Initial vendor packages

Signed-off-by: Valentin Popov <valentin@popov.link>
This commit is contained in:
2024-01-08 01:21:28 +04:00
parent 5ecd8cf2cb
commit 1b6a04ca55
7309 changed files with 2160054 additions and 0 deletions

91
vendor/object/src/archive.rs vendored Normal file
View File

@ -0,0 +1,91 @@
//! Archive definitions.
//!
//! These definitions are independent of read/write support, although we do implement
//! some traits useful for those.
use crate::pod::Pod;
/// File identification bytes stored at the beginning of the file.
pub const MAGIC: [u8; 8] = *b"!<arch>\n";
/// File identification bytes at the beginning of AIX big archive.
pub const AIX_BIG_MAGIC: [u8; 8] = *b"<bigaf>\n";
/// File identification bytes stored at the beginning of a thin archive.
///
/// A thin archive only contains a symbol table and file names.
pub const THIN_MAGIC: [u8; 8] = *b"!<thin>\n";
/// The terminator for each archive member header.
pub const TERMINATOR: [u8; 2] = *b"`\n";
/// The header at the start of an archive member.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct Header {
/// The file name.
pub name: [u8; 16],
/// File modification timestamp in decimal.
pub date: [u8; 12],
/// User ID in decimal.
pub uid: [u8; 6],
/// Group ID in decimal.
pub gid: [u8; 6],
/// File mode in octal.
pub mode: [u8; 8],
/// File size in decimal.
pub size: [u8; 10],
/// Must be equal to `TERMINATOR`.
pub terminator: [u8; 2],
}
/// The header at the start of an AIX big archive member, without name.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct AixHeader {
/// File member size in decimal.
pub size: [u8; 20],
/// Next member offset in decimal.
pub nxtmem: [u8; 20],
/// Previous member offset in decimal.
pub prvmem: [u8; 20],
/// File member date in decimal.
pub date: [u8; 12],
/// File member user id in decimal.
pub uid: [u8; 12],
/// File member group id in decimal.
pub gid: [u8; 12],
/// File member mode in octal.
pub mode: [u8; 12],
/// File member name length in decimal.
pub namlen: [u8; 4],
}
/// The AIX big archive's fixed length header at file beginning.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct AixFileHeader {
/// Archive magic string.
pub magic: [u8; 8],
/// Offset of member table.
pub memoff: [u8; 20],
/// Offset of global symbol table.
pub gstoff: [u8; 20],
/// Offset of global symbol table for 64-bit objects.
pub gst64off: [u8; 20],
/// Offset of first member.
pub fstmoff: [u8; 20],
/// Offset of last member.
pub lstmoff: [u8; 20],
/// Offset of first member on free list.
pub freeoff: [u8; 20],
}
/// Offset of a member in an AIX big archive.
///
/// This is used in the member index.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct AixMemberOffset(pub [u8; 20]);
unsafe_impl_pod!(Header, AixHeader, AixFileHeader, AixMemberOffset,);

536
vendor/object/src/common.rs vendored Normal file
View File

@ -0,0 +1,536 @@
/// A CPU architecture.
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum Architecture {
Unknown,
Aarch64,
#[allow(non_camel_case_types)]
Aarch64_Ilp32,
Arm,
Avr,
Bpf,
Csky,
I386,
X86_64,
#[allow(non_camel_case_types)]
X86_64_X32,
Hexagon,
LoongArch64,
Mips,
Mips64,
Msp430,
PowerPc,
PowerPc64,
Riscv32,
Riscv64,
S390x,
Sbf,
Sharc,
Sparc64,
Wasm32,
Wasm64,
Xtensa,
}
/// A CPU sub-architecture.
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SubArchitecture {
Arm64E,
Arm64EC,
}
impl Architecture {
/// The size of an address value for this architecture.
