Initial vendor packages

Signed-off-by: Valentin Popov <valentin@popov.link>
This commit is contained in:
2024-01-08 01:21:28 +04:00
parent 5ecd8cf2cb
commit 1b6a04ca55
7309 changed files with 2160054 additions and 0 deletions

403
vendor/num-traits/src/ops/bytes.rs vendored Normal file
View File

@ -0,0 +1,403 @@
use core::borrow::{Borrow, BorrowMut};
use core::cmp::{Eq, Ord, PartialEq, PartialOrd};
use core::fmt::Debug;
use core::hash::Hash;
#[cfg(not(has_int_to_from_bytes))]
use core::mem::transmute;
pub trait NumBytes:
Debug
+ AsRef<[u8]>
+ AsMut<[u8]>
+ PartialEq
+ Eq
+ PartialOrd
+ Ord
+ Hash
+ Borrow<[u8]>
+ BorrowMut<[u8]>
{
}
impl<T> NumBytes for T where
T: Debug
+ AsRef<[u8]>
+ AsMut<[u8]>
+ PartialEq
+ Eq
+ PartialOrd
+ Ord
+ Hash
+ Borrow<[u8]>
+ BorrowMut<[u8]>
+ ?Sized
{
}
pub trait ToBytes {
type Bytes: NumBytes;
/// Return the memory representation of this number as a byte array in big-endian byte order.
///
/// # Examples
///
/// ```
/// use num_traits::ToBytes;
///
/// let bytes = ToBytes::to_be_bytes(&0x12345678u32);
/// assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78]);
/// ```
fn to_be_bytes(&self) -> Self::Bytes;
/// Return the memory representation of this number as a byte array in little-endian byte order.
///
/// # Examples
///
/// ```
/// use num_traits::ToBytes;
///
/// let bytes = ToBytes::to_le_bytes(&0x12345678u32);
/// assert_eq!(bytes, [0x78, 0x56, 0x34, 0x12]);
/// ```
fn to_le_bytes(&self) -> Self::Bytes;
/// Return the memory representation of this number as a byte array in native byte order.
///
/// As the target platform's native endianness is used,
/// portable code should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
///
/// [`to_be_bytes`]: #method.to_be_bytes
/// [`to_le_bytes`]: #method.to_le_bytes
///
/// # Examples
///
/// ```
/// use num_traits::ToBytes;
///
/// #[cfg(target_endian = "big")]
/// let expected = [0x12, 0x34, 0x56, 0x78];
///
/// #[cfg(target_endian = "little")]
/// let expected = [0x78, 0x56, 0x34, 0x12];
///
/// let bytes = ToBytes::to_ne_bytes(&0x12345678u32);
/// assert_eq!(bytes, expected)
/// ```
fn to_ne_bytes(&self) -> Self::Bytes {
#[cfg(target_endian = "big")]
let bytes = self.to_be_bytes();
#[cfg(target_endian = "little")]
let bytes = self.to_le_bytes();
bytes
}
}
pub trait FromBytes: Sized {
type Bytes: NumBytes + ?Sized;
/// Create a number from its representation as a byte array in big endian.
///
/// # Examples
///
/// ```
/// use num_traits::FromBytes;
///
/// let value: u32 = FromBytes::from_be_bytes(&[0x12, 0x34, 0x56, 0x78]);
/// assert_eq!(value, 0x12345678);
/// ```
fn from_be_bytes(bytes: &Self::Bytes) -> Self;
/// Create a number from its representation as a byte array in little endian.
///
/// # Examples
///
/// ```
/// use num_traits::FromBytes;
///
/// let value: u32 = FromBytes::from_le_bytes(&[0x78, 0x56, 0x34, 0x12]);
/// assert_eq!(value, 0x12345678);
/// ```
fn from_le_bytes(bytes: &Self::Bytes) -> Self;
/// Create a number from its memory representation as a byte array in native endianness.
///
/// As the target platform's native endianness is used,
/// portable code likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as appropriate instead.
///
/// [`from_be_bytes`]: #method.from_be_bytes
/// [`from_le_bytes`]: #method.from_le_bytes
///
/// # Examples
///
/// ```
/// use num_traits::FromBytes;
///
/// #[cfg(target_endian = "big")]
/// let bytes = [0x12, 0x34, 0x56, 0x78];
///
/// #[cfg(target_endian = "little")]
/// let bytes = [0x78, 0x56, 0x34, 0x12];
///
/// let value: u32 = FromBytes::from_ne_bytes(&bytes);
/// assert_eq!(value, 0x12345678)
/// ```
fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
#[cfg(target_endian = "big")]
let this = Self::from_be_bytes(bytes);
#[cfg(target_endian = "little")]
let this = Self::from_le_bytes(bytes);
this
}
}
macro_rules! float_to_from_bytes_impl {
($T:ty, $L:expr) => {
#[cfg(has_float_to_from_bytes)]
impl ToBytes for $T {
type Bytes = [u8; $L];
#[inline]
fn to_be_bytes(&self) -> Self::Bytes {
<$T>::to_be_bytes(*self)
}
#[inline]
fn to_le_bytes(&self) -> Self::Bytes {
<$T>::to_le_bytes(*self)
}
#[inline]
fn to_ne_bytes(&self) -> Self::Bytes {
<$T>::to_ne_bytes(*self)
}
}
#[cfg(has_float_to_from_bytes)]
impl FromBytes for $T {
type Bytes = [u8; $L];
#[inline]
fn from_be_bytes(bytes: &Self::Bytes) -> Self {
<$T>::from_be_bytes(*bytes)
}
#[inline]
fn from_le_bytes(bytes: &Self::Bytes) -> Self {
<$T>::from_le_bytes(*bytes)
}
#[inline]
fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
<$T>::from_ne_bytes(*bytes)
}
}
#[cfg(not(has_float_to_from_bytes))]
impl ToBytes for $T {
type Bytes = [u8; $L];
#[inline]
fn to_be_bytes(&self) -> Self::Bytes {
ToBytes::to_be_bytes(&self.to_bits())
}
#[inline]
fn to_le_bytes(&self) -> Self::Bytes {
ToBytes::to_le_bytes(&self.to_bits())
}
#[inline]
fn to_ne_bytes(&self) -> Self::Bytes {
ToBytes::to_ne_bytes(&self.to_bits())
}
}
#[cfg(not(has_float_to_from_bytes))]
impl FromBytes for $T {
type Bytes = [u8; $L];
#[inline]
fn from_be_bytes(bytes: &Self::Bytes) -> Self {
Self::from_bits(FromBytes::from_be_bytes(bytes))
}
#[inline]
fn from_le_bytes(bytes: &Self::Bytes) -> Self {
Self::from_bits(FromBytes::from_le_bytes(bytes))
}
#[inline]
fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
Self::from_bits(FromBytes::from_ne_bytes(bytes))
}
}
};
}
macro_rules! int_to_from_bytes_impl {
($T:ty, $L:expr) => {
#[cfg(has_int_to_from_bytes)]
impl ToBytes for $T {
type Bytes = [u8; $L];
#[inline]
fn to_be_bytes(&self) -> Self::Bytes {
<$T>::to_be_bytes(*self)
}
#[inline]
fn to_le_bytes(&self) -> Self::Bytes {
<$T>::to_le_bytes(*self)
}
#[inline]
fn to_ne_bytes(&self) -> Self::Bytes {
<$T>::to_ne_bytes(*self)
}
}
#[cfg(has_int_to_from_bytes)]
impl FromBytes for $T {
type Bytes = [u8; $L];
#[inline]
fn from_be_bytes(bytes: &Self::Bytes) -> Self {
<$T>::from_be_bytes(*bytes)
}
#[inline]
fn from_le_bytes(bytes: &Self::Bytes) -> Self {
<$T>::from_le_bytes(*bytes)
}
#[inline]
fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
<$T>::from_ne_bytes(*bytes)
}
}
#[cfg(not(has_int_to_from_bytes))]
impl ToBytes for $T {
type Bytes = [u8; $L];
#[inline]
fn to_be_bytes(&self) -> Self::Bytes {
<$T as ToBytes>::to_ne_bytes(&<$T>::to_be(*self))
}
#[inline]
fn to_le_bytes(&self) -> Self::Bytes {
<$T as ToBytes>::to_ne_bytes(&<$T>::to_le(*self))
}
#[inline]
fn to_ne_bytes(&self) -> Self::Bytes {
unsafe { transmute(*self) }
}
}
#[cfg(not(has_int_to_from_bytes))]
impl FromBytes for $T {
type Bytes = [u8; $L];
#[inline]
fn from_be_bytes(bytes: &Self::Bytes) -> Self {
Self::from_be(<Self as FromBytes>::from_ne_bytes(bytes))
}
#[inline]
fn from_le_bytes(bytes: &Self::Bytes) -> Self {
Self::from_le(<Self as FromBytes>::from_ne_bytes(bytes))
}
#[inline]
fn from_ne_bytes(bytes: &Self::Bytes) -> Self {
unsafe { transmute(*bytes) }
}
}
};
}
int_to_from_bytes_impl!(u8, 1);
int_to_from_bytes_impl!(u16, 2);
int_to_from_bytes_impl!(u32, 4);
int_to_from_bytes_impl!(u64, 8);
int_to_from_bytes_impl!(u128, 16);
#[cfg(target_pointer_width = "64")]
int_to_from_bytes_impl!(usize, 8);
#[cfg(target_pointer_width = "32")]
int_to_from_bytes_impl!(usize, 4);
int_to_from_bytes_impl!(i8, 1);
int_to_from_bytes_impl!(i16, 2);
int_to_from_bytes_impl!(i32, 4);
int_to_from_bytes_impl!(i64, 8);
int_to_from_bytes_impl!(i128, 16);
#[cfg(target_pointer_width = "64")]
int_to_from_bytes_impl!(isize, 8);
#[cfg(target_pointer_width = "32")]
int_to_from_bytes_impl!(isize, 4);
float_to_from_bytes_impl!(f32, 4);
float_to_from_bytes_impl!(f64, 8);
#[cfg(test)]
mod tests {
use super::*;
macro_rules! check_to_from_bytes {
($( $ty:ty )+) => {$({
let n = 1;
let be = <$ty as ToBytes>::to_be_bytes(&n);
let le = <$ty as ToBytes>::to_le_bytes(&n);
let ne = <$ty as ToBytes>::to_ne_bytes(&n);
assert_eq!(*be.last().unwrap(), 1);
assert_eq!(*le.first().unwrap(), 1);
if cfg!(target_endian = "big") {
assert_eq!(*ne.last().unwrap(), 1);
} else {
assert_eq!(*ne.first().unwrap(), 1);
}
assert_eq!(<$ty as FromBytes>::from_be_bytes(&be), n);
assert_eq!(<$ty as FromBytes>::from_le_bytes(&le), n);
if cfg!(target_endian = "big") {
assert_eq!(<$ty as FromBytes>::from_ne_bytes(&be), n);
} else {
assert_eq!(<$ty as FromBytes>::from_ne_bytes(&le), n);
}
})+}
}
#[test]
fn convert_between_int_and_bytes() {
check_to_from_bytes!(u8 u16 u32 u64 u128 usize);
check_to_from_bytes!(i8 i16 i32 i64 i128 isize);
}
#[test]
fn convert_between_float_and_bytes() {
macro_rules! check_to_from_bytes {
($( $ty:ty )+) => {$(
let n: $ty = 3.14;
let be = <$ty as ToBytes>::to_be_bytes(&n);
let le = <$ty as ToBytes>::to_le_bytes(&n);
let ne = <$ty as ToBytes>::to_ne_bytes(&n);
assert_eq!(<$ty as FromBytes>::from_be_bytes(&be), n);
assert_eq!(<$ty as FromBytes>::from_le_bytes(&le), n);
if cfg!(target_endian = "big") {
assert_eq!(ne, be);
assert_eq!(<$ty as FromBytes>::from_ne_bytes(&be), n);
} else {
assert_eq!(ne, le);
assert_eq!(<$ty as FromBytes>::from_ne_bytes(&le), n);
}
)+}
}
check_to_from_bytes!(f32 f64);
}
}

