Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
This commit is contained in:
1182
vendor/crossbeam-utils/src/atomic/atomic_cell.rs
vendored
Normal file
1182
vendor/crossbeam-utils/src/atomic/atomic_cell.rs
vendored
Normal file
File diff suppressed because it is too large
Load Diff
111
vendor/crossbeam-utils/src/atomic/consume.rs
vendored
Normal file
111
vendor/crossbeam-utils/src/atomic/consume.rs
vendored
Normal file
@ -0,0 +1,111 @@
|
||||
#[cfg(not(crossbeam_no_atomic))]
|
||||
use core::sync::atomic::Ordering;
|
||||
|
||||
/// Trait which allows reading from primitive atomic types with "consume" ordering.
|
||||
pub trait AtomicConsume {
|
||||
/// Type returned by `load_consume`.
|
||||
type Val;
|
||||
|
||||
/// Loads a value from the atomic using a "consume" memory ordering.
|
||||
///
|
||||
/// This is similar to the "acquire" ordering, except that an ordering is
|
||||
/// only guaranteed with operations that "depend on" the result of the load.
|
||||
/// However consume loads are usually much faster than acquire loads on
|
||||
/// architectures with a weak memory model since they don't require memory
|
||||
/// fence instructions.
|
||||
///
|
||||
/// The exact definition of "depend on" is a bit vague, but it works as you
|
||||
/// would expect in practice since a lot of software, especially the Linux
|
||||
/// kernel, rely on this behavior.
|
||||
///
|
||||
/// This is currently only implemented on ARM and AArch64, where a fence
|
||||
/// can be avoided. On other architectures this will fall back to a simple
|
||||
/// `load(Ordering::Acquire)`.
|
||||
fn load_consume(&self) -> Self::Val;
|
||||
}
|
||||
|
||||
#[cfg(not(crossbeam_no_atomic))]
|
||||
// Miri and Loom don't support "consume" ordering and ThreadSanitizer doesn't treat
|
||||
// load(Relaxed) + compiler_fence(Acquire) as "consume" load.
|
||||
// LLVM generates machine code equivalent to fence(Acquire) in compiler_fence(Acquire)
|
||||
// on PowerPC, MIPS, etc. (https://godbolt.org/z/hffvjvW7h), so for now the fence
|
||||
// can be actually avoided here only on ARM and AArch64. See also
|
||||
// https://github.com/rust-lang/rust/issues/62256.
|
||||
#[cfg(all(
|
||||
any(target_arch = "arm", target_arch = "aarch64"),
|
||||
not(any(miri, crossbeam_loom, crossbeam_sanitize_thread)),
|
||||
))]
|
||||
macro_rules! impl_consume {
|
||||
() => {
|
||||
#[inline]
|
||||
fn load_consume(&self) -> Self::Val {
|
||||
use crate::primitive::sync::atomic::compiler_fence;
|
||||
let result = self.load(Ordering::Relaxed);
|
||||
compiler_fence(Ordering::Acquire);
|
||||
result
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[cfg(not(crossbeam_no_atomic))]
|
||||
#[cfg(not(all(
|
||||
any(target_arch = "arm", target_arch = "aarch64"),
|
||||
not(any(miri, crossbeam_loom, crossbeam_sanitize_thread)),
|
||||
)))]
|
||||
macro_rules! impl_consume {
|
||||
() => {
|
||||
#[inline]
|
||||
fn load_consume(&self) -> Self::Val {
|
||||
self.load(Ordering::Acquire)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! impl_atomic {
|
||||
($atomic:ident, $val:ty) => {
|
||||
#[cfg(not(crossbeam_no_atomic))]
|
||||
impl AtomicConsume for core::sync::atomic::$atomic {
|
||||
type Val = $val;
|
||||
impl_consume!();
|
||||
}
|
||||
#[cfg(crossbeam_loom)]
|
||||
impl AtomicConsume for loom::sync::atomic::$atomic {
|
||||
type Val = $val;
|
||||
impl_consume!();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_atomic!(AtomicBool, bool);
|
||||
impl_atomic!(AtomicUsize, usize);
|
||||
impl_atomic!(AtomicIsize, isize);
|
||||
impl_atomic!(AtomicU8, u8);
|
||||
impl_atomic!(AtomicI8, i8);
|
||||
impl_atomic!(AtomicU16, u16);
|
||||
impl_atomic!(AtomicI16, i16);
|
||||
#[cfg(any(target_has_atomic = "32", not(target_pointer_width = "16")))]
|
||||
impl_atomic!(AtomicU32, u32);
|
||||
#[cfg(any(target_has_atomic = "32", not(target_pointer_width = "16")))]
|
||||
impl_atomic!(AtomicI32, i32);
|
||||
#[cfg(any(
|
||||
target_has_atomic = "64",
|
||||
not(any(target_pointer_width = "16", target_pointer_width = "32")),
|
||||
))]
|
||||
impl_atomic!(AtomicU64, u64);
|
||||
#[cfg(any(
|
||||
target_has_atomic = "64",
|
||||
not(any(target_pointer_width = "16", target_pointer_width = "32")),
|
||||
))]
|
||||
impl_atomic!(AtomicI64, i64);
|
||||
|
||||
#[cfg(not(crossbeam_no_atomic))]
|
||||
impl<T> AtomicConsume for core::sync::atomic::AtomicPtr<T> {
|
||||
type Val = *mut T;
|
||||
impl_consume!();
|
||||
}
|
||||
|
||||
#[cfg(crossbeam_loom)]
|
||||
impl<T> AtomicConsume for loom::sync::atomic::AtomicPtr<T> {
|
||||
type Val = *mut T;
|
||||
impl_consume!();
|
||||
}
|
37
vendor/crossbeam-utils/src/atomic/mod.rs
vendored
Normal file
37
vendor/crossbeam-utils/src/atomic/mod.rs
vendored
Normal file
@ -0,0 +1,37 @@
|
||||
//! Atomic types.
|
||||
//!
|
||||
//! * [`AtomicCell`], a thread-safe mutable memory location.
|
||||
//! * [`AtomicConsume`], for reading from primitive atomic types with "consume" ordering.
|
||||
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
#[cfg(not(crossbeam_loom))]
|
||||
cfg_if::cfg_if! {
|
||||
// Use "wide" sequence lock if the pointer width <= 32 for preventing its counter against wrap
|
||||
// around.
|
||||
//
|
||||
// We are ignoring too wide architectures (pointer width >= 256), since such a system will not
|
||||
// appear in a conceivable future.
|
||||
//
|
||||
// In narrow architectures (pointer width <= 16), the counter is still <= 32-bit and may be
|
||||
// vulnerable to wrap around. But it's mostly okay, since in such a primitive hardware, the
|
||||
// counter will not be increased that fast.
|
||||
if #[cfg(any(target_pointer_width = "64", target_pointer_width = "128"))] {
|
||||
mod seq_lock;
|
||||
} else {
|
||||
#[path = "seq_lock_wide.rs"]
|
||||
mod seq_lock;
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
// We cannot provide AtomicCell under cfg(crossbeam_loom) because loom's atomic
|
||||
// types have a different in-memory representation than the underlying type.
|
||||
// TODO: The latest loom supports fences, so fallback using seqlock may be available.
|
||||
#[cfg(not(crossbeam_loom))]
|
||||
mod atomic_cell;
|
||||
mod consume;
|
||||
|
||||
#[cfg(target_has_atomic = "ptr")]
|
||||
#[cfg(not(crossbeam_loom))]
|
||||
pub use self::atomic_cell::AtomicCell;
|
||||
pub use self::consume::AtomicConsume;
|
112
vendor/crossbeam-utils/src/atomic/seq_lock.rs
vendored
Normal file
112
vendor/crossbeam-utils/src/atomic/seq_lock.rs
vendored
Normal file
@ -0,0 +1,112 @@
|
||||
use core::mem;
|
||||
use core::sync::atomic::{self, AtomicUsize, Ordering};
|
||||
|
||||
use crate::Backoff;
|
||||
|
||||
/// A simple stamped lock.
|
||||
pub(crate) struct SeqLock {
|
||||
/// The current state of the lock.
|
||||
///
|
||||
/// All bits except the least significant one hold the current stamp. When locked, the state
|
||||
/// equals 1 and doesn't contain a valid stamp.
|
||||
state: AtomicUsize,
|
||||
}
|
||||
|
||||
impl SeqLock {
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
state: AtomicUsize::new(0),
|
||||
}
|
||||
}
|
||||
|
||||
/// If not locked, returns the current stamp.
|
||||
///
|
||||
/// This method should be called before optimistic reads.
|
||||
#[inline]
|
||||
pub(crate) fn optimistic_read(&self) -> Option<usize> {
|
||||
let state = self.state.load(Ordering::Acquire);
|
||||
if state == 1 {
|
||||
None
|
||||
} else {
|
||||
Some(state)
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns `true` if the current stamp is equal to `stamp`.
|
||||
///
|
||||
/// This method should be called after optimistic reads to check whether they are valid. The
|
||||
/// argument `stamp` should correspond to the one returned by method `optimistic_read`.
|
||||
#[inline]
|
||||
pub(crate) fn validate_read(&self, stamp: usize) -> bool {
|
||||
atomic::fence(Ordering::Acquire);
|
||||
self.state.load(Ordering::Relaxed) == stamp
|
||||
}
|
||||
|
||||
/// Grabs the lock for writing.
|
||||
#[inline]
|
||||
pub(crate) fn write(&'static self) -> SeqLockWriteGuard {
|
||||
let backoff = Backoff::new();
|
||||
loop {
|
||||
let previous = self.state.swap(1, Ordering::Acquire);
|
||||
|
||||
if previous != 1 {
|
||||
atomic::fence(Ordering::Release);
|
||||
|
||||
return SeqLockWriteGuard {
|
||||
lock: self,
|
||||
state: previous,
|
||||
};
|
||||
}
|
||||
|
||||
backoff.snooze();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An RAII guard that releases the lock and increments the stamp when dropped.
|
||||
pub(crate) struct SeqLockWriteGuard {
|
||||
/// The parent lock.
|
||||
lock: &'static SeqLock,
|
||||
|
||||
/// The stamp before locking.
|
||||
state: usize,
|
||||
}
|
||||
|
||||
impl SeqLockWriteGuard {
|
||||
/// Releases the lock without incrementing the stamp.
|
||||
#[inline]
|
||||
pub(crate) fn abort(self) {
|
||||
self.lock.state.store(self.state, Ordering::Release);
|
||||
|
||||
// We specifically don't want to call drop(), since that's
|
||||
// what increments the stamp.
|
||||
mem::forget(self);
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for SeqLockWriteGuard {
|
||||
#[inline]
|
||||
fn drop(&mut self) {
|
||||
// Release the lock and increment the stamp.
|
||||
self.lock
|
||||
.state
|
||||
.store(self.state.wrapping_add(2), Ordering::Release);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::SeqLock;
|
||||
|
||||
#[test]
|
||||
fn test_abort() {
|
||||
static LK: SeqLock = SeqLock::new();
|
||||
let before = LK.optimistic_read().unwrap();
|
||||
{
|
||||
let guard = LK.write();
|
||||
guard.abort();
|
||||
}
|
||||
let after = LK.optimistic_read().unwrap();
|
||||
assert_eq!(before, after, "aborted write does not update the stamp");
|
||||
}
|
||||
}
|
155
vendor/crossbeam-utils/src/atomic/seq_lock_wide.rs
vendored
Normal file
155
vendor/crossbeam-utils/src/atomic/seq_lock_wide.rs
vendored
Normal file
@ -0,0 +1,155 @@
|
||||
use core::mem;
|
||||
use core::sync::atomic::{self, AtomicUsize, Ordering};
|
||||
|
||||
use crate::Backoff;
|
||||
|
||||
/// A simple stamped lock.
|
||||
///
|
||||
/// The state is represented as two `AtomicUsize`: `state_hi` for high bits and `state_lo` for low
|
||||
/// bits.
|
||||
pub(crate) struct SeqLock {
|
||||
/// The high bits of the current state of the lock.
|
||||
state_hi: AtomicUsize,
|
||||
|
||||
/// The low bits of the current state of the lock.
|
||||
///
|
||||
/// All bits except the least significant one hold the current stamp. When locked, the state_lo
|
||||
/// equals 1 and doesn't contain a valid stamp.
|
||||
state_lo: AtomicUsize,
|
||||
}
|
||||
|
||||
impl SeqLock {
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
state_hi: AtomicUsize::new(0),
|
||||
state_lo: AtomicUsize::new(0),
|
||||
}
|
||||
}
|
||||
|
||||
/// If not locked, returns the current stamp.
|
||||
///
|
||||
/// This method should be called before optimistic reads.
|
||||
#[inline]
|
||||
pub(crate) fn optimistic_read(&self) -> Option<(usize, usize)> {
|
||||
// The acquire loads from `state_hi` and `state_lo` synchronize with the release stores in
|
||||
// `SeqLockWriteGuard::drop`.
|
||||
//
|
||||
// As a consequence, we can make sure that (1) all writes within the era of `state_hi - 1`
|
||||
// happens before now; and therefore, (2) if `state_lo` is even, all writes within the
|
||||
// critical section of (`state_hi`, `state_lo`) happens before now.