///
/// Returns `None` for unknown architectures.
pub fn address_size(self) -> Option<AddressSize> {
match self {
Architecture::Unknown => None,
Architecture::Aarch64 => Some(AddressSize::U64),
Architecture::Aarch64_Ilp32 => Some(AddressSize::U32),
Architecture::Arm => Some(AddressSize::U32),
Architecture::Avr => Some(AddressSize::U8),
Architecture::Bpf => Some(AddressSize::U64),
Architecture::Csky => Some(AddressSize::U32),
Architecture::I386 => Some(AddressSize::U32),
Architecture::X86_64 => Some(AddressSize::U64),
Architecture::X86_64_X32 => Some(AddressSize::U32),
Architecture::Hexagon => Some(AddressSize::U32),
Architecture::LoongArch64 => Some(AddressSize::U64),
Architecture::Mips => Some(AddressSize::U32),
Architecture::Mips64 => Some(AddressSize::U64),
Architecture::Msp430 => Some(AddressSize::U16),
Architecture::PowerPc => Some(AddressSize::U32),
Architecture::PowerPc64 => Some(AddressSize::U64),
Architecture::Riscv32 => Some(AddressSize::U32),
Architecture::Riscv64 => Some(AddressSize::U64),
Architecture::S390x => Some(AddressSize::U64),
Architecture::Sbf => Some(AddressSize::U64),
Architecture::Sharc => Some(AddressSize::U32),
Architecture::Sparc64 => Some(AddressSize::U64),
Architecture::Wasm32 => Some(AddressSize::U32),
Architecture::Wasm64 => Some(AddressSize::U64),
Architecture::Xtensa => Some(AddressSize::U32),
}
}
}
/// The size of an address value for an architecture.
///
/// This may differ from the address size supported by the file format (such as for COFF).
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
#[repr(u8)]
pub enum AddressSize {
U8 = 1,
U16 = 2,
U32 = 4,
U64 = 8,
}
impl AddressSize {
/// The size in bytes of an address value.
#[inline]
pub fn bytes(self) -> u8 {
self as u8
}
}
/// A binary file format.
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum BinaryFormat {
Coff,
Elf,
MachO,
Pe,
Wasm,
Xcoff,
}
/// The kind of a section.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SectionKind {
/// The section kind is unknown.
Unknown,
/// An executable code section.
///
/// Example ELF sections: `.text`
///
/// Example Mach-O sections: `__TEXT/__text`
Text,
/// A data section.
///
/// Example ELF sections: `.data`
///
/// Example Mach-O sections: `__DATA/__data`
Data,
/// A read only data section.
///
/// Example ELF sections: `.rodata`
///
/// Example Mach-O sections: `__TEXT/__const`, `__DATA/__const`, `__TEXT/__literal4`
ReadOnlyData,
/// A read only data section with relocations.
///
/// This is the same as either `Data` or `ReadOnlyData`, depending on the file format.
/// This value is only used in the API for writing files. It is never returned when reading files.
ReadOnlyDataWithRel,
/// A loadable string section.
///
/// Example ELF sections: `.rodata.str`
///
/// Example Mach-O sections: `__TEXT/__cstring`
ReadOnlyString,
/// An uninitialized data section.
///
/// Example ELF sections: `.bss`
///
/// Example Mach-O sections: `__DATA/__bss`
UninitializedData,
/// An uninitialized common data section.
///
/// Example Mach-O sections: `__DATA/__common`
Common,
/// A TLS data section.
///
/// Example ELF sections: `.tdata`
///
/// Example Mach-O sections: `__DATA/__thread_data`
Tls,
/// An uninitialized TLS data section.
///
/// Example ELF sections: `.tbss`
///
/// Example Mach-O sections: `__DATA/__thread_bss`
UninitializedTls,
/// A TLS variables section.
///
/// This contains TLS variable structures, rather than the variable initializers.
///
/// Example Mach-O sections: `__DATA/__thread_vars`
TlsVariables,
/// A non-loadable string section.
///
/// Example ELF sections: `.comment`, `.debug_str`
OtherString,
/// Some other non-loadable section.
///
/// Example ELF sections: `.debug_info`
Other,
/// Debug information.
///
/// Example Mach-O sections: `__DWARF/__debug_info`
Debug,
/// Information for the linker.
///
/// Example COFF sections: `.drectve`
Linker,
/// ELF note section.
Note,
/// Metadata such as symbols or relocations.
///
/// Example ELF sections: `.symtab`, `.strtab`, `.group`
Metadata,
/// Some other ELF section type.
///
/// This is the `sh_type` field in the section header.
/// The meaning may be dependent on the architecture.
Elf(u32),
}
impl SectionKind {
/// Return true if this section contains zerofill data.
pub fn is_bss(self) -> bool {
self == SectionKind::UninitializedData
|| self == SectionKind::UninitializedTls
|| self == SectionKind::Common
}
}
/// The selection kind for a COMDAT section group.
///
/// This determines the way in which the linker resolves multiple definitions of the COMDAT
/// sections.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum ComdatKind {
/// The selection kind is unknown.