261
vendor/num-traits/src/ops/checked.rs vendored Normal file
View File

@ -0,0 +1,261 @@
use core::ops::{Add, Div, Mul, Rem, Shl, Shr, Sub};
/// Performs addition that returns `None` instead of wrapping around on
/// overflow.
pub trait CheckedAdd: Sized + Add<Self, Output = Self> {
/// Adds two numbers, checking for overflow. If overflow happens, `None` is
/// returned.
fn checked_add(&self, v: &Self) -> Option<Self>;
}
macro_rules! checked_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &$t) -> Option<$t> {
<$t>::$method(*self, *v)
}
}
};
}
checked_impl!(CheckedAdd, checked_add, u8);
checked_impl!(CheckedAdd, checked_add, u16);
checked_impl!(CheckedAdd, checked_add, u32);
checked_impl!(CheckedAdd, checked_add, u64);
checked_impl!(CheckedAdd, checked_add, usize);
checked_impl!(CheckedAdd, checked_add, u128);
checked_impl!(CheckedAdd, checked_add, i8);
checked_impl!(CheckedAdd, checked_add, i16);
checked_impl!(CheckedAdd, checked_add, i32);
checked_impl!(CheckedAdd, checked_add, i64);
checked_impl!(CheckedAdd, checked_add, isize);
checked_impl!(CheckedAdd, checked_add, i128);
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
pub trait CheckedSub: Sized + Sub<Self, Output = Self> {
/// Subtracts two numbers, checking for underflow. If underflow happens,
/// `None` is returned.
fn checked_sub(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedSub, checked_sub, u8);
checked_impl!(CheckedSub, checked_sub, u16);
checked_impl!(CheckedSub, checked_sub, u32);
checked_impl!(CheckedSub, checked_sub, u64);
checked_impl!(CheckedSub, checked_sub, usize);
checked_impl!(CheckedSub, checked_sub, u128);
checked_impl!(CheckedSub, checked_sub, i8);
checked_impl!(CheckedSub, checked_sub, i16);
checked_impl!(CheckedSub, checked_sub, i32);
checked_impl!(CheckedSub, checked_sub, i64);
checked_impl!(CheckedSub, checked_sub, isize);
checked_impl!(CheckedSub, checked_sub, i128);
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
/// overflow.
pub trait CheckedMul: Sized + Mul<Self, Output = Self> {
/// Multiplies two numbers, checking for underflow or overflow. If underflow
/// or overflow happens, `None` is returned.
fn checked_mul(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedMul, checked_mul, u8);
checked_impl!(CheckedMul, checked_mul, u16);
checked_impl!(CheckedMul, checked_mul, u32);
checked_impl!(CheckedMul, checked_mul, u64);
checked_impl!(CheckedMul, checked_mul, usize);
checked_impl!(CheckedMul, checked_mul, u128);
checked_impl!(CheckedMul, checked_mul, i8);
checked_impl!(CheckedMul, checked_mul, i16);
checked_impl!(CheckedMul, checked_mul, i32);
checked_impl!(CheckedMul, checked_mul, i64);
checked_impl!(CheckedMul, checked_mul, isize);
checked_impl!(CheckedMul, checked_mul, i128);
/// Performs division that returns `None` instead of panicking on division by zero and instead of
/// wrapping around on underflow and overflow.
pub trait CheckedDiv: Sized + Div<Self, Output = Self> {
/// Divides two numbers, checking for underflow, overflow and division by
/// zero. If any of that happens, `None` is returned.
fn checked_div(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedDiv, checked_div, u8);
checked_impl!(CheckedDiv, checked_div, u16);
checked_impl!(CheckedDiv, checked_div, u32);
checked_impl!(CheckedDiv, checked_div, u64);
checked_impl!(CheckedDiv, checked_div, usize);
checked_impl!(CheckedDiv, checked_div, u128);
checked_impl!(CheckedDiv, checked_div, i8);
checked_impl!(CheckedDiv, checked_div, i16);
checked_impl!(CheckedDiv, checked_div, i32);
checked_impl!(CheckedDiv, checked_div, i64);
checked_impl!(CheckedDiv, checked_div, isize);
checked_impl!(CheckedDiv, checked_div, i128);
/// Performs an integral remainder that returns `None` instead of panicking on division by zero and
/// instead of wrapping around on underflow and overflow.
pub trait CheckedRem: Sized + Rem<Self, Output = Self> {
/// Finds the remainder of dividing two numbers, checking for underflow, overflow and division
/// by zero. If any of that happens, `None` is returned.
///
/// # Examples
///
/// ```
/// use num_traits::CheckedRem;
/// use std::i32::MIN;
///
/// assert_eq!(CheckedRem::checked_rem(&10, &7), Some(3));
/// assert_eq!(CheckedRem::checked_rem(&10, &-7), Some(3));
/// assert_eq!(CheckedRem::checked_rem(&-10, &7), Some(-3));
/// assert_eq!(CheckedRem::checked_rem(&-10, &-7), Some(-3));
///
/// assert_eq!(CheckedRem::checked_rem(&10, &0), None);
///
/// assert_eq!(CheckedRem::checked_rem(&MIN, &1), Some(0));
/// assert_eq!(CheckedRem::checked_rem(&MIN, &-1), None);
/// ```
fn checked_rem(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedRem, checked_rem, u8);
checked_impl!(CheckedRem, checked_rem, u16);
checked_impl!(CheckedRem, checked_rem, u32);
checked_impl!(CheckedRem, checked_rem, u64);
checked_impl!(CheckedRem, checked_rem, usize);
checked_impl!(CheckedRem, checked_rem, u128);
checked_impl!(CheckedRem, checked_rem, i8);
checked_impl!(CheckedRem, checked_rem, i16);
checked_impl!(CheckedRem, checked_rem, i32);
checked_impl!(CheckedRem, checked_rem, i64);
checked_impl!(CheckedRem, checked_rem, isize);
checked_impl!(CheckedRem, checked_rem, i128);
macro_rules! checked_impl_unary {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self) -> Option<$t> {
<$t>::$method(*self)
}
}
};
}
/// Performs negation that returns `None` if the result can't be represented.
pub trait CheckedNeg: Sized {
/// Negates a number, returning `None` for results that can't be represented, like signed `MIN`
/// values that can't be positive, or non-zero unsigned values that can't be negative.
///
/// # Examples
///
/// ```
/// use num_traits::CheckedNeg;
/// use std::i32::MIN;
///
/// assert_eq!(CheckedNeg::checked_neg(&1_i32), Some(-1));
/// assert_eq!(CheckedNeg::checked_neg(&-1_i32), Some(1));
/// assert_eq!(CheckedNeg::checked_neg(&MIN), None);
///
/// assert_eq!(CheckedNeg::checked_neg(&0_u32), Some(0));
/// assert_eq!(CheckedNeg::checked_neg(&1_u32), None);
/// ```
fn checked_neg(&self) -> Option<Self>;
}
checked_impl_unary!(CheckedNeg, checked_neg, u8);
checked_impl_unary!(CheckedNeg, checked_neg, u16);
checked_impl_unary!(CheckedNeg, checked_neg, u32);
checked_impl_unary!(CheckedNeg, checked_neg, u64);
checked_impl_unary!(CheckedNeg, checked_neg, usize);
checked_impl_unary!(CheckedNeg, checked_neg, u128);
checked_impl_unary!(CheckedNeg, checked_neg, i8);
checked_impl_unary!(CheckedNeg, checked_neg, i16);
checked_impl_unary!(CheckedNeg, checked_neg, i32);
checked_impl_unary!(CheckedNeg, checked_neg, i64);
checked_impl_unary!(CheckedNeg, checked_neg, isize);
checked_impl_unary!(CheckedNeg, checked_neg, i128);
/// Performs a left shift that returns `None` on shifts larger than
/// or equal to the type width.
pub trait CheckedShl: Sized + Shl<u32, Output = Self> {
/// Checked shift left. Computes `self << rhs`, returning `None`
/// if `rhs` is larger than or equal to the number of bits in `self`.
///
/// ```
/// use num_traits::CheckedShl;
///
/// let x: u16 = 0x0001;
///
/// assert_eq!(CheckedShl::checked_shl(&x, 0), Some(0x0001));
/// assert_eq!(CheckedShl::checked_shl(&x, 1), Some(0x0002));
/// assert_eq!(CheckedShl::checked_shl(&x, 15), Some(0x8000));
/// assert_eq!(CheckedShl::checked_shl(&x, 16), None);
/// ```
fn checked_shl(&self, rhs: u32) -> Option<Self>;
}
macro_rules! checked_shift_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, rhs: u32) -> Option<$t> {
<$t>::$method(*self, rhs)
}
}
};
}
checked_shift_impl!(CheckedShl, checked_shl, u8);
checked_shift_impl!(CheckedShl, checked_shl, u16);
checked_shift_impl!(CheckedShl, checked_shl, u32);
checked_shift_impl!(CheckedShl, checked_shl, u64);
checked_shift_impl!(CheckedShl, checked_shl, usize);
checked_shift_impl!(CheckedShl, checked_shl, u128);
checked_shift_impl!(CheckedShl, checked_shl, i8);
checked_shift_impl!(CheckedShl, checked_shl, i16);
checked_shift_impl!(CheckedShl, checked_shl, i32);
checked_shift_impl!(CheckedShl, checked_shl, i64);
checked_shift_impl!(CheckedShl, checked_shl, isize);
checked_shift_impl!(CheckedShl, checked_shl, i128);
/// Performs a right shift that returns `None` on shifts larger than
/// or equal to the type width.
pub trait CheckedShr: Sized + Shr<u32, Output = Self> {
/// Checked shift right. Computes `self >> rhs`, returning `None`
/// if `rhs` is larger than or equal to the number of bits in `self`.
///
/// ```
/// use num_traits::CheckedShr;
///
/// let x: u16 = 0x8000;
///
/// assert_eq!(CheckedShr::checked_shr(&x, 0), Some(0x8000));
/// assert_eq!(CheckedShr::checked_shr(&x, 1), Some(0x4000));
/// assert_eq!(CheckedShr::checked_shr(&x, 15), Some(0x0001));
/// assert_eq!(CheckedShr::checked_shr(&x, 16), None);
/// ```
fn checked_shr(&self, rhs: u32) -> Option<Self>;
}
checked_shift_impl!(CheckedShr, checked_shr, u8);
checked_shift_impl!(CheckedShr, checked_shr, u16);
checked_shift_impl!(CheckedShr, checked_shr, u32);
checked_shift_impl!(CheckedShr, checked_shr, u64);
checked_shift_impl!(CheckedShr, checked_shr, usize);
checked_shift_impl!(CheckedShr, checked_shr, u128);
checked_shift_impl!(CheckedShr, checked_shr, i8);
checked_shift_impl!(CheckedShr, checked_shr, i16);
checked_shift_impl!(CheckedShr, checked_shr, i32);
checked_shift_impl!(CheckedShr, checked_shr, i64);
checked_shift_impl!(CheckedShr, checked_shr, isize);
checked_shift_impl!(CheckedShr, checked_shr, i128);