|
||||
let state_hi = self.state_hi.load(Ordering::Acquire);
|
||||
let state_lo = self.state_lo.load(Ordering::Acquire);
|
||||
if state_lo == 1 {
|
||||
None
|
||||
} else {
|
||||
Some((state_hi, state_lo))
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns `true` if the current stamp is equal to `stamp`.
|
||||
///
|
||||
/// This method should be called after optimistic reads to check whether they are valid. The
|
||||
/// argument `stamp` should correspond to the one returned by method `optimistic_read`.
|
||||
#[inline]
|
||||
pub(crate) fn validate_read(&self, stamp: (usize, usize)) -> bool {
|
||||
// Thanks to the fence, if we're noticing any modification to the data at the critical
|
||||
// section of `(a, b)`, then the critical section's write of 1 to state_lo should be
|
||||
// visible.
|
||||
atomic::fence(Ordering::Acquire);
|
||||
|
||||
// So if `state_lo` coincides with `stamp.1`, then either (1) we're noticing no modification
|
||||
// to the data after the critical section of `(stamp.0, stamp.1)`, or (2) `state_lo` wrapped
|
||||
// around.
|
||||
//
|
||||
// If (2) is the case, the acquire ordering ensures we see the new value of `state_hi`.
|
||||
let state_lo = self.state_lo.load(Ordering::Acquire);
|
||||
|
||||
// If (2) is the case and `state_hi` coincides with `stamp.0`, then `state_hi` also wrapped
|
||||
// around, which we give up to correctly validate the read.
|
||||
let state_hi = self.state_hi.load(Ordering::Relaxed);
|
||||
|
||||
// Except for the case that both `state_hi` and `state_lo` wrapped around, the following
|
||||
// condition implies that we're noticing no modification to the data after the critical
|
||||
// section of `(stamp.0, stamp.1)`.
|
||||
(state_hi, state_lo) == stamp
|
||||
}
|
||||
|
||||
/// Grabs the lock for writing.
|
||||
#[inline]
|
||||
pub(crate) fn write(&'static self) -> SeqLockWriteGuard {
|
||||
let backoff = Backoff::new();
|
||||
loop {
|
||||
let previous = self.state_lo.swap(1, Ordering::Acquire);
|
||||
|
||||
if previous != 1 {
|
||||
// To synchronize with the acquire fence in `validate_read` via any modification to
|
||||
// the data at the critical section of `(state_hi, previous)`.
|
||||
atomic::fence(Ordering::Release);
|
||||
|
||||
return SeqLockWriteGuard {
|
||||
lock: self,
|
||||
state_lo: previous,
|
||||
};
|
||||
}
|
||||
|
||||
backoff.snooze();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An RAII guard that releases the lock and increments the stamp when dropped.
|
||||
pub(crate) struct SeqLockWriteGuard {
|
||||
/// The parent lock.
|
||||
lock: &'static SeqLock,
|
||||
|
||||
/// The stamp before locking.
|
||||
state_lo: usize,
|
||||
}
|
||||
|
||||
impl SeqLockWriteGuard {
|
||||
/// Releases the lock without incrementing the stamp.
|
||||
#[inline]
|
||||
pub(crate) fn abort(self) {
|
||||
self.lock.state_lo.store(self.state_lo, Ordering::Release);
|
||||
mem::forget(self);
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for SeqLockWriteGuard {
|
||||
#[inline]
|
||||
fn drop(&mut self) {
|
||||
let state_lo = self.state_lo.wrapping_add(2);
|
||||
|
||||
// Increase the high bits if the low bits wrap around.
|
||||
//
|
||||
// Release ordering for synchronizing with `optimistic_read`.
|
||||
if state_lo == 0 {
|
||||
let state_hi = self.lock.state_hi.load(Ordering::Relaxed);
|
||||
self.lock
|
||||
.state_hi
|
||||
.store(state_hi.wrapping_add(1), Ordering::Release);
|
||||
}
|
||||
|
||||
// Release the lock and increment the stamp.
|
||||
//
|
||||
// Release ordering for synchronizing with `optimistic_read`.
|
||||
self.lock.state_lo.store(state_lo, Ordering::Release);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::SeqLock;
|
||||
|
||||
#[test]
|
||||
fn test_abort() {
|
||||
static LK: SeqLock = SeqLock::new();
|
||||
let before = LK.optimistic_read().unwrap();
|
||||
{
|
||||
let guard = LK.write();
|
||||
guard.abort();
|
||||
}
|
||||
let after = LK.optimistic_read().unwrap();
|
||||
assert_eq!(before, after, "aborted write does not update the stamp");
|
||||
}
|
||||
}
|
287
vendor/crossbeam-utils/src/backoff.rs
vendored
Normal file
287
vendor/crossbeam-utils/src/backoff.rs
vendored
Normal file
@ -0,0 +1,287 @@
|
||||
use crate::primitive::hint;
|
||||
use core::cell::Cell;
|
||||
use core::fmt;
|
||||
|
||||
const SPIN_LIMIT: u32 = 6;
|
||||
const YIELD_LIMIT: u32 = 10;
|
||||
|
||||
/// Performs exponential backoff in spin loops.
|
||||
///
|
||||
/// Backing off in spin loops reduces contention and improves overall performance.
|
||||
///
|
||||
/// This primitive can execute *YIELD* and *PAUSE* instructions, yield the current thread to the OS
|
||||
/// scheduler, and tell when is a good time to block the thread using a different synchronization
|
||||
/// mechanism. Each step of the back off procedure takes roughly twice as long as the previous
|
||||
/// step.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// Backing off in a lock-free loop:
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::Backoff;
|
||||
/// use std::sync::atomic::AtomicUsize;
|
||||
/// use std::sync::atomic::Ordering::SeqCst;
|
||||
///
|
||||
/// fn fetch_mul(a: &AtomicUsize, b: usize) -> usize {
|
||||
/// let backoff = Backoff::new();
|
||||
/// loop {
|
||||
/// let val = a.load(SeqCst);
|
||||
/// if a.compare_exchange(val, val.wrapping_mul(b), SeqCst, SeqCst).is_ok() {
|
||||
/// return val;
|
||||
/// }
|
||||
/// backoff.spin();
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// Waiting for an [`AtomicBool`] to become `true`:
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::Backoff;
|
||||
/// use std::sync::atomic::AtomicBool;
|
||||
/// use std::sync::atomic::Ordering::SeqCst;
|
||||
///
|
||||
/// fn spin_wait(ready: &AtomicBool) {
|
||||
/// let backoff = Backoff::new();
|
||||
/// while !ready.load(SeqCst) {
|
||||
/// backoff.snooze();
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// Waiting for an [`AtomicBool`] to become `true` and parking the thread after a long wait.
|
||||
/// Note that whoever sets the atomic variable to `true` must notify the parked thread by calling
|
||||
/// [`unpark()`]:
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::Backoff;
|
||||
/// use std::sync::atomic::AtomicBool;
|
||||
/// use std::sync::atomic::Ordering::SeqCst;
|
||||
/// use std::thread;
|
||||
///
|
||||
/// fn blocking_wait(ready: &AtomicBool) {
|
||||
/// let backoff = Backoff::new();
|
||||
/// while !ready.load(SeqCst) {
|
||||
/// if backoff.is_completed() {
|
||||
/// thread::park();
|
||||
/// } else {
|
||||
/// backoff.snooze();
|
||||
/// }
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// [`is_completed`]: Backoff::is_completed
|
||||
/// [`std::thread::park()`]: std::thread::park
|
||||
/// [`Condvar`]: std::sync::Condvar
|
||||
/// [`AtomicBool`]: std::sync::atomic::AtomicBool
|
||||
/// [`unpark()`]: std::thread::Thread::unpark
|
||||
pub struct Backoff {
|
||||
step: Cell<u32>,
|
||||
}
|
||||
|
||||
impl Backoff {
|
||||
/// Creates a new `Backoff`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::Backoff;
|
||||
///
|
||||
/// let backoff = Backoff::new();
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn new() -> Self {
|
||||
Backoff { step: Cell::new(0) }
|
||||
}
|
||||
|
||||
/// Resets the `Backoff`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::Backoff;
|
||||
///
|
||||
/// let backoff = Backoff::new();
|
||||
/// backoff.reset();
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn reset(&self) {
|
||||
self.step.set(0);
|
||||
}
|
||||
|
||||
/// Backs off in a lock-free loop.
|
||||
///
|
||||
/// This method should be used when we need to retry an operation because another thread made
|
||||
/// progress.
|
||||
///
|
||||
/// The processor may yield using the *YIELD* or *PAUSE* instruction.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// Backing off in a lock-free loop:
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::Backoff;
|
||||
/// use std::sync::atomic::AtomicUsize;
|
||||
/// use std::sync::atomic::Ordering::SeqCst;
|
||||
///
|
||||
/// fn fetch_mul(a: &AtomicUsize, b: usize) -> usize {
|
||||
/// let backoff = Backoff::new();
|
||||
/// loop {
|
||||
/// let val = a.load(SeqCst);
|
||||
/// if a.compare_exchange(val, val.wrapping_mul(b), SeqCst, SeqCst).is_ok() {
|
||||
/// return val;
|
||||
/// }
|
||||
/// backoff.spin();
|
||||
/// }
|
||||
/// }
|
||||
///
|
||||
/// let a = AtomicUsize::new(7);
|
||||
/// assert_eq!(fetch_mul(&a, 8), 7);
|
||||
/// assert_eq!(a.load(SeqCst), 56);
|
||||
/// ```
|
||||
#[inline]
|
||||
pub fn spin(&self) {
|
||||
for _ in 0..1 << self.step.get().min(SPIN_LIMIT) {
|
||||
hint::spin_loop();
|
||||
}
|
||||
|
||||
if self.step.get() <= SPIN_LIMIT {
|
||||
self.step.set(self.step.get() + 1);
|
||||
}
|
||||
}
|
||||
|
||||
/// Backs off in a blocking loop.
|
||||
///
|
||||
/// This method should be used when we need to wait for another thread to make progress.
|
||||
///
|
||||
/// The processor may yield using the *YIELD* or *PAUSE* instruction and the current thread
|
||||
/// may yield by giving up a timeslice to the OS scheduler.
|
||||
///
|
||||
/// In `#[no_std]` environments, this method is equivalent to [`spin`].
|
||||
///
|
||||
/// If possible, use [`is_completed`] to check when it is advised to stop using backoff and
|
||||
/// block the current thread using a different synchronization mechanism instead.
|
||||
///
|
||||
/// [`spin`]: Backoff::spin
|
||||
/// [`is_completed`]: Backoff::is_completed
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// Waiting for an [`AtomicBool`] to become `true`:
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::Backoff;
|
||||
/// use std::sync::Arc;
|
||||
/// use std::sync::atomic::AtomicBool;
|
||||
/// use std::sync::atomic::Ordering::SeqCst;
|
||||
/// use std::thread;
|
||||
/// use std::time::Duration;
|
||||
///
|
||||
/// fn spin_wait(ready: &AtomicBool) {
|
||||
/// let backoff = Backoff::new();
|
||||
/// while !ready.load(SeqCst) {
|
||||
/// backoff.snooze();
|
||||
/// }
|
||||
/// }
|
||||
///
|
||||
/// let ready = Arc::new(AtomicBool::new(false));
|
||||
/// let ready2 = ready.clone();
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// thread::sleep(Duration::from_millis(100));
|
||||
/// ready2.store(true, SeqCst);
|
||||
/// });
|
||||
///
|
||||
/// assert_eq!(ready.load(SeqCst), false);
|
||||
/// spin_wait(&ready);
|
||||
/// assert_eq!(ready.load(SeqCst), true);
|
||||
/// # std::thread::sleep(std::time::Duration::from_millis(500)); // wait for background threads closed: https://github.com/rust-lang/miri/issues/1371
|
||||
/// ```
|
||||
///
|
||||
/// [`AtomicBool`]: std::sync::atomic::AtomicBool
|
||||
#[inline]
|
||||
pub fn snooze(&self) {
|
||||
if self.step.get() <= SPIN_LIMIT {
|
||||
for _ in 0..1 << self.step.get() {
|
||||
hint::spin_loop();
|
||||
}
|
||||
} else {
|
||||
#[cfg(not(feature = "std"))]
|
||||
for _ in 0..1 << self.step.get() {
|
||||
hint::spin_loop();
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
::std::thread::yield_now();
|
||||
}
|
||||
|
||||
if self.step.get() <= YIELD_LIMIT {
|
||||
self.step.set(self.step.get() + 1);
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns `true` if exponential backoff has completed and blocking the thread is advised.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// Waiting for an [`AtomicBool`] to become `true` and parking the thread after a long wait:
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::Backoff;
|
||||
/// use std::sync::Arc;
|
||||
/// use std::sync::atomic::AtomicBool;
|
||||
/// use std::sync::atomic::Ordering::SeqCst;
|
||||
/// use std::thread;
|
||||
/// use std::time::Duration;
|
||||
///
|
||||
/// fn blocking_wait(ready: &AtomicBool) {
|
||||
/// let backoff = Backoff::new();
|
||||
/// while !ready.load(SeqCst) {
|
||||
/// if backoff.is_completed() {
|
||||
/// thread::park();
|
||||
/// } else {
|
||||
/// backoff.snooze();
|
||||
/// }
|
||||
/// }
|
||||
/// }
|
||||
///
|
||||
/// let ready = Arc::new(AtomicBool::new(false));
|
||||
/// let ready2 = ready.clone();
|
||||
/// let waiter = thread::current();
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// thread::sleep(Duration::from_millis(100));
|
||||
/// ready2.store(true, SeqCst);
|
||||
/// waiter.unpark();
|
||||
/// });
|
||||
///
|
||||
/// assert_eq!(ready.load(SeqCst), false);
|
||||
/// blocking_wait(&ready);
|
||||
/// assert_eq!(ready.load(SeqCst), true);
|
||||
/// # std::thread::sleep(std::time::Duration::from_millis(500)); // wait for background threads closed: https://github.com/rust-lang/miri/issues/1371
|
||||
/// ```
|
||||
///
|
||||
/// [`AtomicBool`]: std::sync::atomic::AtomicBool
|
||||
#[inline]
|
||||
pub fn is_completed(&self) -> bool {
|
||||
self.step.get() > YIELD_LIMIT
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Backoff {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("Backoff")
|
||||
.field("step", &self.step)
|
||||
.field("is_completed", &self.is_completed())
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Backoff {
|
||||
fn default() -> Backoff {
|
||||
Backoff::new()
|
||||
}
|
||||
}
|
209
vendor/crossbeam-utils/src/cache_padded.rs
vendored
Normal file
209
vendor/crossbeam-utils/src/cache_padded.rs
vendored
Normal file
@ -0,0 +1,209 @@
|
||||
use core::fmt;
|
||||
use core::ops::{Deref, DerefMut};
|
||||
|
||||
/// Pads and aligns a value to the length of a cache line.