Unknown,
/// Multiple definitions are allowed.
///
/// An arbitrary definition is selected, and the rest are removed.
///
/// This is the only supported selection kind for ELF.
Any,
/// Multiple definitions are not allowed.
///
/// This is used to group sections without allowing duplicates.
NoDuplicates,
/// Multiple definitions must have the same size.
///
/// An arbitrary definition is selected, and the rest are removed.
SameSize,
/// Multiple definitions must match exactly.
///
/// An arbitrary definition is selected, and the rest are removed.
ExactMatch,
/// Multiple definitions are allowed, and the largest is selected.
///
/// An arbitrary definition with the largest size is selected, and the rest are removed.
Largest,
/// Multiple definitions are allowed, and the newest is selected.
Newest,
}
/// The kind of a symbol.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SymbolKind {
/// The symbol kind is unknown.
Unknown,
/// The symbol is a null placeholder.
Null,
/// The symbol is for executable code.
Text,
/// The symbol is for a data object.
Data,
/// The symbol is for a section.
Section,
/// The symbol is the name of a file. It precedes symbols within that file.
File,
/// The symbol is for a code label.
Label,
/// The symbol is for a thread local storage entity.
Tls,
}
/// A symbol scope.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum SymbolScope {
/// Unknown scope.
Unknown,
/// Symbol is visible to the compilation unit.
Compilation,
/// Symbol is visible to the static linkage unit.
Linkage,
/// Symbol is visible to dynamically linked objects.
Dynamic,
}
/// The operation used to calculate the result of the relocation.
///
/// The relocation descriptions use the following definitions. Note that
/// these definitions probably don't match any ELF ABI.
///
/// * A - The value of the addend.
/// * G - The address of the symbol's entry within the global offset table.
/// * L - The address of the symbol's entry within the procedure linkage table.
/// * P - The address of the place of the relocation.
/// * S - The address of the symbol.
/// * GotBase - The address of the global offset table.
/// * Image - The base address of the image.
/// * Section - The address of the section containing the symbol.
///
/// 'XxxRelative' means 'Xxx + A - P'. 'XxxOffset' means 'S + A - Xxx'.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum RelocationKind {
/// S + A
Absolute,
/// S + A - P
Relative,
/// G + A - GotBase
Got,
/// G + A - P
GotRelative,
/// GotBase + A - P
GotBaseRelative,
/// S + A - GotBase
GotBaseOffset,
/// L + A - P
PltRelative,
/// S + A - Image
ImageOffset,
/// S + A - Section
SectionOffset,
/// The index of the section containing the symbol.
SectionIndex,
/// Some other ELF relocation. The value is dependent on the architecture.
Elf(u32),
/// Some other Mach-O relocation. The value is dependent on the architecture.
MachO {
/// The relocation type.
value: u8,
/// Whether the relocation is relative to the place.
relative: bool,
},
/// Some other COFF relocation. The value is dependent on the architecture.
Coff(u16),
/// Some other XCOFF relocation.
Xcoff(u8),
}
/// Information about how the result of the relocation operation is encoded in the place.
///
/// This is usually architecture specific, such as specifying an addressing mode or
/// a specific instruction.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum RelocationEncoding {
/// Generic encoding.
Generic,
/// x86 sign extension at runtime.
///
/// Used with `RelocationKind::Absolute`.
X86Signed,
/// x86 rip-relative addressing.
///
/// The `RelocationKind` must be PC relative.
X86RipRelative,
/// x86 rip-relative addressing in movq instruction.
///
/// The `RelocationKind` must be PC relative.
X86RipRelativeMovq,
/// x86 branch instruction.
///
/// The `RelocationKind` must be PC relative.
X86Branch,
/// s390x PC-relative offset shifted right by one bit.
///
/// The `RelocationKind` must be PC relative.
S390xDbl,
/// AArch64 call target.
///
/// The `RelocationKind` must be PC relative.
AArch64Call,
/// LoongArch branch offset with two trailing zeros.
///
/// The `RelocationKind` must be PC relative.
LoongArchBranch,
/// SHARC+ 48-bit Type A instruction
///
/// Represents these possible variants, each with a corresponding
/// `R_SHARC_*` constant:
///
/// * 24-bit absolute address
/// * 32-bit absolute address
/// * 6-bit relative address
/// * 24-bit relative address
/// * 6-bit absolute address in the immediate value field
/// * 16-bit absolute address in the immediate value field
SharcTypeA,
/// SHARC+ 32-bit Type B instruction
///
/// Represents these possible variants, each with a corresponding
/// `R_SHARC_*` constant:
///
/// * 6-bit absolute address in the immediate value field
/// * 7-bit absolute address in the immediate value field
/// * 16-bit absolute address
/// * 6-bit relative address
SharcTypeB,
}
/// File flags that are specific to each file format.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum FileFlags {
/// No file flags.