339
vendor/num-traits/src/ops/euclid.rs vendored Normal file
View File

@ -0,0 +1,339 @@
use core::ops::{Div, Rem};
pub trait Euclid: Sized + Div<Self, Output = Self> + Rem<Self, Output = Self> {
/// Calculates Euclidean division, the matching method for `rem_euclid`.
///
/// This computes the integer `n` such that
/// `self = n * v + self.rem_euclid(v)`.
/// In other words, the result is `self / v` rounded to the integer `n`
/// such that `self >= n * v`.
///
/// # Examples
///
/// ```
/// use num_traits::Euclid;
///
/// let a: i32 = 7;
/// let b: i32 = 4;
/// assert_eq!(Euclid::div_euclid(&a, &b), 1); // 7 > 4 * 1
/// assert_eq!(Euclid::div_euclid(&-a, &b), -2); // -7 >= 4 * -2
/// assert_eq!(Euclid::div_euclid(&a, &-b), -1); // 7 >= -4 * -1
/// assert_eq!(Euclid::div_euclid(&-a, &-b), 2); // -7 >= -4 * 2
/// ```
fn div_euclid(&self, v: &Self) -> Self;
/// Calculates the least nonnegative remainder of `self (mod v)`.
///
/// In particular, the return value `r` satisfies `0.0 <= r < v.abs()` in
/// most cases. However, due to a floating point round-off error it can
/// result in `r == v.abs()`, violating the mathematical definition, if
/// `self` is much smaller than `v.abs()` in magnitude and `self < 0.0`.
/// This result is not an element of the function's codomain, but it is the
/// closest floating point number in the real numbers and thus fulfills the
/// property `self == self.div_euclid(v) * v + self.rem_euclid(v)`
/// approximatively.
///
/// # Examples
///
/// ```
/// use num_traits::Euclid;
///
/// let a: i32 = 7;
/// let b: i32 = 4;
/// assert_eq!(Euclid::rem_euclid(&a, &b), 3);
/// assert_eq!(Euclid::rem_euclid(&-a, &b), 1);
/// assert_eq!(Euclid::rem_euclid(&a, &-b), 3);
/// assert_eq!(Euclid::rem_euclid(&-a, &-b), 1);
/// ```
fn rem_euclid(&self, v: &Self) -> Self;
}
macro_rules! euclid_forward_impl {
($($t:ty)*) => {$(
#[cfg(has_div_euclid)]
impl Euclid for $t {
#[inline]
fn div_euclid(&self, v: &$t) -> Self {
<$t>::div_euclid(*self, *v)
}
#[inline]
fn rem_euclid(&self, v: &$t) -> Self {
<$t>::rem_euclid(*self, *v)
}
}
)*}
}
macro_rules! euclid_int_impl {
($($t:ty)*) => {$(
euclid_forward_impl!($t);
#[cfg(not(has_div_euclid))]
impl Euclid for $t {
#[inline]
fn div_euclid(&self, v: &$t) -> Self {
let q = self / v;
if self % v < 0 {
return if *v > 0 { q - 1 } else { q + 1 }
}
q
}
#[inline]
fn rem_euclid(&self, v: &$t) -> Self {
let r = self % v;
if r < 0 {
if *v < 0 {
r - v
} else {
r + v
}
} else {
r
}
}
}
)*}
}
macro_rules! euclid_uint_impl {
($($t:ty)*) => {$(
euclid_forward_impl!($t);
#[cfg(not(has_div_euclid))]
impl Euclid for $t {
#[inline]
fn div_euclid(&self, v: &$t) -> Self {
self / v
}
#[inline]
fn rem_euclid(&self, v: &$t) -> Self {
self % v
}
}
)*}
}
euclid_int_impl!(isize i8 i16 i32 i64 i128);
euclid_uint_impl!(usize u8 u16 u32 u64 u128);
#[cfg(all(has_div_euclid, feature = "std"))]
euclid_forward_impl!(f32 f64);
#[cfg(not(all(has_div_euclid, feature = "std")))]
impl Euclid for f32 {
#[inline]
fn div_euclid(&self, v: &f32) -> f32 {
let q = <f32 as crate::float::FloatCore>::trunc(self / v);
if self % v < 0.0 {
return if *v > 0.0 { q - 1.0 } else { q + 1.0 };
}
q
}
#[inline]
fn rem_euclid(&self, v: &f32) -> f32 {
let r = self % v;
if r < 0.0 {
r + <f32 as crate::float::FloatCore>::abs(*v)
} else {
r
}
}
}
#[cfg(not(all(has_div_euclid, feature = "std")))]
impl Euclid for f64 {
#[inline]
fn div_euclid(&self, v: &f64) -> f64 {
let q = <f64 as crate::float::FloatCore>::trunc(self / v);
if self % v < 0.0 {
return if *v > 0.0 { q - 1.0 } else { q + 1.0 };
}
q
}
#[inline]
fn rem_euclid(&self, v: &f64) -> f64 {
let r = self % v;
if r < 0.0 {
r + <f64 as crate::float::FloatCore>::abs(*v)
} else {
r
}
}
}
pub trait CheckedEuclid: Euclid {
/// Performs euclid division that returns `None` instead of panicking on division by zero
/// and instead of wrapping around on underflow and overflow.
fn checked_div_euclid(&self, v: &Self) -> Option<Self>;
/// Finds the euclid remainder of dividing two numbers, checking for underflow, overflow and
/// division by zero. If any of that happens, `None` is returned.
fn checked_rem_euclid(&self, v: &Self) -> Option<Self>;
}
macro_rules! checked_euclid_forward_impl {
($($t:ty)*) => {$(
#[cfg(has_div_euclid)]
impl CheckedEuclid for $t {
#[inline]
fn checked_div_euclid(&self, v: &$t) -> Option<Self> {
<$t>::checked_div_euclid(*self, *v)
}
#[inline]
fn checked_rem_euclid(&self, v: &$t) -> Option<Self> {
<$t>::checked_rem_euclid(*self, *v)
}
}
)*}
}
macro_rules! checked_euclid_int_impl {
($($t:ty)*) => {$(
checked_euclid_forward_impl!($t);
#[cfg(not(has_div_euclid))]
impl CheckedEuclid for $t {
#[inline]
fn checked_div_euclid(&self, v: &$t) -> Option<$t> {
if *v == 0 || (*self == Self::min_value() && *v == -1) {
None
} else {
Some(Euclid::div_euclid(self, v))
}
}
#[inline]
fn checked_rem_euclid(&self, v: &$t) -> Option<$t> {
if *v == 0 || (*self == Self::min_value() && *v == -1) {
None
} else {
Some(Euclid::rem_euclid(self, v))
}
}
}
)*}
}
macro_rules! checked_euclid_uint_impl {
($($t:ty)*) => {$(
checked_euclid_forward_impl!($t);
#[cfg(not(has_div_euclid))]
impl CheckedEuclid for $t {
#[inline]
fn checked_div_euclid(&self, v: &$t) -> Option<$t> {
if *v == 0 {
None
} else {
Some(Euclid::div_euclid(self, v))
}
}
#[inline]
fn checked_rem_euclid(&self, v: &$t) -> Option<$t> {
if *v == 0 {
None
} else {
Some(Euclid::rem_euclid(self, v))
}
}
}
)*}
}
checked_euclid_int_impl!(isize i8 i16 i32 i64 i128);
checked_euclid_uint_impl!(usize u8 u16 u32 u64 u128);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn euclid_unsigned() {
macro_rules! test_euclid {
($($t:ident)+) => {
$(
{
let x: $t = 10;
let y: $t = 3;
assert_eq!(Euclid::div_euclid(&x, &y), 3);
assert_eq!(Euclid::rem_euclid(&x, &y), 1);
}
)+
};
}
test_euclid!(usize u8 u16 u32 u64);
}
#[test]
fn euclid_signed() {
macro_rules! test_euclid {
($($t:ident)+) => {
$(
{
let x: $t = 10;
let y: $t = -3;
assert_eq!(Euclid::div_euclid(&x, &y), -3);
assert_eq!(Euclid::div_euclid(&-x, &y), 4);
assert_eq!(Euclid::rem_euclid(&x, &y), 1);
assert_eq!(Euclid::rem_euclid(&-x, &y), 2);
let x: $t = $t::min_value() + 1;
let y: $t = -1;
assert_eq!(Euclid::div_euclid(&x, &y), $t::max_value());
}
)+
};
}
test_euclid!(isize i8 i16 i32 i64 i128);
}
#[test]
fn euclid_float() {
macro_rules! test_euclid {
($($t:ident)+) => {
$(
{
let x: $t = 12.1;
let y: $t = 3.2;
assert!(Euclid::div_euclid(&x, &y) * y + Euclid::rem_euclid(&x, &y) - x
<= 46.4 * <$t as crate::float::FloatCore>::epsilon());
assert!(Euclid::div_euclid(&x, &-y) * -y + Euclid::rem_euclid(&x, &-y) - x
<= 46.4 * <$t as crate::float::FloatCore>::epsilon());
assert!(Euclid::div_euclid(&-x, &y) * y + Euclid::rem_euclid(&-x, &y) + x
<= 46.4 * <$t as crate::float::FloatCore>::epsilon());
assert!(Euclid::div_euclid(&-x, &-y) * -y + Euclid::rem_euclid(&-x, &-y) + x
<= 46.4 * <$t as crate::float::FloatCore>::epsilon());
}
)+
};
}
test_euclid!(f32 f64);
}
#[test]
fn euclid_checked() {
macro_rules! test_euclid_checked {
($($t:ident)+) => {
$(
{
assert_eq!(CheckedEuclid::checked_div_euclid(&$t::min_value(), &-1), None);
assert_eq!(CheckedEuclid::checked_rem_euclid(&$t::min_value(), &-1), None);
assert_eq!(CheckedEuclid::checked_div_euclid(&1, &0), None);
assert_eq!(CheckedEuclid::checked_rem_euclid(&1, &0), None);
}
)+
};
}
test_euclid_checked!(isize i8 i16 i32 i64 i128);
}
}

