
let mut e = p.g - g as i32;
|
||||
let mut dist = e * e; // inx key
|
||||
if dist >= bestd {
|
||||
break;
|
||||
} else {
|
||||
e = p.b - b as i32;
|
||||
dist += e * e;
|
||||
if dist < bestd {
|
||||
e = p.r - r as i32;
|
||||
dist += e * e;
|
||||
if dist < bestd {
|
||||
e = p.a - a as i32;
|
||||
dist += e * e;
|
||||
if dist < bestd {
|
||||
bestd = dist;
|
||||
best = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
if j > 0 {
|
||||
let p = self.colormap[j];
|
||||
let mut e = p.g - g as i32;
|
||||
let mut dist = e * e; // inx key
|
||||
if dist >= bestd {
|
||||
break;
|
||||
} else {
|
||||
e = p.b - b as i32;
|
||||
dist += e * e;
|
||||
if dist < bestd {
|
||||
e = p.r - r as i32;
|
||||
dist += e * e;
|
||||
if dist < bestd {
|
||||
e = p.a - a as i32;
|
||||
dist += e * e;
|
||||
if dist < bestd {
|
||||
bestd = dist;
|
||||
best = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
j -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
best
|
||||
}
|
||||
}
|
10
vendor/color_quant/src/math.rs
vendored
Normal file
10
vendor/color_quant/src/math.rs
vendored
Normal file
@ -0,0 +1,10 @@
|
||||
#[inline]
|
||||
pub(crate) fn clamp(a: i32) -> i32 {
|
||||
if a < 0 {
|
||||
0
|
||||
} else if a > 255 {
|
||||
255
|
||||
} else {
|
||||
a
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user