|
||||
///
|
||||
/// In concurrent programming, sometimes it is desirable to make sure commonly accessed pieces of
|
||||
/// data are not placed into the same cache line. Updating an atomic value invalidates the whole
|
||||
/// cache line it belongs to, which makes the next access to the same cache line slower for other
|
||||
/// CPU cores. Use `CachePadded` to ensure updating one piece of data doesn't invalidate other
|
||||
/// cached data.
|
||||
///
|
||||
/// # Size and alignment
|
||||
///
|
||||
/// Cache lines are assumed to be N bytes long, depending on the architecture:
|
||||
///
|
||||
/// * On x86-64, aarch64, and powerpc64, N = 128.
|
||||
/// * On arm, mips, mips64, sparc, and hexagon, N = 32.
|
||||
/// * On m68k, N = 16.
|
||||
/// * On s390x, N = 256.
|
||||
/// * On all others, N = 64.
|
||||
///
|
||||
/// Note that N is just a reasonable guess and is not guaranteed to match the actual cache line
|
||||
/// length of the machine the program is running on. On modern Intel architectures, spatial
|
||||
/// prefetcher is pulling pairs of 64-byte cache lines at a time, so we pessimistically assume that
|
||||
/// cache lines are 128 bytes long.
|
||||
///
|
||||
/// The size of `CachePadded<T>` is the smallest multiple of N bytes large enough to accommodate
|
||||
/// a value of type `T`.
|
||||
///
|
||||
/// The alignment of `CachePadded<T>` is the maximum of N bytes and the alignment of `T`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// Alignment and padding:
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::CachePadded;
|
||||
///
|
||||
/// let array = [CachePadded::new(1i8), CachePadded::new(2i8)];
|
||||
/// let addr1 = &*array[0] as *const i8 as usize;
|
||||
/// let addr2 = &*array[1] as *const i8 as usize;
|
||||
///
|
||||
/// assert!(addr2 - addr1 >= 32);
|
||||
/// assert_eq!(addr1 % 32, 0);
|
||||
/// assert_eq!(addr2 % 32, 0);
|
||||
/// ```
|
||||
///
|
||||
/// When building a concurrent queue with a head and a tail index, it is wise to place them in
|
||||
/// different cache lines so that concurrent threads pushing and popping elements don't invalidate
|
||||
/// each other's cache lines:
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::CachePadded;
|
||||
/// use std::sync::atomic::AtomicUsize;
|
||||
///
|
||||
/// struct Queue<T> {
|
||||
/// head: CachePadded<AtomicUsize>,
|
||||
/// tail: CachePadded<AtomicUsize>,
|
||||
/// buffer: *mut T,
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Clone, Copy, Default, Hash, PartialEq, Eq)]
|
||||
// Starting from Intel's Sandy Bridge, spatial prefetcher is now pulling pairs of 64-byte cache
|
||||
// lines at a time, so we have to align to 128 bytes rather than 64.
|
||||
//
|
||||
// Sources:
|
||||
// - https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
|
||||
// - https://github.com/facebook/folly/blob/1b5288e6eea6df074758f877c849b6e73bbb9fbb/folly/lang/Align.h#L107
|
||||
//
|
||||
// ARM's big.LITTLE architecture has asymmetric cores and "big" cores have 128-byte cache line size.
|
||||
//
|
||||
// Sources:
|
||||
// - https://www.mono-project.com/news/2016/09/12/arm64-icache/
|
||||
//
|
||||
// powerpc64 has 128-byte cache line size.
|
||||
//
|
||||
// Sources:
|
||||
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_ppc64x.go#L9
|
||||
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/powerpc/include/asm/cache.h#L26
|
||||
#[cfg_attr(
|
||||
any(
|
||||
target_arch = "x86_64",
|
||||
target_arch = "aarch64",
|
||||
target_arch = "powerpc64",
|
||||
),
|
||||
repr(align(128))
|
||||
)]
|
||||
// arm, mips, mips64, sparc, and hexagon have 32-byte cache line size.
|
||||
//
|
||||
// Sources:
|
||||
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_arm.go#L7
|
||||
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mips.go#L7
|
||||
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mipsle.go#L7
|
||||
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mips64x.go#L9
|
||||
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/sparc/include/asm/cache.h#L17
|
||||
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/hexagon/include/asm/cache.h#L12
|
||||
#[cfg_attr(
|
||||
any(
|
||||
target_arch = "arm",
|
||||
target_arch = "mips",
|
||||
target_arch = "mips32r6",
|
||||
target_arch = "mips64",
|
||||
target_arch = "mips64r6",
|
||||
target_arch = "sparc",
|
||||
target_arch = "hexagon",
|
||||
),
|
||||
repr(align(32))
|
||||
)]
|
||||
// m68k has 16-byte cache line size.
|
||||
//
|
||||
// Sources:
|
||||
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/m68k/include/asm/cache.h#L9
|
||||
#[cfg_attr(target_arch = "m68k", repr(align(16)))]
|
||||
// s390x has 256-byte cache line size.
|
||||
//
|
||||
// Sources:
|
||||
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_s390x.go#L7
|
||||
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/s390/include/asm/cache.h#L13
|
||||
#[cfg_attr(target_arch = "s390x", repr(align(256)))]
|
||||
// x86, wasm, riscv, and sparc64 have 64-byte cache line size.
|
||||
//
|
||||
// Sources:
|
||||
// - https://github.com/golang/go/blob/dda2991c2ea0c5914714469c4defc2562a907230/src/internal/cpu/cpu_x86.go#L9
|
||||
// - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_wasm.go#L7
|
||||
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/riscv/include/asm/cache.h#L10
|
||||
// - https://github.com/torvalds/linux/blob/3516bd729358a2a9b090c1905bd2a3fa926e24c6/arch/sparc/include/asm/cache.h#L19
|
||||
//
|
||||
// All others are assumed to have 64-byte cache line size.
|
||||
#[cfg_attr(
|
||||
not(any(
|
||||
target_arch = "x86_64",
|
||||
target_arch = "aarch64",
|
||||
target_arch = "powerpc64",
|
||||
target_arch = "arm",
|
||||
target_arch = "mips",
|
||||
target_arch = "mips32r6",
|
||||
target_arch = "mips64",
|
||||
target_arch = "mips64r6",
|
||||
target_arch = "sparc",
|
||||
target_arch = "hexagon",
|
||||
target_arch = "m68k",
|
||||
target_arch = "s390x",
|
||||
)),
|
||||
repr(align(64))
|
||||
)]
|
||||
pub struct CachePadded<T> {
|
||||
value: T,
|
||||
}
|
||||
|
||||
unsafe impl<T: Send> Send for CachePadded<T> {}
|
||||
unsafe impl<T: Sync> Sync for CachePadded<T> {}
|
||||
|
||||
impl<T> CachePadded<T> {
|
||||
/// Pads and aligns a value to the length of a cache line.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::CachePadded;
|
||||
///
|
||||
/// let padded_value = CachePadded::new(1);
|
||||
/// ```
|
||||
pub const fn new(t: T) -> CachePadded<T> {
|
||||
CachePadded::<T> { value: t }
|
||||
}
|
||||
|
||||
/// Returns the inner value.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::CachePadded;
|
||||
///
|
||||
/// let padded_value = CachePadded::new(7);
|
||||
/// let value = padded_value.into_inner();
|
||||
/// assert_eq!(value, 7);
|
||||
/// ```
|
||||
pub fn into_inner(self) -> T {
|
||||
self.value
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Deref for CachePadded<T> {
|
||||
type Target = T;
|
||||
|
||||
fn deref(&self) -> &T {
|
||||
&self.value
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> DerefMut for CachePadded<T> {
|
||||
fn deref_mut(&mut self) -> &mut T {
|
||||
&mut self.value
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: fmt::Debug> fmt::Debug for CachePadded<T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("CachePadded")
|
||||
.field("value", &self.value)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<T> for CachePadded<T> {
|
||||
fn from(t: T) -> Self {
|
||||
CachePadded::new(t)
|
||||
}
|
||||
}
|
111
vendor/crossbeam-utils/src/lib.rs
vendored
Normal file
111
vendor/crossbeam-utils/src/lib.rs
vendored
Normal file
@ -0,0 +1,111 @@
|
||||
//! Miscellaneous tools for concurrent programming.
|
||||
//!
|
||||
//! ## Atomics
|
||||
//!
|
||||
//! * [`AtomicCell`], a thread-safe mutable memory location.
|
||||
//! * [`AtomicConsume`], for reading from primitive atomic types with "consume" ordering.
|
||||
//!
|
||||
//! ## Thread synchronization
|
||||
//!
|
||||
//! * [`Parker`], a thread parking primitive.
|
||||
//! * [`ShardedLock`], a sharded reader-writer lock with fast concurrent reads.
|
||||
//! * [`WaitGroup`], for synchronizing the beginning or end of some computation.
|
||||
//!
|
||||
//! ## Utilities
|
||||
//!
|
||||
//! * [`Backoff`], for exponential backoff in spin loops.
|
||||
//! * [`CachePadded`], for padding and aligning a value to the length of a cache line.
|
||||
//! * [`scope`], for spawning threads that borrow local variables from the stack.
|
||||
//!
|
||||
//! [`AtomicCell`]: atomic::AtomicCell
|
||||
//! [`AtomicConsume`]: atomic::AtomicConsume
|
||||
//! [`Parker`]: sync::Parker
|
||||
//! [`ShardedLock`]: sync::ShardedLock
|
||||
//! [`WaitGroup`]: sync::WaitGroup
|
||||
//! [`scope`]: thread::scope
|
||||
|
||||
#![doc(test(
|
||||
no_crate_inject,
|
||||
attr(
|
||||
deny(warnings, rust_2018_idioms),
|
||||
allow(dead_code, unused_assignments, unused_variables)
|
||||
)
|
||||
))]
|
||||
#![warn(
|
||||
missing_docs,
|
||||
missing_debug_implementations,
|
||||
rust_2018_idioms,
|
||||
unreachable_pub
|
||||
)]
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
|
||||
#[cfg(crossbeam_loom)]
|
||||
#[allow(unused_imports)]
|
||||
mod primitive {
|
||||
pub(crate) mod hint {
|
||||
pub(crate) use loom::hint::spin_loop;
|
||||
}
|
||||
pub(crate) mod sync {
|
||||
pub(crate) mod atomic {
|
||||
pub(crate) use loom::sync::atomic::{
|
||||
AtomicBool, AtomicI16, AtomicI32, AtomicI64, AtomicI8, AtomicIsize, AtomicU16,
|
||||
AtomicU32, AtomicU64, AtomicU8, AtomicUsize, Ordering,
|
||||
};
|
||||
|
||||
// FIXME: loom does not support compiler_fence at the moment.
|
||||
// https://github.com/tokio-rs/loom/issues/117
|
||||
// we use fence as a stand-in for compiler_fence for the time being.
|
||||
// this may miss some races since fence is stronger than compiler_fence,
|
||||
// but it's the best we can do for the time being.