47
vendor/num-traits/src/ops/inv.rs vendored Normal file
View File

@ -0,0 +1,47 @@
/// Unary operator for retrieving the multiplicative inverse, or reciprocal, of a value.
pub trait Inv {
/// The result after applying the operator.
type Output;
/// Returns the multiplicative inverse of `self`.
///
/// # Examples
///
/// ```
/// use std::f64::INFINITY;
/// use num_traits::Inv;
///
/// assert_eq!(7.0.inv() * 7.0, 1.0);
/// assert_eq!((-0.0).inv(), -INFINITY);
/// ```
fn inv(self) -> Self::Output;
}
impl Inv for f32 {
type Output = f32;
#[inline]
fn inv(self) -> f32 {
1.0 / self
}
}
impl Inv for f64 {
type Output = f64;
#[inline]
fn inv(self) -> f64 {
1.0 / self
}
}
impl<'a> Inv for &'a f32 {
type Output = f32;
#[inline]
fn inv(self) -> f32 {
1.0 / *self
}
}
impl<'a> Inv for &'a f64 {
type Output = f64;
#[inline]
fn inv(self) -> f64 {
1.0 / *self
}
}

8
vendor/num-traits/src/ops/mod.rs vendored Normal file
View File

@ -0,0 +1,8 @@
pub mod bytes;
pub mod checked;
pub mod euclid;
pub mod inv;
pub mod mul_add;
pub mod overflowing;
pub mod saturating;
pub mod wrapping;

149
vendor/num-traits/src/ops/mul_add.rs vendored Normal file
View File

@ -0,0 +1,149 @@
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` can be more performant than an unfused multiply-add if
/// the target architecture has a dedicated `fma` CPU instruction.
///
/// Note that `A` and `B` are `Self` by default, but this is not mandatory.
///
/// # Example
///
/// ```
/// use std::f32;
///
/// let m = 10.0_f32;
/// let x = 4.0_f32;
/// let b = 60.0_f32;
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
///
/// assert!(abs_difference <= 100.0 * f32::EPSILON);
/// ```
pub trait MulAdd<A = Self, B = Self> {
/// The resulting type after applying the fused multiply-add.
type Output;
/// Performs the fused multiply-add operation `(self * a) + b`
fn mul_add(self, a: A, b: B) -> Self::Output;
}
/// The fused multiply-add assignment operation `*self = (*self * a) + b`
pub trait MulAddAssign<A = Self, B = Self> {
/// Performs the fused multiply-add assignment operation `*self = (*self * a) + b`
fn mul_add_assign(&mut self, a: A, b: B);
}
#[cfg(any(feature = "std", feature = "libm"))]
impl MulAdd<f32, f32> for f32 {
type Output = Self;
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self::Output {
<Self as crate::Float>::mul_add(self, a, b)
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl MulAdd<f64, f64> for f64 {
type Output = Self;
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self::Output {
<Self as crate::Float>::mul_add(self, a, b)
}
}
macro_rules! mul_add_impl {
($trait_name:ident for $($t:ty)*) => {$(
impl $trait_name for $t {
type Output = Self;
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self::Output {
(self * a) + b
}
}
)*}
}
mul_add_impl!(MulAdd for isize i8 i16 i32 i64 i128);
mul_add_impl!(MulAdd for usize u8 u16 u32 u64 u128);
#[cfg(any(feature = "std", feature = "libm"))]
impl MulAddAssign<f32, f32> for f32 {
#[inline]
fn mul_add_assign(&mut self, a: Self, b: Self) {
*self = <Self as crate::Float>::mul_add(*self, a, b)
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl MulAddAssign<f64, f64> for f64 {
#[inline]
fn mul_add_assign(&mut self, a: Self, b: Self) {
*self = <Self as crate::Float>::mul_add(*self, a, b)
}
}
macro_rules! mul_add_assign_impl {
($trait_name:ident for $($t:ty)*) => {$(
impl $trait_name for $t {
#[inline]
fn mul_add_assign(&mut self, a: Self, b: Self) {
*self = (*self * a) + b
}
}
)*}
}
mul_add_assign_impl!(MulAddAssign for isize i8 i16 i32 i64 i128);
mul_add_assign_impl!(MulAddAssign for usize u8 u16 u32 u64 u128);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn mul_add_integer() {
macro_rules! test_mul_add {
($($t:ident)+) => {
$(
{
let m: $t = 2;
let x: $t = 3;
let b: $t = 4;
assert_eq!(MulAdd::mul_add(m, x, b), (m*x + b));
}
)+
};
}
test_mul_add!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
#[cfg(feature = "std")]
fn mul_add_float() {
macro_rules! test_mul_add {
($($t:ident)+) => {
$(
{
use core::$t;
let m: $t = 12.0;
let x: $t = 3.4;
let b: $t = 5.6;
let abs_difference = (MulAdd::mul_add(m, x, b) - (m*x + b)).abs();
assert!(abs_difference <= 46.4 * $t::EPSILON);
}
)+
};
}
test_mul_add!(f32 f64);
}
}