None,
/// ELF file flags.
Elf {
/// `os_abi` field in the ELF file header.
os_abi: u8,
/// `abi_version` field in the ELF file header.
abi_version: u8,
/// `e_flags` field in the ELF file header.
e_flags: u32,
},
/// Mach-O file flags.
MachO {
/// `flags` field in the Mach-O file header.
flags: u32,
},
/// COFF file flags.
Coff {
/// `Characteristics` field in the COFF file header.
characteristics: u16,
},
/// XCOFF file flags.
Xcoff {
/// `f_flags` field in the XCOFF file header.
f_flags: u16,
},
}
/// Segment flags that are specific to each file format.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SegmentFlags {
/// No segment flags.
None,
/// ELF segment flags.
Elf {
/// `p_flags` field in the segment header.
p_flags: u32,
},
/// Mach-O segment flags.
MachO {
/// `flags` field in the segment header.
flags: u32,
/// `maxprot` field in the segment header.
maxprot: u32,
/// `initprot` field in the segment header.
initprot: u32,
},
/// COFF segment flags.
Coff {
/// `Characteristics` field in the segment header.
characteristics: u32,
},
}
/// Section flags that are specific to each file format.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SectionFlags {
/// No section flags.
None,
/// ELF section flags.
Elf {
/// `sh_flags` field in the section header.
sh_flags: u64,
},
/// Mach-O section flags.
MachO {
/// `flags` field in the section header.
flags: u32,
},
/// COFF section flags.
Coff {
/// `Characteristics` field in the section header.
characteristics: u32,
},
/// XCOFF section flags.
Xcoff {
/// `s_flags` field in the section header.
s_flags: u32,
},
}
/// Symbol flags that are specific to each file format.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SymbolFlags<Section, Symbol> {
/// No symbol flags.
None,
/// ELF symbol flags.
Elf {
/// `st_info` field in the ELF symbol.
st_info: u8,
/// `st_other` field in the ELF symbol.
st_other: u8,
},
/// Mach-O symbol flags.
MachO {
/// `n_desc` field in the Mach-O symbol.
n_desc: u16,
},
/// COFF flags for a section symbol.
CoffSection {
/// `Selection` field in the auxiliary symbol for the section.
selection: u8,
/// `Number` field in the auxiliary symbol for the section.
associative_section: Option<Section>,
},
/// XCOFF symbol flags.
Xcoff {
/// `n_sclass` field in the XCOFF symbol.
n_sclass: u8,
/// `x_smtyp` field in the CSECT auxiliary symbol.
///
/// Only valid if `n_sclass` is `C_EXT`, `C_WEAKEXT`, or `C_HIDEXT`.
x_smtyp: u8,
/// `x_smclas` field in the CSECT auxiliary symbol.
///
/// Only valid if `n_sclass` is `C_EXT`, `C_WEAKEXT`, or `C_HIDEXT`.
x_smclas: u8,
/// The containing csect for the symbol.
///
/// Only valid if `x_smtyp` is `XTY_LD`.
containing_csect: Option<Symbol>,
},
}

6287
vendor/object/src/elf.rs vendored Normal file

File diff suppressed because it is too large Load Diff

831
vendor/object/src/endian.rs vendored Normal file
View File

@ -0,0 +1,831 @@
//! Types for compile-time and run-time endianness.
use crate::pod::Pod;
use core::fmt::{self, Debug};
use core::marker::PhantomData;
/// A trait for using an endianness specification.
///
/// Provides methods for converting between the specified endianness and
/// the native endianness of the target machine.
///
/// This trait does not require that the endianness is known at compile time.
pub trait Endian: Debug + Default + Clone + Copy + PartialEq + Eq + 'static {
/// Construct a specification for the endianness of some values.
///
/// Returns `None` if the type does not support specifying the given endianness.
fn from_big_endian(big_endian: bool) -> Option<Self>;
/// Construct a specification for the endianness of some values.
///
/// Returns `None` if the type does not support specifying the given endianness.
fn from_little_endian(little_endian: bool) -> Option<Self> {
Self::from_big_endian(!little_endian)
}
/// Return true for big endian byte order.
fn is_big_endian(self) -> bool;
/// Return true for little endian byte order.