|
||||
pub(crate) use loom::sync::atomic::fence as compiler_fence;
|
||||
}
|
||||
pub(crate) use loom::sync::{Arc, Condvar, Mutex};
|
||||
}
|
||||
}
|
||||
#[cfg(not(crossbeam_loom))]
|
||||
#[allow(unused_imports)]
|
||||
mod primitive {
|
||||
pub(crate) mod hint {
|
||||
pub(crate) use core::hint::spin_loop;
|
||||
}
|
||||
pub(crate) mod sync {
|
||||
pub(crate) mod atomic {
|
||||
pub(crate) use core::sync::atomic::{compiler_fence, Ordering};
|
||||
#[cfg(not(crossbeam_no_atomic))]
|
||||
pub(crate) use core::sync::atomic::{
|
||||
AtomicBool, AtomicI16, AtomicI8, AtomicIsize, AtomicU16, AtomicU8, AtomicUsize,
|
||||
};
|
||||
#[cfg(not(crossbeam_no_atomic))]
|
||||
#[cfg(any(target_has_atomic = "32", not(target_pointer_width = "16")))]
|
||||
pub(crate) use core::sync::atomic::{AtomicI32, AtomicU32};
|
||||
#[cfg(not(crossbeam_no_atomic))]
|
||||
#[cfg(any(
|
||||
target_has_atomic = "64",
|
||||
not(any(target_pointer_width = "16", target_pointer_width = "32")),
|
||||
))]
|
||||
pub(crate) use core::sync::atomic::{AtomicI64, AtomicU64};
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
pub(crate) use std::sync::{Arc, Condvar, Mutex};
|
||||
}
|
||||
}
|
||||
|
||||
pub mod atomic;
|
||||
|
||||
mod cache_padded;
|
||||
pub use crate::cache_padded::CachePadded;
|
||||
|
||||
mod backoff;
|
||||
pub use crate::backoff::Backoff;
|
||||
|
||||
use cfg_if::cfg_if;
|
||||
|
||||
cfg_if! {
|
||||
if #[cfg(feature = "std")] {
|
||||
pub mod sync;
|
||||
|
||||
#[cfg(not(crossbeam_loom))]
|
||||
pub mod thread;
|
||||
}
|
||||
}
|
17
vendor/crossbeam-utils/src/sync/mod.rs
vendored
Normal file
17
vendor/crossbeam-utils/src/sync/mod.rs
vendored
Normal file
@ -0,0 +1,17 @@
|
||||
//! Thread synchronization primitives.
|
||||
//!
|
||||
//! * [`Parker`], a thread parking primitive.
|
||||
//! * [`ShardedLock`], a sharded reader-writer lock with fast concurrent reads.
|
||||
//! * [`WaitGroup`], for synchronizing the beginning or end of some computation.
|
||||
|
||||
#[cfg(not(crossbeam_loom))]
|
||||
mod once_lock;
|
||||
mod parker;
|
||||
#[cfg(not(crossbeam_loom))]
|
||||
mod sharded_lock;
|
||||
mod wait_group;
|
||||
|
||||
pub use self::parker::{Parker, Unparker};
|
||||
#[cfg(not(crossbeam_loom))]
|
||||
pub use self::sharded_lock::{ShardedLock, ShardedLockReadGuard, ShardedLockWriteGuard};
|
||||
pub use self::wait_group::WaitGroup;
|
88
vendor/crossbeam-utils/src/sync/once_lock.rs
vendored
Normal file
88
vendor/crossbeam-utils/src/sync/once_lock.rs
vendored
Normal file
@ -0,0 +1,88 @@
|
||||
// Based on unstable std::sync::OnceLock.
|
||||
//
|
||||
// Source: https://github.com/rust-lang/rust/blob/8e9c93df464b7ada3fc7a1c8ccddd9dcb24ee0a0/library/std/src/sync/once_lock.rs
|
||||
|
||||
use core::cell::UnsafeCell;
|
||||
use core::mem::MaybeUninit;
|
||||
use std::sync::Once;
|
||||
|
||||
pub(crate) struct OnceLock<T> {
|
||||
once: Once,
|
||||
value: UnsafeCell<MaybeUninit<T>>,
|
||||
// Unlike std::sync::OnceLock, we don't need PhantomData here because
|
||||
// we don't use #[may_dangle].
|
||||
}
|
||||
|
||||
unsafe impl<T: Sync + Send> Sync for OnceLock<T> {}
|
||||
unsafe impl<T: Send> Send for OnceLock<T> {}
|
||||
|
||||
impl<T> OnceLock<T> {
|
||||
/// Creates a new empty cell.
|
||||
#[must_use]
|
||||
pub(crate) const fn new() -> Self {
|
||||
Self {
|
||||
once: Once::new(),
|
||||
value: UnsafeCell::new(MaybeUninit::uninit()),
|
||||
}
|
||||
}
|
||||
|
||||
/// Gets the contents of the cell, initializing it with `f` if the cell
|
||||
/// was empty.
|
||||
///
|
||||
/// Many threads may call `get_or_init` concurrently with different
|
||||
/// initializing functions, but it is guaranteed that only one function
|
||||
/// will be executed.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// If `f` panics, the panic is propagated to the caller, and the cell
|
||||
/// remains uninitialized.
|
||||
///
|
||||
/// It is an error to reentrantly initialize the cell from `f`. The
|
||||
/// exact outcome is unspecified. Current implementation deadlocks, but
|
||||
/// this may be changed to a panic in the future.
|
||||
pub(crate) fn get_or_init<F>(&self, f: F) -> &T
|
||||
where
|
||||
F: FnOnce() -> T,
|
||||
{
|
||||
// Fast path check
|
||||
if self.once.is_completed() {
|
||||
// SAFETY: The inner value has been initialized
|
||||
return unsafe { self.get_unchecked() };
|
||||
}
|
||||
self.initialize(f);
|
||||
|
||||
// SAFETY: The inner value has been initialized
|
||||
unsafe { self.get_unchecked() }
|
||||
}
|
||||
|
||||
#[cold]
|
||||
fn initialize<F>(&self, f: F)
|
||||
where
|
||||
F: FnOnce() -> T,
|
||||
{
|
||||
let slot = self.value.get();
|
||||
|
||||
self.once.call_once(|| {
|
||||
let value = f();
|
||||
unsafe { slot.write(MaybeUninit::new(value)) }
|
||||
});
|
||||
}
|
||||
|
||||
/// # Safety
|
||||
///
|
||||
/// The value must be initialized
|
||||
unsafe fn get_unchecked(&self) -> &T {
|
||||
debug_assert!(self.once.is_completed());
|
||||
&*self.value.get().cast::<T>()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Drop for OnceLock<T> {
|
||||
fn drop(&mut self) {
|
||||
if self.once.is_completed() {
|
||||
// SAFETY: The inner value has been initialized
|
||||
unsafe { (*self.value.get()).assume_init_drop() };
|
||||
}
|
||||
}
|
||||
}
|
415
vendor/crossbeam-utils/src/sync/parker.rs
vendored
Normal file
415
vendor/crossbeam-utils/src/sync/parker.rs
vendored
Normal file
@ -0,0 +1,415 @@
|
||||
use crate::primitive::sync::atomic::{AtomicUsize, Ordering::SeqCst};
|
||||
use crate::primitive::sync::{Arc, Condvar, Mutex};
|
||||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
/// A thread parking primitive.
|
||||
///
|
||||
/// Conceptually, each `Parker` has an associated token which is initially not present:
|
||||
///
|
||||
/// * The [`park`] method blocks the current thread unless or until the token is available, at
|
||||
/// which point it automatically consumes the token.
|
||||
///
|
||||
/// * The [`park_timeout`] and [`park_deadline`] methods work the same as [`park`], but block for
|
||||
/// a specified maximum time.
|
||||
///
|
||||
/// * The [`unpark`] method atomically makes the token available if it wasn't already. Because the
|
||||
/// token is initially absent, [`unpark`] followed by [`park`] will result in the second call
|
||||
/// returning immediately.
|
||||
///
|
||||
/// In other words, each `Parker` acts a bit like a spinlock that can be locked and unlocked using
|
||||
/// [`park`] and [`unpark`].
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::thread;
|
||||
/// use std::time::Duration;
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let u = p.unparker().clone();
|
||||
///
|
||||
/// // Make the token available.
|
||||
/// u.unpark();
|
||||
/// // Wakes up immediately and consumes the token.
|
||||
/// p.park();
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// thread::sleep(Duration::from_millis(500));
|
||||
/// u.unpark();
|
||||
/// });
|
||||
///
|
||||
/// // Wakes up when `u.unpark()` provides the token.
|
||||
/// p.park();
|
||||
/// # std::thread::sleep(std::time::Duration::from_millis(500)); // wait for background threads closed: https://github.com/rust-lang/miri/issues/1371
|
||||
/// ```
|
||||
///
|
||||
/// [`park`]: Parker::park
|
||||
/// [`park_timeout`]: Parker::park_timeout
|
||||
/// [`park_deadline`]: Parker::park_deadline
|
||||
/// [`unpark`]: Unparker::unpark
|
||||
pub struct Parker {
|
||||
unparker: Unparker,
|
||||
_marker: PhantomData<*const ()>,
|
||||
}
|
||||
|
||||
unsafe impl Send for Parker {}
|
||||
|
||||
impl Default for Parker {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
unparker: Unparker {
|
||||
inner: Arc::new(Inner {
|
||||
state: AtomicUsize::new(EMPTY),
|
||||
lock: Mutex::new(()),
|
||||
cvar: Condvar::new(),
|
||||
}),
|
||||
},
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Parker {
|
||||
/// Creates a new `Parker`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// ```
|
||||
///
|
||||
pub fn new() -> Parker {
|
||||
Self::default()
|
||||
}
|
||||
|
||||
/// Blocks the current thread until the token is made available.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let u = p.unparker().clone();
|
||||
///
|
||||
/// // Make the token available.
|
||||
/// u.unpark();
|
||||
///
|
||||
/// // Wakes up immediately and consumes the token.
|
||||
/// p.park();
|
||||
/// ```
|
||||
pub fn park(&self) {
|
||||
self.unparker.inner.park(None);
|
||||
}
|
||||
|
||||
/// Blocks the current thread until the token is made available, but only for a limited time.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::time::Duration;
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
///
|
||||
/// // Waits for the token to become available, but will not wait longer than 500 ms.
|
||||
/// p.park_timeout(Duration::from_millis(500));
|
||||
/// ```
|
||||
pub fn park_timeout(&self, timeout: Duration) {
|
||||
match Instant::now().checked_add(timeout) {
|
||||
Some(deadline) => self.park_deadline(deadline),
|
||||
None => self.park(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Blocks the current thread until the token is made available, or until a certain deadline.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::time::{Duration, Instant};
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let deadline = Instant::now() + Duration::from_millis(500);
|
||||
///
|
||||
/// // Waits for the token to become available, but will not wait longer than 500 ms.
|
||||
/// p.park_deadline(deadline);
|
||||
/// ```
|
||||
pub fn park_deadline(&self, deadline: Instant) {
|
||||
self.unparker.inner.park(Some(deadline))
|
||||
}
|
||||
|
||||
/// Returns a reference to an associated [`Unparker`].
|
||||
///
|
||||
/// The returned [`Unparker`] doesn't have to be used by reference - it can also be cloned.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let u = p.unparker().clone();
|
||||
///
|
||||
/// // Make the token available.
|
||||
/// u.unpark();
|
||||
/// // Wakes up immediately and consumes the token.
|
||||
/// p.park();
|
||||
/// ```
|
||||
///
|
||||
/// [`park`]: Parker::park
|
||||
/// [`park_timeout`]: Parker::park_timeout
|
||||
pub fn unparker(&self) -> &Unparker {
|
||||
&self.unparker
|
||||
}
|
||||
|
||||
/// Converts a `Parker` into a raw pointer.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let raw = Parker::into_raw(p);
|
||||
/// # let _ = unsafe { Parker::from_raw(raw) };
|
||||
/// ```
|
||||
pub fn into_raw(this: Parker) -> *const () {
|
||||
Unparker::into_raw(this.unparker)
|
||||
}
|
||||
|
||||
/// Converts a raw pointer into a `Parker`.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// This method is safe to use only with pointers returned by [`Parker::into_raw`].
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let raw = Parker::into_raw(p);
|
||||
/// let p = unsafe { Parker::from_raw(raw) };
|
||||
/// ```
|
||||
pub unsafe fn from_raw(ptr: *const ()) -> Parker {
|
||||
Parker {
|
||||
unparker: Unparker::from_raw(ptr),
|
||||
_marker: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Parker {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.pad("Parker { .. }")
|
||||
}
|
||||
}
|
||||
|
||||
/// Unparks a thread parked by the associated [`Parker`].
|
||||
pub struct Unparker {
|
||||
inner: Arc<Inner>,
|
||||
}
|
||||
|
||||
unsafe impl Send for Unparker {}
|
||||
unsafe impl Sync for Unparker {}
|
||||
|
||||
impl Unparker {
|
||||
/// Atomically makes the token available if it is not already.
|
||||
///
|
||||
/// This method will wake up the thread blocked on [`park`] or [`park_timeout`], if there is
|
||||
/// any.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use std::thread;
|
||||
/// use std::time::Duration;
|
||||
/// use crossbeam_utils::sync::Parker;
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let u = p.unparker().clone();
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// thread::sleep(Duration::from_millis(500));
|
||||
/// u.unpark();
|
||||
/// });
|
||||
///
|
||||
/// // Wakes up when `u.unpark()` provides the token.
|
||||
/// p.park();
|
||||
/// # std::thread::sleep(std::time::Duration::from_millis(500)); // wait for background threads closed: https://github.com/rust-lang/miri/issues/1371
|
||||
/// ```
|
||||
///
|
||||
/// [`park`]: Parker::park
|
||||
/// [`park_timeout`]: Parker::park_timeout
|
||||
pub fn unpark(&self) {
|
||||
self.inner.unpark()
|
||||
}
|
||||
|
||||
/// Converts an `Unparker` into a raw pointer.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::{Parker, Unparker};
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let u = p.unparker().clone();
|
||||
/// let raw = Unparker::into_raw(u);
|
||||
/// # let _ = unsafe { Unparker::from_raw(raw) };
|
||||
/// ```
|
||||
pub fn into_raw(this: Unparker) -> *const () {
|
||||
Arc::into_raw(this.inner).cast::<()>()
|
||||
}
|
||||
|
||||
/// Converts a raw pointer into an `Unparker`.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// This method is safe to use only with pointers returned by [`Unparker::into_raw`].