View File

@ -0,0 +1,96 @@
use core::ops::{Add, Mul, Sub};
use core::{i128, i16, i32, i64, i8, isize};
use core::{u128, u16, u32, u64, u8, usize};
macro_rules! overflowing_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &Self) -> (Self, bool) {
<$t>::$method(*self, *v)
}
}
};
}
/// Performs addition with a flag for overflow.
pub trait OverflowingAdd: Sized + Add<Self, Output = Self> {
/// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur.
/// If an overflow would have occurred then the wrapped value is returned.
fn overflowing_add(&self, v: &Self) -> (Self, bool);
}
overflowing_impl!(OverflowingAdd, overflowing_add, u8);
overflowing_impl!(OverflowingAdd, overflowing_add, u16);
overflowing_impl!(OverflowingAdd, overflowing_add, u32);
overflowing_impl!(OverflowingAdd, overflowing_add, u64);
overflowing_impl!(OverflowingAdd, overflowing_add, usize);
overflowing_impl!(OverflowingAdd, overflowing_add, u128);
overflowing_impl!(OverflowingAdd, overflowing_add, i8);
overflowing_impl!(OverflowingAdd, overflowing_add, i16);
overflowing_impl!(OverflowingAdd, overflowing_add, i32);
overflowing_impl!(OverflowingAdd, overflowing_add, i64);
overflowing_impl!(OverflowingAdd, overflowing_add, isize);
overflowing_impl!(OverflowingAdd, overflowing_add, i128);
/// Performs substraction with a flag for overflow.
pub trait OverflowingSub: Sized + Sub<Self, Output = Self> {
/// Returns a tuple of the difference along with a boolean indicating whether an arithmetic overflow would occur.
/// If an overflow would have occurred then the wrapped value is returned.
fn overflowing_sub(&self, v: &Self) -> (Self, bool);
}
overflowing_impl!(OverflowingSub, overflowing_sub, u8);
overflowing_impl!(OverflowingSub, overflowing_sub, u16);
overflowing_impl!(OverflowingSub, overflowing_sub, u32);
overflowing_impl!(OverflowingSub, overflowing_sub, u64);
overflowing_impl!(OverflowingSub, overflowing_sub, usize);
overflowing_impl!(OverflowingSub, overflowing_sub, u128);
overflowing_impl!(OverflowingSub, overflowing_sub, i8);
overflowing_impl!(OverflowingSub, overflowing_sub, i16);
overflowing_impl!(OverflowingSub, overflowing_sub, i32);
overflowing_impl!(OverflowingSub, overflowing_sub, i64);
overflowing_impl!(OverflowingSub, overflowing_sub, isize);
overflowing_impl!(OverflowingSub, overflowing_sub, i128);
/// Performs multiplication with a flag for overflow.
pub trait OverflowingMul: Sized + Mul<Self, Output = Self> {
/// Returns a tuple of the product along with a boolean indicating whether an arithmetic overflow would occur.
/// If an overflow would have occurred then the wrapped value is returned.
fn overflowing_mul(&self, v: &Self) -> (Self, bool);
}
overflowing_impl!(OverflowingMul, overflowing_mul, u8);
overflowing_impl!(OverflowingMul, overflowing_mul, u16);
overflowing_impl!(OverflowingMul, overflowing_mul, u32);
overflowing_impl!(OverflowingMul, overflowing_mul, u64);
overflowing_impl!(OverflowingMul, overflowing_mul, usize);
overflowing_impl!(OverflowingMul, overflowing_mul, u128);
overflowing_impl!(OverflowingMul, overflowing_mul, i8);
overflowing_impl!(OverflowingMul, overflowing_mul, i16);
overflowing_impl!(OverflowingMul, overflowing_mul, i32);
overflowing_impl!(OverflowingMul, overflowing_mul, i64);
overflowing_impl!(OverflowingMul, overflowing_mul, isize);
overflowing_impl!(OverflowingMul, overflowing_mul, i128);
#[test]
fn test_overflowing_traits() {
fn overflowing_add<T: OverflowingAdd>(a: T, b: T) -> (T, bool) {
a.overflowing_add(&b)
}
fn overflowing_sub<T: OverflowingSub>(a: T, b: T) -> (T, bool) {
a.overflowing_sub(&b)
}
fn overflowing_mul<T: OverflowingMul>(a: T, b: T) -> (T, bool) {
a.overflowing_mul(&b)
}
assert_eq!(overflowing_add(5i16, 2), (7, false));
assert_eq!(overflowing_add(i16::MAX, 1), (i16::MIN, true));
assert_eq!(overflowing_sub(5i16, 2), (3, false));
assert_eq!(overflowing_sub(i16::MIN, 1), (i16::MAX, true));
assert_eq!(overflowing_mul(5i16, 2), (10, false));
assert_eq!(overflowing_mul(1_000_000_000i32, 10), (1410065408, true));
}