#[inline]
fn is_little_endian(self) -> bool {
!self.is_big_endian()
}
/// Converts an unsigned 16 bit integer to native endian.
#[inline]
fn read_u16(self, n: u16) -> u16 {
if self.is_big_endian() {
u16::from_be(n)
} else {
u16::from_le(n)
}
}
/// Converts an unsigned 32 bit integer to native endian.
#[inline]
fn read_u32(self, n: u32) -> u32 {
if self.is_big_endian() {
u32::from_be(n)
} else {
u32::from_le(n)
}
}
/// Converts an unsigned 64 bit integer to native endian.
#[inline]
fn read_u64(self, n: u64) -> u64 {
if self.is_big_endian() {
u64::from_be(n)
} else {
u64::from_le(n)
}
}
/// Converts a signed 16 bit integer to native endian.
#[inline]
fn read_i16(self, n: i16) -> i16 {
if self.is_big_endian() {
i16::from_be(n)
} else {
i16::from_le(n)
}
}
/// Converts a signed 32 bit integer to native endian.
#[inline]
fn read_i32(self, n: i32) -> i32 {
if self.is_big_endian() {
i32::from_be(n)
} else {
i32::from_le(n)
}
}
/// Converts a signed 64 bit integer to native endian.
#[inline]
fn read_i64(self, n: i64) -> i64 {
if self.is_big_endian() {
i64::from_be(n)
} else {
i64::from_le(n)
}
}
/// Converts an unaligned unsigned 16 bit integer to native endian.
#[inline]
fn read_u16_bytes(self, n: [u8; 2]) -> u16 {
if self.is_big_endian() {
u16::from_be_bytes(n)
} else {
u16::from_le_bytes(n)
}
}
/// Converts an unaligned unsigned 32 bit integer to native endian.
#[inline]
fn read_u32_bytes(self, n: [u8; 4]) -> u32 {
if self.is_big_endian() {
u32::from_be_bytes(n)
} else {
u32::from_le_bytes(n)
}
}
/// Converts an unaligned unsigned 64 bit integer to native endian.
#[inline]
fn read_u64_bytes(self, n: [u8; 8]) -> u64 {
if self.is_big_endian() {
u64::from_be_bytes(n)
} else {
u64::from_le_bytes(n)
}
}
/// Converts an unaligned signed 16 bit integer to native endian.
#[inline]
fn read_i16_bytes(self, n: [u8; 2]) -> i16 {
if self.is_big_endian() {
i16::from_be_bytes(n)
} else {
i16::from_le_bytes(n)
}
}
/// Converts an unaligned signed 32 bit integer to native endian.
#[inline]
fn read_i32_bytes(self, n: [u8; 4]) -> i32 {
if self.is_big_endian() {
i32::from_be_bytes(n)
} else {
i32::from_le_bytes(n)
}
}
/// Converts an unaligned signed 64 bit integer to native endian.
#[inline]
fn read_i64_bytes(self, n: [u8; 8]) -> i64 {
if self.is_big_endian() {
i64::from_be_bytes(n)
} else {
i64::from_le_bytes(n)
}
}
/// Converts an unsigned 16 bit integer from native endian.
#[inline]
fn write_u16(self, n: u16) -> u16 {
if self.is_big_endian() {
u16::to_be(n)
} else {
u16::to_le(n)
}
}
/// Converts an unsigned 32 bit integer from native endian.
#[inline]
fn write_u32(self, n: u32) -> u32 {
if self.is_big_endian() {
u32::to_be(n)
} else {
u32::to_le(n)
}
}
/// Converts an unsigned 64 bit integer from native endian.
#[inline]
fn write_u64(self, n: u64) -> u64 {
if self.is_big_endian() {
u64::to_be(n)
} else {
u64::to_le(n)
}
}
/// Converts a signed 16 bit integer from native endian.
#[inline]
fn write_i16(self, n: i16) -> i16 {
if self.is_big_endian() {
i16::to_be(n)
} else {
i16::to_le(n)
}
}
/// Converts a signed 32 bit integer from native endian.
#[inline]
fn write_i32(self, n: i32) -> i32 {
if self.is_big_endian() {
i32::to_be(n)
} else {
i32::to_le(n)
}
}
/// Converts a signed 64 bit integer from native endian.