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::{Parker, Unparker};
|
||||
///
|
||||
/// let p = Parker::new();
|
||||
/// let u = p.unparker().clone();
|
||||
///
|
||||
/// let raw = Unparker::into_raw(u);
|
||||
/// let u = unsafe { Unparker::from_raw(raw) };
|
||||
/// ```
|
||||
pub unsafe fn from_raw(ptr: *const ()) -> Unparker {
|
||||
Unparker {
|
||||
inner: Arc::from_raw(ptr.cast::<Inner>()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Unparker {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.pad("Unparker { .. }")
|
||||
}
|
||||
}
|
||||
|
||||
impl Clone for Unparker {
|
||||
fn clone(&self) -> Unparker {
|
||||
Unparker {
|
||||
inner: self.inner.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const EMPTY: usize = 0;
|
||||
const PARKED: usize = 1;
|
||||
const NOTIFIED: usize = 2;
|
||||
|
||||
struct Inner {
|
||||
state: AtomicUsize,
|
||||
lock: Mutex<()>,
|
||||
cvar: Condvar,
|
||||
}
|
||||
|
||||
impl Inner {
|
||||
fn park(&self, deadline: Option<Instant>) {
|
||||
// If we were previously notified then we consume this notification and return quickly.
|
||||
if self
|
||||
.state
|
||||
.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
|
||||
.is_ok()
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// If the timeout is zero, then there is no need to actually block.
|
||||
if let Some(deadline) = deadline {
|
||||
if deadline <= Instant::now() {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Otherwise we need to coordinate going to sleep.
|
||||
let mut m = self.lock.lock().unwrap();
|
||||
|
||||
match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
|
||||
Ok(_) => {}
|
||||
// Consume this notification to avoid spurious wakeups in the next park.
|
||||
Err(NOTIFIED) => {
|
||||
// We must read `state` here, even though we know it will be `NOTIFIED`. This is
|
||||
// because `unpark` may have been called again since we read `NOTIFIED` in the
|
||||
// `compare_exchange` above. We must perform an acquire operation that synchronizes
|
||||
// with that `unpark` to observe any writes it made before the call to `unpark`. To
|
||||
// do that we must read from the write it made to `state`.
|
||||
let old = self.state.swap(EMPTY, SeqCst);
|
||||
assert_eq!(old, NOTIFIED, "park state changed unexpectedly");
|
||||
return;
|
||||
}
|
||||
Err(n) => panic!("inconsistent park_timeout state: {}", n),
|
||||
}
|
||||
|
||||
loop {
|
||||
// Block the current thread on the conditional variable.
|
||||
m = match deadline {
|
||||
None => self.cvar.wait(m).unwrap(),
|
||||
Some(deadline) => {
|
||||
let now = Instant::now();
|
||||
if now < deadline {
|
||||
// We could check for a timeout here, in the return value of wait_timeout,
|
||||
// but in the case that a timeout and an unpark arrive simultaneously, we
|
||||
// prefer to report the former.
|
||||
self.cvar.wait_timeout(m, deadline - now).unwrap().0
|
||||
} else {
|
||||
// We've timed out; swap out the state back to empty on our way out
|
||||
match self.state.swap(EMPTY, SeqCst) {
|
||||
NOTIFIED | PARKED => return,
|
||||
n => panic!("inconsistent park_timeout state: {}", n),
|
||||
};
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
if self
|
||||
.state
|
||||
.compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
|
||||
.is_ok()
|
||||
{
|
||||
// got a notification
|
||||
return;
|
||||
}
|
||||
|
||||
// Spurious wakeup, go back to sleep. Alternatively, if we timed out, it will be caught
|
||||
// in the branch above, when we discover the deadline is in the past
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn unpark(&self) {
|
||||
// To ensure the unparked thread will observe any writes we made before this call, we must
|
||||
// perform a release operation that `park` can synchronize with. To do that we must write
|
||||
// `NOTIFIED` even if `state` is already `NOTIFIED`. That is why this must be a swap rather
|
||||
// than a compare-and-swap that returns if it reads `NOTIFIED` on failure.
|
||||
match self.state.swap(NOTIFIED, SeqCst) {
|
||||
EMPTY => return, // no one was waiting
|
||||
NOTIFIED => return, // already unparked
|
||||
PARKED => {} // gotta go wake someone up
|
||||
_ => panic!("inconsistent state in unpark"),
|
||||
}
|
||||
|
||||
// There is a period between when the parked thread sets `state` to `PARKED` (or last
|
||||
// checked `state` in the case of a spurious wakeup) and when it actually waits on `cvar`.
|
||||
// If we were to notify during this period it would be ignored and then when the parked
|
||||
// thread went to sleep it would never wake up. Fortunately, it has `lock` locked at this
|
||||
// stage so we can acquire `lock` to wait until it is ready to receive the notification.
|
||||
//
|
||||
// Releasing `lock` before the call to `notify_one` means that when the parked thread wakes
|
||||
// it doesn't get woken only to have to wait for us to release `lock`.
|
||||
drop(self.lock.lock().unwrap());
|
||||
self.cvar.notify_one();
|
||||
}
|
||||
}
|
636
vendor/crossbeam-utils/src/sync/sharded_lock.rs
vendored
Normal file
636
vendor/crossbeam-utils/src/sync/sharded_lock.rs
vendored
Normal file
@ -0,0 +1,636 @@
|
||||
use std::cell::UnsafeCell;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::mem;
|
||||
use std::ops::{Deref, DerefMut};
|
||||
use std::panic::{RefUnwindSafe, UnwindSafe};
|
||||
use std::sync::{LockResult, PoisonError, TryLockError, TryLockResult};
|
||||
use std::sync::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard};
|
||||
use std::thread::{self, ThreadId};
|
||||
|
||||
use crate::sync::once_lock::OnceLock;
|
||||
use crate::CachePadded;
|
||||
|
||||
/// The number of shards per sharded lock. Must be a power of two.
|
||||
const NUM_SHARDS: usize = 8;
|
||||
|
||||
/// A shard containing a single reader-writer lock.
|
||||
struct Shard {
|
||||
/// The inner reader-writer lock.
|
||||
lock: RwLock<()>,
|
||||
|
||||
/// The write-guard keeping this shard locked.
|
||||
///
|
||||
/// Write operations will lock each shard and store the guard here. These guards get dropped at
|
||||
/// the same time the big guard is dropped.
|
||||
write_guard: UnsafeCell<Option<RwLockWriteGuard<'static, ()>>>,
|
||||
}
|
||||
|
||||
/// A sharded reader-writer lock.
|
||||
///
|
||||
/// This lock is equivalent to [`RwLock`], except read operations are faster and write operations
|
||||
/// are slower.
|
||||
///
|
||||
/// A `ShardedLock` is internally made of a list of *shards*, each being a [`RwLock`] occupying a
|
||||
/// single cache line. Read operations will pick one of the shards depending on the current thread
|
||||
/// and lock it. Write operations need to lock all shards in succession.
|
||||
///
|
||||
/// By splitting the lock into shards, concurrent read operations will in most cases choose
|
||||
/// different shards and thus update different cache lines, which is good for scalability. However,
|
||||
/// write operations need to do more work and are therefore slower than usual.
|
||||
///
|
||||
/// The priority policy of the lock is dependent on the underlying operating system's
|
||||
/// implementation, and this type does not guarantee that any particular policy will be used.
|
||||
///
|
||||
/// # Poisoning
|
||||
///
|
||||
/// A `ShardedLock`, like [`RwLock`], will become poisoned on a panic. Note that it may only be
|
||||
/// poisoned if a panic occurs while a write operation is in progress. If a panic occurs in any
|
||||
/// read operation, the lock will not be poisoned.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
///
|
||||
/// let lock = ShardedLock::new(5);
|
||||
///
|
||||
/// // Any number of read locks can be held at once.
|
||||
/// {
|
||||
/// let r1 = lock.read().unwrap();
|
||||
/// let r2 = lock.read().unwrap();
|
||||
/// assert_eq!(*r1, 5);
|
||||
/// assert_eq!(*r2, 5);
|
||||
/// } // Read locks are dropped at this point.
|
||||
///
|
||||
/// // However, only one write lock may be held.
|
||||
/// {
|
||||
/// let mut w = lock.write().unwrap();
|
||||
/// *w += 1;
|
||||
/// assert_eq!(*w, 6);
|
||||
/// } // Write lock is dropped here.
|
||||
/// ```
|
||||
///
|
||||
/// [`RwLock`]: std::sync::RwLock
|
||||
pub struct ShardedLock<T: ?Sized> {
|
||||
/// A list of locks protecting the internal data.
|
||||
shards: Box<[CachePadded<Shard>]>,
|
||||
|
||||
/// The internal data.
|
||||
value: UnsafeCell<T>,
|
||||
}
|
||||
|
||||
unsafe impl<T: ?Sized + Send> Send for ShardedLock<T> {}
|
||||
unsafe impl<T: ?Sized + Send + Sync> Sync for ShardedLock<T> {}
|
||||
|
||||
impl<T: ?Sized> UnwindSafe for ShardedLock<T> {}
|
||||
impl<T: ?Sized> RefUnwindSafe for ShardedLock<T> {}
|
||||
|
||||
impl<T> ShardedLock<T> {
|
||||
/// Creates a new sharded reader-writer lock.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
///
|
||||
/// let lock = ShardedLock::new(5);
|
||||
/// ```
|
||||
pub fn new(value: T) -> ShardedLock<T> {
|
||||
ShardedLock {
|
||||
shards: (0..NUM_SHARDS)
|
||||
.map(|_| {
|
||||
CachePadded::new(Shard {
|
||||
lock: RwLock::new(()),
|
||||
write_guard: UnsafeCell::new(None),
|
||||
})
|
||||
})
|
||||
.collect::<Box<[_]>>(),
|
||||
value: UnsafeCell::new(value),
|
||||
}
|
||||
}
|
||||
|
||||
/// Consumes this lock, returning the underlying data.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
|
||||
/// operation panics.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
///
|
||||
/// let lock = ShardedLock::new(String::new());
|
||||
/// {
|
||||
/// let mut s = lock.write().unwrap();
|
||||
/// *s = "modified".to_owned();
|
||||
/// }
|
||||
/// assert_eq!(lock.into_inner().unwrap(), "modified");
|
||||
/// ```
|
||||
pub fn into_inner(self) -> LockResult<T> {
|
||||
let is_poisoned = self.is_poisoned();
|
||||
let inner = self.value.into_inner();
|
||||
|
||||
if is_poisoned {
|
||||
Err(PoisonError::new(inner))
|
||||
} else {
|
||||
Ok(inner)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized> ShardedLock<T> {
|
||||
/// Returns `true` if the lock is poisoned.
|
||||
///
|
||||
/// If another thread can still access the lock, it may become poisoned at any time. A `false`
|
||||
/// result should not be trusted without additional synchronization.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
/// use std::sync::Arc;
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let lock = Arc::new(ShardedLock::new(0));
|
||||
/// let c_lock = lock.clone();
|
||||
///
|
||||
/// let _ = thread::spawn(move || {
|
||||
/// let _lock = c_lock.write().unwrap();
|
||||
/// panic!(); // the lock gets poisoned
|
||||
/// }).join();
|
||||
/// assert_eq!(lock.is_poisoned(), true);
|
||||
/// ```
|
||||
pub fn is_poisoned(&self) -> bool {
|
||||
self.shards[0].lock.is_poisoned()
|
||||
}
|
||||
|
||||
/// Returns a mutable reference to the underlying data.
|
||||
///
|
||||
/// Since this call borrows the lock mutably, no actual locking needs to take place.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
|
||||
/// operation panics.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
///
|
||||
/// let mut lock = ShardedLock::new(0);
|
||||
/// *lock.get_mut().unwrap() = 10;
|
||||
/// assert_eq!(*lock.read().unwrap(), 10);
|
||||
/// ```
|
||||
pub fn get_mut(&mut self) -> LockResult<&mut T> {
|
||||
let is_poisoned = self.is_poisoned();
|
||||
let inner = unsafe { &mut *self.value.get() };
|
||||
|
||||
if is_poisoned {
|
||||
Err(PoisonError::new(inner))
|
||||
} else {
|
||||
Ok(inner)
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to acquire this lock with shared read access.
|
||||
///
|
||||
/// If the access could not be granted at this time, an error is returned. Otherwise, a guard
|
||||
/// is returned which will release the shared access when it is dropped. This method does not
|
||||
/// provide any guarantees with respect to the ordering of whether contentious readers or
|
||||
/// writers will acquire the lock first.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
|
||||
/// operation panics.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
///
|
||||
/// let lock = ShardedLock::new(1);
|
||||
///
|
||||
/// match lock.try_read() {
|
||||
/// Ok(n) => assert_eq!(*n, 1),
|
||||
/// Err(_) => unreachable!(),
|
||||
/// };
|
||||
/// ```
|
||||
pub fn try_read(&self) -> TryLockResult<ShardedLockReadGuard<'_, T>> {
|
||||
// Take the current thread index and map it to a shard index. Thread indices will tend to
|
||||
// distribute shards among threads equally, thus reducing contention due to read-locking.