130
vendor/num-traits/src/ops/saturating.rs vendored Normal file
View File

@ -0,0 +1,130 @@
use core::ops::{Add, Mul, Sub};
/// Saturating math operations. Deprecated, use `SaturatingAdd`, `SaturatingSub` and
/// `SaturatingMul` instead.
pub trait Saturating {
/// Saturating addition operator.
/// Returns a+b, saturating at the numeric bounds instead of overflowing.
fn saturating_add(self, v: Self) -> Self;
/// Saturating subtraction operator.
/// Returns a-b, saturating at the numeric bounds instead of overflowing.
fn saturating_sub(self, v: Self) -> Self;
}
macro_rules! deprecated_saturating_impl {
($trait_name:ident for $($t:ty)*) => {$(
impl $trait_name for $t {
#[inline]
fn saturating_add(self, v: Self) -> Self {
Self::saturating_add(self, v)
}
#[inline]
fn saturating_sub(self, v: Self) -> Self {
Self::saturating_sub(self, v)
}
}
)*}
}
deprecated_saturating_impl!(Saturating for isize i8 i16 i32 i64 i128);
deprecated_saturating_impl!(Saturating for usize u8 u16 u32 u64 u128);
macro_rules! saturating_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &Self) -> Self {
<$t>::$method(*self, *v)
}
}
};
}
/// Performs addition that saturates at the numeric bounds instead of overflowing.
pub trait SaturatingAdd: Sized + Add<Self, Output = Self> {
/// Saturating addition. Computes `self + other`, saturating at the relevant high or low boundary of
/// the type.
fn saturating_add(&self, v: &Self) -> Self;
}
saturating_impl!(SaturatingAdd, saturating_add, u8);
saturating_impl!(SaturatingAdd, saturating_add, u16);
saturating_impl!(SaturatingAdd, saturating_add, u32);
saturating_impl!(SaturatingAdd, saturating_add, u64);
saturating_impl!(SaturatingAdd, saturating_add, usize);
saturating_impl!(SaturatingAdd, saturating_add, u128);
saturating_impl!(SaturatingAdd, saturating_add, i8);
saturating_impl!(SaturatingAdd, saturating_add, i16);
saturating_impl!(SaturatingAdd, saturating_add, i32);
saturating_impl!(SaturatingAdd, saturating_add, i64);
saturating_impl!(SaturatingAdd, saturating_add, isize);
saturating_impl!(SaturatingAdd, saturating_add, i128);
/// Performs subtraction that saturates at the numeric bounds instead of overflowing.
pub trait SaturatingSub: Sized + Sub<Self, Output = Self> {
/// Saturating subtraction. Computes `self - other`, saturating at the relevant high or low boundary of
/// the type.
fn saturating_sub(&self, v: &Self) -> Self;
}
saturating_impl!(SaturatingSub, saturating_sub, u8);
saturating_impl!(SaturatingSub, saturating_sub, u16);
saturating_impl!(SaturatingSub, saturating_sub, u32);
saturating_impl!(SaturatingSub, saturating_sub, u64);
saturating_impl!(SaturatingSub, saturating_sub, usize);
saturating_impl!(SaturatingSub, saturating_sub, u128);
saturating_impl!(SaturatingSub, saturating_sub, i8);
saturating_impl!(SaturatingSub, saturating_sub, i16);
saturating_impl!(SaturatingSub, saturating_sub, i32);
saturating_impl!(SaturatingSub, saturating_sub, i64);
saturating_impl!(SaturatingSub, saturating_sub, isize);
saturating_impl!(SaturatingSub, saturating_sub, i128);
/// Performs multiplication that saturates at the numeric bounds instead of overflowing.
pub trait SaturatingMul: Sized + Mul<Self, Output = Self> {
/// Saturating multiplication. Computes `self * other`, saturating at the relevant high or low boundary of
/// the type.
fn saturating_mul(&self, v: &Self) -> Self;
}
saturating_impl!(SaturatingMul, saturating_mul, u8);
saturating_impl!(SaturatingMul, saturating_mul, u16);
saturating_impl!(SaturatingMul, saturating_mul, u32);
saturating_impl!(SaturatingMul, saturating_mul, u64);
saturating_impl!(SaturatingMul, saturating_mul, usize);
saturating_impl!(SaturatingMul, saturating_mul, u128);
saturating_impl!(SaturatingMul, saturating_mul, i8);
saturating_impl!(SaturatingMul, saturating_mul, i16);
saturating_impl!(SaturatingMul, saturating_mul, i32);
saturating_impl!(SaturatingMul, saturating_mul, i64);
saturating_impl!(SaturatingMul, saturating_mul, isize);
saturating_impl!(SaturatingMul, saturating_mul, i128);
// TODO: add SaturatingNeg for signed integer primitives once the saturating_neg() API is stable.
#[test]
fn test_saturating_traits() {
fn saturating_add<T: SaturatingAdd>(a: T, b: T) -> T {
a.saturating_add(&b)
}
fn saturating_sub<T: SaturatingSub>(a: T, b: T) -> T {
a.saturating_sub(&b)
}
fn saturating_mul<T: SaturatingMul>(a: T, b: T) -> T {
a.saturating_mul(&b)
}
assert_eq!(saturating_add(255, 1), 255u8);
assert_eq!(saturating_add(127, 1), 127i8);
assert_eq!(saturating_add(-128, -1), -128i8);
assert_eq!(saturating_sub(0, 1), 0u8);
assert_eq!(saturating_sub(-128, 1), -128i8);
assert_eq!(saturating_sub(127, -1), 127i8);
assert_eq!(saturating_mul(255, 2), 255u8);
assert_eq!(saturating_mul(127, 2), 127i8);
assert_eq!(saturating_mul(-128, 2), -128i8);
}