#[inline]
fn write_i64(self, n: i64) -> i64 {
if self.is_big_endian() {
i64::to_be(n)
} else {
i64::to_le(n)
}
}
/// Converts an unaligned unsigned 16 bit integer from native endian.
#[inline]
fn write_u16_bytes(self, n: u16) -> [u8; 2] {
if self.is_big_endian() {
u16::to_be_bytes(n)
} else {
u16::to_le_bytes(n)
}
}
/// Converts an unaligned unsigned 32 bit integer from native endian.
#[inline]
fn write_u32_bytes(self, n: u32) -> [u8; 4] {
if self.is_big_endian() {
u32::to_be_bytes(n)
} else {
u32::to_le_bytes(n)
}
}
/// Converts an unaligned unsigned 64 bit integer from native endian.
#[inline]
fn write_u64_bytes(self, n: u64) -> [u8; 8] {
if self.is_big_endian() {
u64::to_be_bytes(n)
} else {
u64::to_le_bytes(n)
}
}
/// Converts an unaligned signed 16 bit integer from native endian.
#[inline]
fn write_i16_bytes(self, n: i16) -> [u8; 2] {
if self.is_big_endian() {
i16::to_be_bytes(n)
} else {
i16::to_le_bytes(n)
}
}
/// Converts an unaligned signed 32 bit integer from native endian.
#[inline]
fn write_i32_bytes(self, n: i32) -> [u8; 4] {
if self.is_big_endian() {
i32::to_be_bytes(n)
} else {
i32::to_le_bytes(n)
}
}
/// Converts an unaligned signed 64 bit integer from native endian.
#[inline]
fn write_i64_bytes(self, n: i64) -> [u8; 8] {
if self.is_big_endian() {
i64::to_be_bytes(n)
} else {
i64::to_le_bytes(n)
}
}
}
/// An endianness that is selectable at run-time.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Endianness {
/// Little endian byte order.
Little,
/// Big endian byte order.
Big,
}
impl Default for Endianness {
#[cfg(target_endian = "little")]
#[inline]
fn default() -> Endianness {
Endianness::Little
}
#[cfg(target_endian = "big")]
#[inline]
fn default() -> Endianness {
Endianness::Big
}
}
impl Endian for Endianness {
#[inline]
fn from_big_endian(big_endian: bool) -> Option<Self> {
Some(if big_endian {
Endianness::Big
} else {
Endianness::Little
})
}
#[inline]
fn is_big_endian(self) -> bool {
self != Endianness::Little
}
}
/// Compile-time little endian byte order.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct LittleEndian;
impl Default for LittleEndian {
#[inline]
fn default() -> LittleEndian {
LittleEndian
}
}
impl Endian for LittleEndian {
#[inline]
fn from_big_endian(big_endian: bool) -> Option<Self> {
if big_endian {
None
} else {
Some(LittleEndian)
}
}
#[inline]
fn is_big_endian(self) -> bool {
false
}
}
/// Compile-time big endian byte order.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct BigEndian;
impl Default for BigEndian {
#[inline]
fn default() -> BigEndian {
BigEndian
}
}
impl Endian for BigEndian {
#[inline]
fn from_big_endian(big_endian: bool) -> Option<Self> {
if big_endian {
Some(BigEndian)
} else {
None
}
}
#[inline]
fn is_big_endian(self) -> bool {
true
}
}
/// The native endianness for the target platform.
#[cfg(target_endian = "little")]
pub type NativeEndian = LittleEndian;
#[cfg(target_endian = "little")]
#[allow(non_upper_case_globals)]
#[doc(hidden)]
pub const NativeEndian: LittleEndian = LittleEndian;
/// The native endianness for the target platform.