|
||||
let current_index = current_index().unwrap_or(0);
|
||||
let shard_index = current_index & (self.shards.len() - 1);
|
||||
|
||||
match self.shards[shard_index].lock.try_read() {
|
||||
Ok(guard) => Ok(ShardedLockReadGuard {
|
||||
lock: self,
|
||||
_guard: guard,
|
||||
_marker: PhantomData,
|
||||
}),
|
||||
Err(TryLockError::Poisoned(err)) => {
|
||||
let guard = ShardedLockReadGuard {
|
||||
lock: self,
|
||||
_guard: err.into_inner(),
|
||||
_marker: PhantomData,
|
||||
};
|
||||
Err(TryLockError::Poisoned(PoisonError::new(guard)))
|
||||
}
|
||||
Err(TryLockError::WouldBlock) => Err(TryLockError::WouldBlock),
|
||||
}
|
||||
}
|
||||
|
||||
/// Locks with shared read access, blocking the current thread until it can be acquired.
|
||||
///
|
||||
/// The calling thread will be blocked until there are no more writers which hold the lock.
|
||||
/// There may be other readers currently inside the lock when this method returns. This method
|
||||
/// does not provide any guarantees with respect to the ordering of whether contentious readers
|
||||
/// or writers will acquire the lock first.
|
||||
///
|
||||
/// Returns a guard which will release the shared access when dropped.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
|
||||
/// operation panics.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// This method might panic when called if the lock is already held by the current thread.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
/// use std::sync::Arc;
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let lock = Arc::new(ShardedLock::new(1));
|
||||
/// let c_lock = lock.clone();
|
||||
///
|
||||
/// let n = lock.read().unwrap();
|
||||
/// assert_eq!(*n, 1);
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// let r = c_lock.read();
|
||||
/// assert!(r.is_ok());
|
||||
/// }).join().unwrap();
|
||||
/// ```
|
||||
pub fn read(&self) -> LockResult<ShardedLockReadGuard<'_, T>> {
|
||||
// Take the current thread index and map it to a shard index. Thread indices will tend to
|
||||
// distribute shards among threads equally, thus reducing contention due to read-locking.
|
||||
let current_index = current_index().unwrap_or(0);
|
||||
let shard_index = current_index & (self.shards.len() - 1);
|
||||
|
||||
match self.shards[shard_index].lock.read() {
|
||||
Ok(guard) => Ok(ShardedLockReadGuard {
|
||||
lock: self,
|
||||
_guard: guard,
|
||||
_marker: PhantomData,
|
||||
}),
|
||||
Err(err) => Err(PoisonError::new(ShardedLockReadGuard {
|
||||
lock: self,
|
||||
_guard: err.into_inner(),
|
||||
_marker: PhantomData,
|
||||
})),
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to acquire this lock with exclusive write access.
|
||||
///
|
||||
/// If the access could not be granted at this time, an error is returned. Otherwise, a guard
|
||||
/// is returned which will release the exclusive access when it is dropped. This method does
|
||||
/// not provide any guarantees with respect to the ordering of whether contentious readers or
|
||||
/// writers will acquire the lock first.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
|
||||
/// operation panics.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
///
|
||||
/// let lock = ShardedLock::new(1);
|
||||
///
|
||||
/// let n = lock.read().unwrap();
|
||||
/// assert_eq!(*n, 1);
|
||||
///
|
||||
/// assert!(lock.try_write().is_err());
|
||||
/// ```
|
||||
pub fn try_write(&self) -> TryLockResult<ShardedLockWriteGuard<'_, T>> {
|
||||
let mut poisoned = false;
|
||||
let mut blocked = None;
|
||||
|
||||
// Write-lock each shard in succession.
|
||||
for (i, shard) in self.shards.iter().enumerate() {
|
||||
let guard = match shard.lock.try_write() {
|
||||
Ok(guard) => guard,
|
||||
Err(TryLockError::Poisoned(err)) => {
|
||||
poisoned = true;
|
||||
err.into_inner()
|
||||
}
|
||||
Err(TryLockError::WouldBlock) => {
|
||||
blocked = Some(i);
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
// Store the guard into the shard.
|
||||
unsafe {
|
||||
let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard);
|
||||
let dest: *mut _ = shard.write_guard.get();
|
||||
*dest = Some(guard);
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(i) = blocked {
|
||||
// Unlock the shards in reverse order of locking.
|
||||
for shard in self.shards[0..i].iter().rev() {
|
||||
unsafe {
|
||||
let dest: *mut _ = shard.write_guard.get();
|
||||
let guard = (*dest).take();
|
||||
drop(guard);
|
||||
}
|
||||
}
|
||||
Err(TryLockError::WouldBlock)
|
||||
} else if poisoned {
|
||||
let guard = ShardedLockWriteGuard {
|
||||
lock: self,
|
||||
_marker: PhantomData,
|
||||
};
|
||||
Err(TryLockError::Poisoned(PoisonError::new(guard)))
|
||||
} else {
|
||||
Ok(ShardedLockWriteGuard {
|
||||
lock: self,
|
||||
_marker: PhantomData,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Locks with exclusive write access, blocking the current thread until it can be acquired.
|
||||
///
|
||||
/// The calling thread will be blocked until there are no more writers which hold the lock.
|
||||
/// There may be other readers currently inside the lock when this method returns. This method
|
||||
/// does not provide any guarantees with respect to the ordering of whether contentious readers
|
||||
/// or writers will acquire the lock first.
|
||||
///
|
||||
/// Returns a guard which will release the exclusive access when dropped.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// This method will return an error if the lock is poisoned. A lock gets poisoned when a write
|
||||
/// operation panics.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// This method might panic when called if the lock is already held by the current thread.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::ShardedLock;
|
||||
///
|
||||
/// let lock = ShardedLock::new(1);
|
||||
///
|
||||
/// let mut n = lock.write().unwrap();
|
||||
/// *n = 2;
|
||||
///
|
||||
/// assert!(lock.try_read().is_err());
|
||||
/// ```
|
||||
pub fn write(&self) -> LockResult<ShardedLockWriteGuard<'_, T>> {
|
||||
let mut poisoned = false;
|
||||
|
||||
// Write-lock each shard in succession.
|
||||
for shard in self.shards.iter() {
|
||||
let guard = match shard.lock.write() {
|
||||
Ok(guard) => guard,
|
||||
Err(err) => {
|
||||
poisoned = true;
|
||||
err.into_inner()
|
||||
}
|
||||
};
|
||||
|
||||
// Store the guard into the shard.
|
||||
unsafe {
|
||||
let guard: RwLockWriteGuard<'_, ()> = guard;
|
||||
let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard);
|
||||
let dest: *mut _ = shard.write_guard.get();
|
||||
*dest = Some(guard);
|
||||
}
|
||||
}
|
||||
|
||||
if poisoned {
|
||||
Err(PoisonError::new(ShardedLockWriteGuard {
|
||||
lock: self,
|
||||
_marker: PhantomData,
|
||||
}))
|
||||
} else {
|
||||
Ok(ShardedLockWriteGuard {
|
||||
lock: self,
|
||||
_marker: PhantomData,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized + fmt::Debug> fmt::Debug for ShardedLock<T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
match self.try_read() {
|
||||
Ok(guard) => f
|
||||
.debug_struct("ShardedLock")
|
||||
.field("data", &&*guard)
|
||||
.finish(),
|
||||
Err(TryLockError::Poisoned(err)) => f
|
||||
.debug_struct("ShardedLock")
|
||||
.field("data", &&**err.get_ref())
|
||||
.finish(),
|
||||
Err(TryLockError::WouldBlock) => {
|
||||
struct LockedPlaceholder;
|
||||
impl fmt::Debug for LockedPlaceholder {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.write_str("<locked>")
|
||||
}
|
||||
}
|
||||
f.debug_struct("ShardedLock")
|
||||
.field("data", &LockedPlaceholder)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Default> Default for ShardedLock<T> {
|
||||
fn default() -> ShardedLock<T> {
|
||||
ShardedLock::new(Default::default())
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<T> for ShardedLock<T> {
|
||||
fn from(t: T) -> Self {
|
||||
ShardedLock::new(t)
|
||||
}
|
||||
}
|
||||
|
||||
/// A guard used to release the shared read access of a [`ShardedLock`] when dropped.
|
||||
#[clippy::has_significant_drop]
|
||||
pub struct ShardedLockReadGuard<'a, T: ?Sized> {
|
||||
lock: &'a ShardedLock<T>,
|
||||
_guard: RwLockReadGuard<'a, ()>,
|
||||
_marker: PhantomData<RwLockReadGuard<'a, T>>,
|
||||
}
|
||||
|
||||
unsafe impl<T: ?Sized + Sync> Sync for ShardedLockReadGuard<'_, T> {}
|
||||
|
||||
impl<T: ?Sized> Deref for ShardedLockReadGuard<'_, T> {
|
||||
type Target = T;
|
||||
|
||||
fn deref(&self) -> &T {
|
||||
unsafe { &*self.lock.value.get() }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: fmt::Debug> fmt::Debug for ShardedLockReadGuard<'_, T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("ShardedLockReadGuard")
|
||||
.field("lock", &self.lock)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized + fmt::Display> fmt::Display for ShardedLockReadGuard<'_, T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
(**self).fmt(f)
|
||||
}
|
||||
}
|
||||
|
||||
/// A guard used to release the exclusive write access of a [`ShardedLock`] when dropped.
|
||||
#[clippy::has_significant_drop]
|
||||
pub struct ShardedLockWriteGuard<'a, T: ?Sized> {
|
||||
lock: &'a ShardedLock<T>,
|
||||
_marker: PhantomData<RwLockWriteGuard<'a, T>>,
|
||||
}
|
||||
|
||||
unsafe impl<T: ?Sized + Sync> Sync for ShardedLockWriteGuard<'_, T> {}
|
||||
|
||||
impl<T: ?Sized> Drop for ShardedLockWriteGuard<'_, T> {
|
||||
fn drop(&mut self) {
|
||||
// Unlock the shards in reverse order of locking.
|
||||
for shard in self.lock.shards.iter().rev() {
|
||||
unsafe {
|
||||
let dest: *mut _ = shard.write_guard.get();
|
||||
let guard = (*dest).take();
|
||||
drop(guard);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: fmt::Debug> fmt::Debug for ShardedLockWriteGuard<'_, T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("ShardedLockWriteGuard")
|
||||
.field("lock", &self.lock)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized + fmt::Display> fmt::Display for ShardedLockWriteGuard<'_, T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
(**self).fmt(f)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized> Deref for ShardedLockWriteGuard<'_, T> {
|
||||
type Target = T;
|
||||
|
||||
fn deref(&self) -> &T {
|
||||
unsafe { &*self.lock.value.get() }
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: ?Sized> DerefMut for ShardedLockWriteGuard<'_, T> {
|
||||
fn deref_mut(&mut self) -> &mut T {
|
||||
unsafe { &mut *self.lock.value.get() }
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a `usize` that identifies the current thread.
|
||||
///
|
||||
/// Each thread is associated with an 'index'. While there are no particular guarantees, indices
|
||||
/// usually tend to be consecutive numbers between 0 and the number of running threads.
|
||||
///
|
||||
/// Since this function accesses TLS, `None` might be returned if the current thread's TLS is
|
||||
/// tearing down.
|
||||
#[inline]
|
||||
fn current_index() -> Option<usize> {
|
||||
REGISTRATION.try_with(|reg| reg.index).ok()
|
||||
}
|
||||
|
||||
/// The global registry keeping track of registered threads and indices.
|
||||
struct ThreadIndices {
|
||||
/// Mapping from `ThreadId` to thread index.
|
||||
mapping: HashMap<ThreadId, usize>,
|
||||
|
||||
/// A list of free indices.
|
||||
free_list: Vec<usize>,
|
||||
|
||||
/// The next index to allocate if the free list is empty.
|
||||
next_index: usize,
|
||||
}
|
||||
|
||||
fn thread_indices() -> &'static Mutex<ThreadIndices> {
|
||||
static THREAD_INDICES: OnceLock<Mutex<ThreadIndices>> = OnceLock::new();
|
||||
fn init() -> Mutex<ThreadIndices> {
|
||||
Mutex::new(ThreadIndices {
|
||||
mapping: HashMap::new(),
|
||||
free_list: Vec::new(),
|
||||
next_index: 0,
|
||||
})
|
||||
}
|
||||
THREAD_INDICES.get_or_init(init)
|
||||
}
|
||||
|
||||
/// A registration of a thread with an index.
|
||||
///
|
||||
/// When dropped, unregisters the thread and frees the reserved index.