327
vendor/num-traits/src/ops/wrapping.rs vendored Normal file
View File

@ -0,0 +1,327 @@
use core::num::Wrapping;
use core::ops::{Add, Mul, Neg, Shl, Shr, Sub};
macro_rules! wrapping_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &Self) -> Self {
<$t>::$method(*self, *v)
}
}
};
($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => {
impl $trait_name<$rhs> for $t {
#[inline]
fn $method(&self, v: &$rhs) -> Self {
<$t>::$method(*self, *v)
}
}
};
}
/// Performs addition that wraps around on overflow.
pub trait WrappingAdd: Sized + Add<Self, Output = Self> {
/// Wrapping (modular) addition. Computes `self + other`, wrapping around at the boundary of
/// the type.
fn wrapping_add(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingAdd, wrapping_add, u8);
wrapping_impl!(WrappingAdd, wrapping_add, u16);
wrapping_impl!(WrappingAdd, wrapping_add, u32);
wrapping_impl!(WrappingAdd, wrapping_add, u64);
wrapping_impl!(WrappingAdd, wrapping_add, usize);
wrapping_impl!(WrappingAdd, wrapping_add, u128);
wrapping_impl!(WrappingAdd, wrapping_add, i8);
wrapping_impl!(WrappingAdd, wrapping_add, i16);
wrapping_impl!(WrappingAdd, wrapping_add, i32);
wrapping_impl!(WrappingAdd, wrapping_add, i64);
wrapping_impl!(WrappingAdd, wrapping_add, isize);
wrapping_impl!(WrappingAdd, wrapping_add, i128);
/// Performs subtraction that wraps around on overflow.
pub trait WrappingSub: Sized + Sub<Self, Output = Self> {
/// Wrapping (modular) subtraction. Computes `self - other`, wrapping around at the boundary
/// of the type.
fn wrapping_sub(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingSub, wrapping_sub, u8);
wrapping_impl!(WrappingSub, wrapping_sub, u16);
wrapping_impl!(WrappingSub, wrapping_sub, u32);
wrapping_impl!(WrappingSub, wrapping_sub, u64);
wrapping_impl!(WrappingSub, wrapping_sub, usize);
wrapping_impl!(WrappingSub, wrapping_sub, u128);
wrapping_impl!(WrappingSub, wrapping_sub, i8);
wrapping_impl!(WrappingSub, wrapping_sub, i16);
wrapping_impl!(WrappingSub, wrapping_sub, i32);
wrapping_impl!(WrappingSub, wrapping_sub, i64);
wrapping_impl!(WrappingSub, wrapping_sub, isize);
wrapping_impl!(WrappingSub, wrapping_sub, i128);
/// Performs multiplication that wraps around on overflow.
pub trait WrappingMul: Sized + Mul<Self, Output = Self> {
/// Wrapping (modular) multiplication. Computes `self * other`, wrapping around at the boundary
/// of the type.
fn wrapping_mul(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingMul, wrapping_mul, u8);
wrapping_impl!(WrappingMul, wrapping_mul, u16);
wrapping_impl!(WrappingMul, wrapping_mul, u32);
wrapping_impl!(WrappingMul, wrapping_mul, u64);
wrapping_impl!(WrappingMul, wrapping_mul, usize);
wrapping_impl!(WrappingMul, wrapping_mul, u128);
wrapping_impl!(WrappingMul, wrapping_mul, i8);
wrapping_impl!(WrappingMul, wrapping_mul, i16);
wrapping_impl!(WrappingMul, wrapping_mul, i32);
wrapping_impl!(WrappingMul, wrapping_mul, i64);
wrapping_impl!(WrappingMul, wrapping_mul, isize);
wrapping_impl!(WrappingMul, wrapping_mul, i128);
macro_rules! wrapping_unary_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self) -> $t {
<$t>::$method(*self)
}
}
};
}
/// Performs a negation that does not panic.
pub trait WrappingNeg: Sized {
/// Wrapping (modular) negation. Computes `-self`,
/// wrapping around at the boundary of the type.
///
/// Since unsigned types do not have negative equivalents
/// all applications of this function will wrap (except for `-0`).
/// For values smaller than the corresponding signed type's maximum
/// the result is the same as casting the corresponding signed value.
/// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
/// `MAX` is the corresponding signed type's maximum.
///
/// ```
/// use num_traits::WrappingNeg;
///
/// assert_eq!(100i8.wrapping_neg(), -100);
/// assert_eq!((-100i8).wrapping_neg(), 100);
/// assert_eq!((-128i8).wrapping_neg(), -128); // wrapped!
/// ```
fn wrapping_neg(&self) -> Self;
}
wrapping_unary_impl!(WrappingNeg, wrapping_neg, u8);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, u16);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, u32);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, u64);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, usize);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, u128);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, i8);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, i16);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, i32);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, i64);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, isize);
wrapping_unary_impl!(WrappingNeg, wrapping_neg, i128);
macro_rules! wrapping_shift_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, rhs: u32) -> $t {
<$t>::$method(*self, rhs)
}
}
};
}
/// Performs a left shift that does not panic.
pub trait WrappingShl: Sized + Shl<usize, Output = Self> {
/// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
/// where `mask` removes any high order bits of `rhs` that would
/// cause the shift to exceed the bitwidth of the type.
///
/// ```
/// use num_traits::WrappingShl;
///
/// let x: u16 = 0x0001;
///
/// assert_eq!(WrappingShl::wrapping_shl(&x, 0), 0x0001);
/// assert_eq!(WrappingShl::wrapping_shl(&x, 1), 0x0002);
/// assert_eq!(WrappingShl::wrapping_shl(&x, 15), 0x8000);
/// assert_eq!(WrappingShl::wrapping_shl(&x, 16), 0x0001);
/// ```
fn wrapping_shl(&self, rhs: u32) -> Self;
}
wrapping_shift_impl!(WrappingShl, wrapping_shl, u8);
wrapping_shift_impl!(WrappingShl, wrapping_shl, u16);
wrapping_shift_impl!(WrappingShl, wrapping_shl, u32);
wrapping_shift_impl!(WrappingShl, wrapping_shl, u64);
wrapping_shift_impl!(WrappingShl, wrapping_shl, usize);
wrapping_shift_impl!(WrappingShl, wrapping_shl, u128);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i8);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i16);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i32);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i64);
wrapping_shift_impl!(WrappingShl, wrapping_shl, isize);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i128);
/// Performs a right shift that does not panic.
pub trait WrappingShr: Sized + Shr<usize, Output = Self> {
/// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
/// where `mask` removes any high order bits of `rhs` that would
/// cause the shift to exceed the bitwidth of the type.
///
/// ```
/// use num_traits::WrappingShr;
///
/// let x: u16 = 0x8000;
///
/// assert_eq!(WrappingShr::wrapping_shr(&x, 0), 0x8000);
/// assert_eq!(WrappingShr::wrapping_shr(&x, 1), 0x4000);
/// assert_eq!(WrappingShr::wrapping_shr(&x, 15), 0x0001);
/// assert_eq!(WrappingShr::wrapping_shr(&x, 16), 0x8000);
/// ```
fn wrapping_shr(&self, rhs: u32) -> Self;
}
wrapping_shift_impl!(WrappingShr, wrapping_shr, u8);
wrapping_shift_impl!(WrappingShr, wrapping_shr, u16);
wrapping_shift_impl!(WrappingShr, wrapping_shr, u32);
wrapping_shift_impl!(WrappingShr, wrapping_shr, u64);
wrapping_shift_impl!(WrappingShr, wrapping_shr, usize);
wrapping_shift_impl!(WrappingShr, wrapping_shr, u128);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i8);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i16);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i32);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i64);
wrapping_shift_impl!(WrappingShr, wrapping_shr, isize);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i128);
// Well this is a bit funny, but all the more appropriate.
impl<T: WrappingAdd> WrappingAdd for Wrapping<T>
where
Wrapping<T>: Add<Output = Wrapping<T>>,
{
fn wrapping_add(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_add(&v.0))
}
}
impl<T: WrappingSub> WrappingSub for Wrapping<T>
where
Wrapping<T>: Sub<Output = Wrapping<T>>,
{
fn wrapping_sub(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_sub(&v.0))
}
}
impl<T: WrappingMul> WrappingMul for Wrapping<T>
where
Wrapping<T>: Mul<Output = Wrapping<T>>,
{
fn wrapping_mul(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_mul(&v.0))
}
}
impl<T: WrappingNeg> WrappingNeg for Wrapping<T>
where
Wrapping<T>: Neg<Output = Wrapping<T>>,
{
fn wrapping_neg(&self) -> Self {
Wrapping(self.0.wrapping_neg())
}
}
impl<T: WrappingShl> WrappingShl for Wrapping<T>
where
Wrapping<T>: Shl<usize, Output = Wrapping<T>>,
{
fn wrapping_shl(&self, rhs: u32) -> Self {
Wrapping(self.0.wrapping_shl(rhs))
}
}
impl<T: WrappingShr> WrappingShr for Wrapping<T>
where
Wrapping<T>: Shr<usize, Output = Wrapping<T>>,
{
fn wrapping_shr(&self, rhs: u32) -> Self {
Wrapping(self.0.wrapping_shr(rhs))
}
}
#[test]
fn test_wrapping_traits() {
fn wrapping_add<T: WrappingAdd>(a: T, b: T) -> T {
a.wrapping_add(&b)
}
fn wrapping_sub<T: WrappingSub>(a: T, b: T) -> T {
a.wrapping_sub(&b)
}
fn wrapping_mul<T: WrappingMul>(a: T, b: T) -> T {
a.wrapping_mul(&b)
}
fn wrapping_neg<T: WrappingNeg>(a: T) -> T {
a.wrapping_neg()
}
fn wrapping_shl<T: WrappingShl>(a: T, b: u32) -> T {
a.wrapping_shl(b)
}
fn wrapping_shr<T: WrappingShr>(a: T, b: u32) -> T {
a.wrapping_shr(b)
}
assert_eq!(wrapping_add(255, 1), 0u8);
assert_eq!(wrapping_sub(0, 1), 255u8);
assert_eq!(wrapping_mul(255, 2), 254u8);
assert_eq!(wrapping_neg(255), 1u8);
assert_eq!(wrapping_shl(255, 8), 255u8);
assert_eq!(wrapping_shr(255, 8), 255u8);
assert_eq!(wrapping_add(255, 1), (Wrapping(255u8) + Wrapping(1u8)).0);
assert_eq!(wrapping_sub(0, 1), (Wrapping(0u8) - Wrapping(1u8)).0);
assert_eq!(wrapping_mul(255, 2), (Wrapping(255u8) * Wrapping(2u8)).0);
assert_eq!(wrapping_neg(255), (-Wrapping(255u8)).0);
assert_eq!(wrapping_shl(255, 8), (Wrapping(255u8) << 8).0);
assert_eq!(wrapping_shr(255, 8), (Wrapping(255u8) >> 8).0);
}
#[test]
fn wrapping_is_wrappingadd() {
fn require_wrappingadd<T: WrappingAdd>(_: &T) {}
require_wrappingadd(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingsub() {
fn require_wrappingsub<T: WrappingSub>(_: &T) {}
require_wrappingsub(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingmul() {
fn require_wrappingmul<T: WrappingMul>(_: &T) {}
require_wrappingmul(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingneg() {
fn require_wrappingneg<T: WrappingNeg>(_: &T) {}
require_wrappingneg(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingshl() {
fn require_wrappingshl<T: WrappingShl>(_: &T) {}
require_wrappingshl(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingshr() {
fn require_wrappingshr<T: WrappingShr>(_: &T) {}
require_wrappingshr(&Wrapping(42));
}