#[cfg(target_endian = "big")]
pub type NativeEndian = BigEndian;
#[cfg(target_endian = "big")]
#[allow(non_upper_case_globals)]
#[doc(hidden)]
pub const NativeEndian: BigEndian = BigEndian;
macro_rules! unsafe_impl_endian_pod {
($($struct_name:ident),+ $(,)?) => {
$(
unsafe impl<E: Endian> Pod for $struct_name<E> { }
)+
}
}
#[cfg(not(feature = "unaligned"))]
mod aligned {
use super::{fmt, Endian, PhantomData, Pod};
/// A `u16` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct U16<E: Endian>(u16, PhantomData<E>);
impl<E: Endian> U16<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 2]) -> Self {
Self(u16::from_ne_bytes(n), PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: u16) -> Self {
Self(e.write_u16(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> u16 {
e.read_u16(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: u16) {
self.0 = e.write_u16(n);
}
}
/// A `u32` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct U32<E: Endian>(u32, PhantomData<E>);
impl<E: Endian> U32<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 4]) -> Self {
Self(u32::from_ne_bytes(n), PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: u32) -> Self {
Self(e.write_u32(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> u32 {
e.read_u32(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: u32) {
self.0 = e.write_u32(n);
}
}
/// A `u64` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct U64<E: Endian>(u64, PhantomData<E>);
impl<E: Endian> U64<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 8]) -> Self {
Self(u64::from_ne_bytes(n), PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: u64) -> Self {
Self(e.write_u64(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> u64 {
e.read_u64(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: u64) {
self.0 = e.write_u64(n);
}
}
/// An `i16` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct I16<E: Endian>(i16, PhantomData<E>);
impl<E: Endian> I16<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 2]) -> Self {
Self(i16::from_ne_bytes(n), PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: i16) -> Self {
Self(e.write_i16(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> i16 {
e.read_i16(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: i16) {
self.0 = e.write_i16(n);
}
}
/// An `i32` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct I32<E: Endian>(i32, PhantomData<E>);
impl<E: Endian> I32<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 4]) -> Self {
Self(i32::from_ne_bytes(n), PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: i32) -> Self {
Self(e.write_i32(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> i32 {
e.read_i32(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: i32) {
self.0 = e.write_i32(n);
}
}
/// An `i64` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct I64<E: Endian>(i64, PhantomData<E>);
impl<E: Endian> I64<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 8]) -> Self {
Self(i64::from_ne_bytes(n), PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: i64) -> Self {
Self(e.write_i64(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> i64 {
e.read_i64(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: i64) {
self.0 = e.write_i64(n);
}
}
impl<E: Endian> fmt::Debug for U16<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "U16({:x})", self.0)
}
}
impl<E: Endian> fmt::Debug for U32<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "U32({:x})", self.0)
}
}
impl<E: Endian> fmt::Debug for U64<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "U64({:x})", self.0)
}
}
impl<E: Endian> fmt::Debug for I16<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "I16({:x})", self.0)
}
}
impl<E: Endian> fmt::Debug for I32<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "I32({:x})", self.0)
}
}
impl<E: Endian> fmt::Debug for I64<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "I64({:x})", self.0)
}
}
unsafe_impl_endian_pod!(U16, U32, U64, I16, I32, I64);
}
#[cfg(not(feature = "unaligned"))]
pub use aligned::*;
/// A `u16` value with an externally specified endianness of type `E`.
#[cfg(feature = "unaligned")]
pub type U16<E> = U16Bytes<E>;
/// A `u32` value with an externally specified endianness of type `E`.
#[cfg(feature = "unaligned")]
pub type U32<E> = U32Bytes<E>;
/// A `u64` value with an externally specified endianness of type `E`.
#[cfg(feature = "unaligned")]
pub type U64<E> = U64Bytes<E>;
/// An `i16` value with an externally specified endianness of type `E`.
#[cfg(feature = "unaligned")]
pub type I16<E> = I16Bytes<E>;
/// An `i32` value with an externally specified endianness of type `E`.
#[cfg(feature = "unaligned")]
pub type I32<E> = I32Bytes<E>;
/// An `i64` value with an externally specified endianness of type `E`.
#[cfg(feature = "unaligned")]
pub type I64<E> = I64Bytes<E>;
/// An unaligned `u16` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct U16Bytes<E: Endian>([u8; 2], PhantomData<E>);
impl<E: Endian> U16Bytes<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 2]) -> Self {
Self(n, PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: u16) -> Self {
Self(e.write_u16_bytes(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> u16 {
e.read_u16_bytes(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: u16) {
self.0 = e.write_u16_bytes(n);
}
}
/// An unaligned `u32` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct U32Bytes<E: Endian>([u8; 4], PhantomData<E>);
impl<E: Endian> U32Bytes<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 4]) -> Self {
Self(n, PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: u32) -> Self {
Self(e.write_u32_bytes(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> u32 {
e.read_u32_bytes(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: u32) {
self.0 = e.write_u32_bytes(n);
}
}
/// An unaligned `u64` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct U64Bytes<E: Endian>([u8; 8], PhantomData<E>);
impl<E: Endian> U64Bytes<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 8]) -> Self {
Self(n, PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: u64) -> Self {
Self(e.write_u64_bytes(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> u64 {
e.read_u64_bytes(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: u64) {
self.0 = e.write_u64_bytes(n);
}
}
/// An unaligned `i16` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct I16Bytes<E: Endian>([u8; 2], PhantomData<E>);
impl<E: Endian> I16Bytes<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 2]) -> Self {
Self(n, PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: i16) -> Self {
Self(e.write_i16_bytes(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> i16 {
e.read_i16_bytes(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: i16) {
self.0 = e.write_i16_bytes(n);
}
}
/// An unaligned `i32` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct I32Bytes<E: Endian>([u8; 4], PhantomData<E>);
impl<E: Endian> I32Bytes<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 4]) -> Self {
Self(n, PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: i32) -> Self {
Self(e.write_i32_bytes(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> i32 {
e.read_i32_bytes(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: i32) {
self.0 = e.write_i32_bytes(n);
}
}
/// An unaligned `i64` value with an externally specified endianness of type `E`.