|
||||
struct Registration {
|
||||
index: usize,
|
||||
thread_id: ThreadId,
|
||||
}
|
||||
|
||||
impl Drop for Registration {
|
||||
fn drop(&mut self) {
|
||||
let mut indices = thread_indices().lock().unwrap();
|
||||
indices.mapping.remove(&self.thread_id);
|
||||
indices.free_list.push(self.index);
|
||||
}
|
||||
}
|
||||
|
||||
thread_local! {
|
||||
static REGISTRATION: Registration = {
|
||||
let thread_id = thread::current().id();
|
||||
let mut indices = thread_indices().lock().unwrap();
|
||||
|
||||
let index = match indices.free_list.pop() {
|
||||
Some(i) => i,
|
||||
None => {
|
||||
let i = indices.next_index;
|
||||
indices.next_index += 1;
|
||||
i
|
||||
}
|
||||
};
|
||||
indices.mapping.insert(thread_id, index);
|
||||
|
||||
Registration {
|
||||
index,
|
||||
thread_id,
|
||||
}
|
||||
};
|
||||
}
|
145
vendor/crossbeam-utils/src/sync/wait_group.rs
vendored
Normal file
145
vendor/crossbeam-utils/src/sync/wait_group.rs
vendored
Normal file
@ -0,0 +1,145 @@
|
||||
use crate::primitive::sync::{Arc, Condvar, Mutex};
|
||||
use std::fmt;
|
||||
|
||||
/// Enables threads to synchronize the beginning or end of some computation.
|
||||
///
|
||||
/// # Wait groups vs barriers
|
||||
///
|
||||
/// `WaitGroup` is very similar to [`Barrier`], but there are a few differences:
|
||||
///
|
||||
/// * [`Barrier`] needs to know the number of threads at construction, while `WaitGroup` is cloned to
|
||||
/// register more threads.
|
||||
///
|
||||
/// * A [`Barrier`] can be reused even after all threads have synchronized, while a `WaitGroup`
|
||||
/// synchronizes threads only once.
|
||||
///
|
||||
/// * All threads wait for others to reach the [`Barrier`]. With `WaitGroup`, each thread can choose
|
||||
/// to either wait for other threads or to continue without blocking.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::WaitGroup;
|
||||
/// use std::thread;
|
||||
///
|
||||
/// // Create a new wait group.
|
||||
/// let wg = WaitGroup::new();
|
||||
///
|
||||
/// for _ in 0..4 {
|
||||
/// // Create another reference to the wait group.
|
||||
/// let wg = wg.clone();
|
||||
///
|
||||
/// thread::spawn(move || {
|
||||
/// // Do some work.
|
||||
///
|
||||
/// // Drop the reference to the wait group.
|
||||
/// drop(wg);
|
||||
/// });
|
||||
/// }
|
||||
///
|
||||
/// // Block until all threads have finished their work.
|
||||
/// wg.wait();
|
||||
/// # std::thread::sleep(std::time::Duration::from_millis(500)); // wait for background threads closed: https://github.com/rust-lang/miri/issues/1371
|
||||
/// ```
|
||||
///
|
||||
/// [`Barrier`]: std::sync::Barrier
|
||||
pub struct WaitGroup {
|
||||
inner: Arc<Inner>,
|
||||
}
|
||||
|
||||
/// Inner state of a `WaitGroup`.
|
||||
struct Inner {
|
||||
cvar: Condvar,
|
||||
count: Mutex<usize>,
|
||||
}
|
||||
|
||||
impl Default for WaitGroup {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
inner: Arc::new(Inner {
|
||||
cvar: Condvar::new(),
|
||||
count: Mutex::new(1),
|
||||
}),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl WaitGroup {
|
||||
/// Creates a new wait group and returns the single reference to it.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::WaitGroup;
|
||||
///
|
||||
/// let wg = WaitGroup::new();
|
||||
/// ```
|
||||
pub fn new() -> Self {
|
||||
Self::default()
|
||||
}
|
||||
|
||||
/// Drops this reference and waits until all other references are dropped.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::sync::WaitGroup;
|
||||
/// use std::thread;
|
||||
///
|
||||
/// let wg = WaitGroup::new();
|
||||
///
|
||||
/// thread::spawn({
|
||||
/// let wg = wg.clone();
|
||||
/// move || {
|
||||
/// // Block until both threads have reached `wait()`.
|
||||
/// wg.wait();
|
||||
/// }
|
||||
/// });
|
||||
///
|
||||
/// // Block until both threads have reached `wait()`.
|
||||
/// wg.wait();
|
||||
/// # std::thread::sleep(std::time::Duration::from_millis(500)); // wait for background threads closed: https://github.com/rust-lang/miri/issues/1371
|
||||
/// ```
|
||||
pub fn wait(self) {
|
||||
if *self.inner.count.lock().unwrap() == 1 {
|
||||
return;
|
||||
}
|
||||
|
||||
let inner = self.inner.clone();
|
||||
drop(self);
|
||||
|
||||
let mut count = inner.count.lock().unwrap();
|
||||
while *count > 0 {
|
||||
count = inner.cvar.wait(count).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for WaitGroup {
|
||||
fn drop(&mut self) {
|
||||
let mut count = self.inner.count.lock().unwrap();
|
||||
*count -= 1;
|
||||
|
||||
if *count == 0 {
|
||||
self.inner.cvar.notify_all();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Clone for WaitGroup {
|
||||
fn clone(&self) -> WaitGroup {
|
||||
let mut count = self.inner.count.lock().unwrap();
|
||||
*count += 1;
|
||||
|
||||
WaitGroup {
|
||||
inner: self.inner.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for WaitGroup {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
let count: &usize = &*self.inner.count.lock().unwrap();
|
||||
f.debug_struct("WaitGroup").field("count", count).finish()
|
||||
}
|
||||
}
|
604
vendor/crossbeam-utils/src/thread.rs
vendored
Normal file
604
vendor/crossbeam-utils/src/thread.rs
vendored
Normal file
@ -0,0 +1,604 @@
|
||||
//! Threads that can borrow variables from the stack.
|
||||
//!
|
||||
//! Create a scope when spawned threads need to access variables on the stack:
|
||||
//!
|
||||
//! ```
|
||||
//! use crossbeam_utils::thread;
|
||||
//!
|
||||
//! let people = vec![
|
||||
//! "Alice".to_string(),
|
||||
//! "Bob".to_string(),
|
||||
//! "Carol".to_string(),
|
||||
//! ];
|
||||
//!
|
||||
//! thread::scope(|s| {
|
||||
//! for person in &people {
|
||||
//! s.spawn(move |_| {
|
||||
//! println!("Hello, {}!", person);
|
||||
//! });
|
||||
//! }
|
||||
//! }).unwrap();
|
||||
//! ```
|
||||
//!
|
||||
//! # Why scoped threads?
|
||||
//!
|
||||
//! Suppose we wanted to re-write the previous example using plain threads:
|
||||
//!
|
||||
//! ```compile_fail,E0597
|
||||
//! use std::thread;
|
||||
//!
|
||||
//! let people = vec![
|
||||
//! "Alice".to_string(),
|
||||
//! "Bob".to_string(),
|
||||
//! "Carol".to_string(),
|
||||
//! ];
|
||||
//!
|
||||
//! let mut threads = Vec::new();
|
||||
//!
|
||||
//! for person in &people {
|
||||
//! threads.push(thread::spawn(move || {
|
||||
//! println!("Hello, {}!", person);
|
||||
//! }));
|
||||
//! }
|
||||
//!
|
||||
//! for thread in threads {
|
||||
//! thread.join().unwrap();
|
||||
//! }
|
||||
//! ```
|
||||
//!
|
||||
//! This doesn't work because the borrow checker complains about `people` not living long enough:
|
||||
//!
|
||||
//! ```text
|
||||
//! error[E0597]: `people` does not live long enough
|
||||
//! --> src/main.rs:12:20
|
||||
//! |
|
||||
//! 12 | for person in &people {
|
||||
//! | ^^^^^^ borrowed value does not live long enough
|
||||
//! ...
|
||||
//! 21 | }
|
||||
//! | - borrowed value only lives until here
|
||||
//! |
|
||||
//! = note: borrowed value must be valid for the static lifetime...
|
||||
//! ```
|
||||
//!
|
||||
//! The problem here is that spawned threads are not allowed to borrow variables on stack because
|
||||
//! the compiler cannot prove they will be joined before `people` is destroyed.
|
||||
//!
|
||||
//! Scoped threads are a mechanism to guarantee to the compiler that spawned threads will be joined
|
||||
//! before the scope ends.
|
||||
//!
|
||||
//! # How scoped threads work
|
||||
//!
|
||||
//! If a variable is borrowed by a thread, the thread must complete before the variable is
|
||||
//! destroyed. Threads spawned using [`std::thread::spawn`] can only borrow variables with the
|
||||
//! `'static` lifetime because the borrow checker cannot be sure when the thread will complete.
|
||||
//!
|
||||
//! A scope creates a clear boundary between variables outside the scope and threads inside the
|
||||
//! scope. Whenever a scope spawns a thread, it promises to join the thread before the scope ends.
|
||||
//! This way we guarantee to the borrow checker that scoped threads only live within the scope and
|
||||
//! can safely access variables outside it.
|
||||
//!
|
||||
//! # Nesting scoped threads
|
||||
//!
|
||||
//! Sometimes scoped threads need to spawn more threads within the same scope. This is a little
|
||||
//! tricky because argument `s` lives *inside* the invocation of `thread::scope()` and as such
|
||||
//! cannot be borrowed by scoped threads:
|
||||
//!
|
||||
//! ```compile_fail,E0521
|
||||
//! use crossbeam_utils::thread;
|
||||
//!
|
||||
//! thread::scope(|s| {
|
||||
//! s.spawn(|_| {
|
||||
//! // Not going to compile because we're trying to borrow `s`,
|
||||
//! // which lives *inside* the scope! :(
|
||||
//! s.spawn(|_| println!("nested thread"));
|
||||
//! });
|
||||
//! });
|
||||
//! ```
|
||||
//!
|
||||
//! Fortunately, there is a solution. Every scoped thread is passed a reference to its scope as an
|
||||
//! argument, which can be used for spawning nested threads:
|
||||
//!
|
||||
//! ```
|
||||
//! use crossbeam_utils::thread;
|
||||
//!
|
||||
//! thread::scope(|s| {
|
||||
//! // Note the `|s|` here.
|
||||
//! s.spawn(|s| {
|
||||
//! // Yay, this works because we're using a fresh argument `s`! :)
|
||||
//! s.spawn(|_| println!("nested thread"));
|
||||
//! });
|
||||
//! }).unwrap();
|
||||
//! ```
|
||||
|
||||
use std::fmt;
|
||||
use std::io;
|
||||
use std::marker::PhantomData;
|
||||
use std::mem;
|
||||
use std::panic;
|
||||
use std::sync::{Arc, Mutex};
|
||||
use std::thread;
|
||||
|
||||
use crate::sync::WaitGroup;
|
||||
use cfg_if::cfg_if;
|
||||
|
||||
type SharedVec<T> = Arc<Mutex<Vec<T>>>;
|
||||
type SharedOption<T> = Arc<Mutex<Option<T>>>;
|
||||
|
||||
/// Creates a new scope for spawning threads.
|
||||
///
|
||||
/// All child threads that haven't been manually joined will be automatically joined just before
|
||||
/// this function invocation ends. If all joined threads have successfully completed, `Ok` is
|
||||
/// returned with the return value of `f`. If any of the joined threads has panicked, an `Err` is
|
||||
/// returned containing errors from panicked threads. Note that if panics are implemented by
|
||||
/// aborting the process, no error is returned; see the notes of [std::panic::catch_unwind].
|
||||
///
|
||||
/// **Note:** Since Rust 1.63, this function is soft-deprecated in favor of the more efficient [`std::thread::scope`].
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
///
|
||||
/// let var = vec![1, 2, 3];
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// s.spawn(|_| {
|
||||
/// println!("A child thread borrowing `var`: {:?}", var);
|
||||
/// });
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
pub fn scope<'env, F, R>(f: F) -> thread::Result<R>
|
||||
where
|
||||
F: FnOnce(&Scope<'env>) -> R,
|
||||
{
|
||||
struct AbortOnPanic;
|
||||
impl Drop for AbortOnPanic {
|
||||
fn drop(&mut self) {
|
||||
if thread::panicking() {
|
||||
std::process::abort();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let wg = WaitGroup::new();
|
||||
let scope = Scope::<'env> {
|
||||
handles: SharedVec::default(),
|
||||
wait_group: wg.clone(),
|
||||
_marker: PhantomData,
|
||||
};
|
||||
|
||||
// Execute the scoped function, but catch any panics.
|
||||
let result = panic::catch_unwind(panic::AssertUnwindSafe(|| f(&scope)));
|
||||
|
||||
// If an unwinding panic occurs before all threads are joined
|
||||
// promote it to an aborting panic to prevent any threads from escaping the scope.
|
||||
let guard = AbortOnPanic;
|
||||
|
||||
// Wait until all nested scopes are dropped.
|
||||
drop(scope.wait_group);
|
||||
wg.wait();
|
||||
|
||||
// Join all remaining spawned threads.
|
||||
let panics: Vec<_> = scope
|
||||
.handles
|
||||
.lock()
|
||||
.unwrap()
|
||||
// Filter handles that haven't been joined, join them, and collect errors.
|
||||
.drain(..)
|
||||
.filter_map(|handle| handle.lock().unwrap().take())
|
||||
.filter_map(|handle| handle.join().err())
|
||||
.collect();
|
||||
|
||||
mem::forget(guard);
|
||||
|
||||
// If `f` has panicked, resume unwinding.
|
||||
// If any of the child threads have panicked, return the panic errors.
|
||||
// Otherwise, everything is OK and return the result of `f`.
|
||||
match result {
|
||||
Err(err) => panic::resume_unwind(err),
|
||||
Ok(res) => {
|
||||
if panics.is_empty() {
|
||||
Ok(res)
|
||||
} else {
|
||||
Err(Box::new(panics))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A scope for spawning threads.
|
||||
pub struct Scope<'env> {
|
||||
/// The list of the thread join handles.
|
||||
handles: SharedVec<SharedOption<thread::JoinHandle<()>>>,
|
||||
|
||||
/// Used to wait until all subscopes all dropped.
|
||||
wait_group: WaitGroup,
|
||||
|
||||
/// Borrows data with invariant lifetime `'env`.
|
||||
_marker: PhantomData<&'env mut &'env ()>,
|
||||
}
|
||||
|
||||
unsafe impl Sync for Scope<'_> {}
|
||||
|
||||
impl<'env> Scope<'env> {
|
||||
/// Spawns a scoped thread.
|
||||
///
|
||||
/// This method is similar to the [`spawn`] function in Rust's standard library. The difference
|
||||
/// is that this thread is scoped, meaning it's guaranteed to terminate before the scope exits,
|
||||
/// allowing it to reference variables outside the scope.
|
||||
///
|
||||
/// The scoped thread is passed a reference to this scope as an argument, which can be used for
|
||||
/// spawning nested threads.
|
||||
///
|
||||
/// The returned [handle](ScopedJoinHandle) can be used to manually
|
||||
/// [join](ScopedJoinHandle::join) the thread before the scope exits.
|
||||
///
|
||||
/// This will create a thread using default parameters of [`ScopedThreadBuilder`], if you want to specify the
|
||||
/// stack size or the name of the thread, use this API instead.
|
||||
///
|
||||
/// [`spawn`]: std::thread::spawn
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if the OS fails to create a thread; use [`ScopedThreadBuilder::spawn`]
|
||||
/// to recover from such errors.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// let handle = s.spawn(|_| {
|
||||
/// println!("A child thread is running");
|
||||
/// 42
|
||||
/// });
|
||||
///
|
||||
/// // Join the thread and retrieve its result.
|
||||
/// let res = handle.join().unwrap();
|
||||
/// assert_eq!(res, 42);
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
pub fn spawn<'scope, F, T>(&'scope self, f: F) -> ScopedJoinHandle<'scope, T>
|
||||
where
|
||||
F: FnOnce(&Scope<'env>) -> T,
|
||||
F: Send + 'env,
|
||||
T: Send + 'env,
|
||||
{
|
||||
self.builder()
|
||||
.spawn(f)
|
||||
.expect("failed to spawn scoped thread")
|
||||
}
|
||||
|
||||
/// Creates a builder that can configure a thread before spawning.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// s.builder()
|
||||
/// .spawn(|_| println!("A child thread is running"))
|
||||
/// .unwrap();
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
pub fn builder<'scope>(&'scope self) -> ScopedThreadBuilder<'scope, 'env> {
|
||||
ScopedThreadBuilder {
|
||||
scope: self,
|
||||
builder: thread::Builder::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Scope<'_> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.pad("Scope { .. }")
|
||||
}
|
||||
}
|
||||
|
||||
/// Configures the properties of a new thread.
|
||||
///
|
||||
/// The two configurable properties are:
|
||||
///
|
||||
/// - [`name`]: Specifies an [associated name for the thread][naming-threads].
|
||||
/// - [`stack_size`]: Specifies the [desired stack size for the thread][stack-size].
|
||||
///
|
||||
/// The [`spawn`] method will take ownership of the builder and return an [`io::Result`] of the
|
||||
/// thread handle with the given configuration.
|
||||
///
|
||||
/// The [`Scope::spawn`] method uses a builder with default configuration and unwraps its return
|
||||
/// value. You may want to use this builder when you want to recover from a failure to launch a
|
||||
/// thread.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// s.builder()
|
||||
/// .spawn(|_| println!("Running a child thread"))
|
||||
/// .unwrap();
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
///
|
||||
/// [`name`]: ScopedThreadBuilder::name
|
||||
/// [`stack_size`]: ScopedThreadBuilder::stack_size
|
||||
/// [`spawn`]: ScopedThreadBuilder::spawn
|
||||
/// [`io::Result`]: std::io::Result
|
||||
/// [naming-threads]: std::thread#naming-threads
|
||||
/// [stack-size]: std::thread#stack-size
|
||||
#[derive(Debug)]
|
||||
pub struct ScopedThreadBuilder<'scope, 'env> {
|
||||
scope: &'scope Scope<'env>,
|
||||
builder: thread::Builder,
|
||||
}
|
||||
|
||||
impl<'scope, 'env> ScopedThreadBuilder<'scope, 'env> {
|
||||
/// Sets the name for the new thread.
|
||||
///
|
||||
/// The name must not contain null bytes (`\0`).
|
||||
///
|
||||
/// For more information about named threads, see [here][naming-threads].
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
/// use std::thread::current;
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// s.builder()
|
||||
/// .name("my thread".to_string())
|
||||
/// .spawn(|_| assert_eq!(current().name(), Some("my thread")))
|
||||
/// .unwrap();
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
///
|
||||
/// [naming-threads]: std::thread#naming-threads
|
||||
pub fn name(mut self, name: String) -> ScopedThreadBuilder<'scope, 'env> {
|
||||
self.builder = self.builder.name(name);
|
||||
self
|
||||
}
|
||||
|
||||
/// Sets the size of the stack for the new thread.
|
||||
///
|
||||
/// The stack size is measured in bytes.
|
||||
///
|
||||
/// For more information about the stack size for threads, see [here][stack-size].
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// s.builder()
|
||||
/// .stack_size(32 * 1024)
|
||||
/// .spawn(|_| println!("Running a child thread"))
|
||||
/// .unwrap();
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
///
|
||||
/// [stack-size]: std::thread#stack-size
|
||||
pub fn stack_size(mut self, size: usize) -> ScopedThreadBuilder<'scope, 'env> {
|
||||
self.builder = self.builder.stack_size(size);
|
||||
self
|
||||
}
|
||||
|
||||
/// Spawns a scoped thread with this configuration.
|
||||
///
|
||||
/// The scoped thread is passed a reference to this scope as an argument, which can be used for
|
||||
/// spawning nested threads.
|
||||
///
|
||||
/// The returned handle can be used to manually join the thread before the scope exits.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// Unlike the [`Scope::spawn`] method, this method yields an
|
||||
/// [`io::Result`] to capture any failure to create the thread at
|
||||
/// the OS level.
|
||||
///
|
||||
/// [`io::Result`]: std::io::Result
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if a thread name was set and it contained null bytes.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// let handle = s.builder()
|
||||
/// .spawn(|_| {
|
||||
/// println!("A child thread is running");
|
||||
/// 42
|
||||
/// })
|
||||
/// .unwrap();
|
||||
///
|
||||
/// // Join the thread and retrieve its result.
|
||||
/// let res = handle.join().unwrap();
|
||||
/// assert_eq!(res, 42);
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
pub fn spawn<F, T>(self, f: F) -> io::Result<ScopedJoinHandle<'scope, T>>
|
||||
where
|
||||
F: FnOnce(&Scope<'env>) -> T,
|
||||
F: Send + 'env,
|
||||
T: Send + 'env,
|
||||
{
|
||||
// The result of `f` will be stored here.
|
||||
let result = SharedOption::default();
|
||||
|
||||
// Spawn the thread and grab its join handle and thread handle.
|
||||
let (handle, thread) = {
|
||||
let result = Arc::clone(&result);
|
||||
|
||||
// A clone of the scope that will be moved into the new thread.
|
||||
let scope = Scope::<'env> {
|
||||
handles: Arc::clone(&self.scope.handles),
|
||||
wait_group: self.scope.wait_group.clone(),
|
||||
_marker: PhantomData,
|
||||
};
|
||||
|
||||
// Spawn the thread.
|
||||
let handle = {
|
||||
let closure = move || {
|
||||
// Make sure the scope is inside the closure with the proper `'env` lifetime.
|
||||
let scope: Scope<'env> = scope;
|
||||
|
||||
// Run the closure.
|
||||
let res = f(&scope);
|
||||
|
||||
// Store the result if the closure didn't panic.
|
||||
*result.lock().unwrap() = Some(res);
|
||||
};
|
||||
|
||||
// Allocate `closure` on the heap and erase the `'env` bound.
|
||||
let closure: Box<dyn FnOnce() + Send + 'env> = Box::new(closure);
|
||||
let closure: Box<dyn FnOnce() + Send + 'static> =
|
||||
unsafe { mem::transmute(closure) };
|
||||
|
||||
// Finally, spawn the closure.
|
||||
self.builder.spawn(closure)?
|
||||
};
|
||||
|
||||
let thread = handle.thread().clone();
|
||||
let handle = Arc::new(Mutex::new(Some(handle)));
|
||||
(handle, thread)
|
||||
};
|
||||
|
||||
// Add the handle to the shared list of join handles.
|
||||
self.scope.handles.lock().unwrap().push(Arc::clone(&handle));
|
||||
|
||||
Ok(ScopedJoinHandle {
|
||||
handle,
|
||||
result,
|
||||
thread,
|
||||
_marker: PhantomData,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<T> Send for ScopedJoinHandle<'_, T> {}
|
||||
unsafe impl<T> Sync for ScopedJoinHandle<'_, T> {}
|
||||
|
||||
/// A handle that can be used to join its scoped thread.
|
||||
///
|
||||
/// This struct is created by the [`Scope::spawn`] method and the
|
||||
/// [`ScopedThreadBuilder::spawn`] method.
|
||||
pub struct ScopedJoinHandle<'scope, T> {
|
||||
/// A join handle to the spawned thread.
|
||||
handle: SharedOption<thread::JoinHandle<()>>,
|
||||
|
||||
/// Holds the result of the inner closure.
|
||||
result: SharedOption<T>,
|
||||
|
||||
/// A handle to the the spawned thread.
|
||||
thread: thread::Thread,
|
||||
|
||||
/// Borrows the parent scope with lifetime `'scope`.
|
||||
_marker: PhantomData<&'scope ()>,
|
||||
}
|
||||
|
||||
impl<T> ScopedJoinHandle<'_, T> {
|
||||
/// Waits for the thread to finish and returns its result.
|
||||
///
|
||||
/// If the child thread panics, an error is returned. Note that if panics are implemented by
|
||||
/// aborting the process, no error is returned; see the notes of [std::panic::catch_unwind].
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// This function may panic on some platforms if a thread attempts to join itself or otherwise
|
||||
/// may create a deadlock with joining threads.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// let handle1 = s.spawn(|_| println!("I'm a happy thread :)"));
|
||||
/// let handle2 = s.spawn(|_| panic!("I'm a sad thread :("));
|
||||
///
|
||||
/// // Join the first thread and verify that it succeeded.
|
||||
/// let res = handle1.join();
|
||||
/// assert!(res.is_ok());
|
||||
///
|
||||
/// // Join the second thread and verify that it panicked.
|
||||
/// let res = handle2.join();
|
||||
/// assert!(res.is_err());
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
pub fn join(self) -> thread::Result<T> {
|
||||
// Take out the handle. The handle will surely be available because the root scope waits
|
||||
// for nested scopes before joining remaining threads.
|
||||
let handle = self.handle.lock().unwrap().take().unwrap();
|
||||
|
||||
// Join the thread and then take the result out of its inner closure.
|
||||
handle
|
||||
.join()
|
||||
.map(|()| self.result.lock().unwrap().take().unwrap())
|
||||
}
|
||||
|
||||
/// Returns a handle to the underlying thread.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use crossbeam_utils::thread;
|
||||
///
|
||||
/// thread::scope(|s| {
|
||||
/// let handle = s.spawn(|_| println!("A child thread is running"));
|
||||
/// println!("The child thread ID: {:?}", handle.thread().id());
|
||||
/// }).unwrap();
|
||||
/// ```
|
||||
pub fn thread(&self) -> &thread::Thread {
|
||||
&self.thread
|
||||
}
|
||||
}
|
||||
|
||||
cfg_if! {
|
||||
if #[cfg(unix)] {
|
||||
use std::os::unix::thread::{JoinHandleExt, RawPthread};
|
||||
|
||||
impl<T> JoinHandleExt for ScopedJoinHandle<'_, T> {
|
||||
fn as_pthread_t(&self) -> RawPthread {
|
||||
// Borrow the handle. The handle will surely be available because the root scope waits
|
||||
// for nested scopes before joining remaining threads.
|
||||
let handle = self.handle.lock().unwrap();
|
||||
handle.as_ref().unwrap().as_pthread_t()
|
||||
}
|
||||
fn into_pthread_t(self) -> RawPthread {
|
||||
self.as_pthread_t()
|
||||
}
|
||||
}
|
||||
} else if #[cfg(windows)] {
|
||||
use std::os::windows::io::{AsRawHandle, IntoRawHandle, RawHandle};
|
||||
|
||||
impl<T> AsRawHandle for ScopedJoinHandle<'_, T> {
|
||||
fn as_raw_handle(&self) -> RawHandle {
|
||||
// Borrow the handle. The handle will surely be available because the root scope waits
|
||||
// for nested scopes before joining remaining threads.
|
||||
let handle = self.handle.lock().unwrap();
|
||||
handle.as_ref().unwrap().as_raw_handle()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> IntoRawHandle for ScopedJoinHandle<'_, T> {
|
||||
fn into_raw_handle(self) -> RawHandle {
|
||||
self.as_raw_handle()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> fmt::Debug for ScopedJoinHandle<'_, T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.pad("ScopedJoinHandle { .. }")
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user