#[derive(Default, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct I64Bytes<E: Endian>([u8; 8], PhantomData<E>);
impl<E: Endian> I64Bytes<E> {
/// Construct a new value given bytes that already have the required endianness.
pub fn from_bytes(n: [u8; 8]) -> Self {
Self(n, PhantomData)
}
/// Construct a new value given a native endian value.
pub fn new(e: E, n: i64) -> Self {
Self(e.write_i64_bytes(n), PhantomData)
}
/// Return the value as a native endian value.
pub fn get(self, e: E) -> i64 {
e.read_i64_bytes(self.0)
}
/// Set the value given a native endian value.
pub fn set(&mut self, e: E, n: i64) {
self.0 = e.write_i64_bytes(n);
}
}
impl<E: Endian> fmt::Debug for U16Bytes<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "U16({:x}, {:x})", self.0[0], self.0[1],)
}
}
impl<E: Endian> fmt::Debug for U32Bytes<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"U32({:x}, {:x}, {:x}, {:x})",
self.0[0], self.0[1], self.0[2], self.0[3],
)
}
}
impl<E: Endian> fmt::Debug for U64Bytes<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"U64({:x}, {:x}, {:x}, {:x}, {:x}, {:x}, {:x}, {:x})",
self.0[0], self.0[1], self.0[2], self.0[3], self.0[4], self.0[5], self.0[6], self.0[7],
)
}
}
impl<E: Endian> fmt::Debug for I16Bytes<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "I16({:x}, {:x})", self.0[0], self.0[1],)
}
}
impl<E: Endian> fmt::Debug for I32Bytes<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"I32({:x}, {:x}, {:x}, {:x})",
self.0[0], self.0[1], self.0[2], self.0[3],
)
}
}
impl<E: Endian> fmt::Debug for I64Bytes<E> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"I64({:x}, {:x}, {:x}, {:x}, {:x}, {:x}, {:x}, {:x})",
self.0[0], self.0[1], self.0[2], self.0[3], self.0[4], self.0[5], self.0[6], self.0[7],
)
}
}
unsafe_impl_endian_pod!(U16Bytes, U32Bytes, U64Bytes, I16Bytes, I32Bytes, I64Bytes);

99
vendor/object/src/lib.rs vendored Normal file
View File

@ -0,0 +1,99 @@
//! # `object`
//!
//! The `object` crate provides a unified interface to working with object files
//! across platforms. It supports reading relocatable object files and executable files,
//! and writing relocatable object files and some executable files.
//!
//! ## Raw struct definitions
//!
//! Raw structs are defined for: [ELF](elf), [Mach-O](macho), [PE/COFF](pe),
//! [XCOFF](xcoff), [archive].
//! Types and traits for zerocopy support are defined in the [`pod`] and [`endian`] modules.
//!
//! ## Unified read API
//!
//! The [`read`] module provides a unified read API using the [`read::Object`] trait.
//! There is an implementation of this trait for [`read::File`], which allows reading any
//! file format, as well as implementations for each file format.
//!
//! ## Low level read API
//!
//! The [`read#modules`] submodules define helpers that operate on the raw structs.
//! These can be used instead of the unified API, or in conjunction with it to access
//! details that are not available via the unified API.
//!
//! ## Unified write API
//!
//! The [`mod@write`] module provides a unified write API for relocatable object files
//! using [`write::Object`]. This does not support writing executable files.
//!
//! ## Low level write API
//!
//! The [`mod@write#modules`] submodules define helpers for writing the raw structs.
//!
//! ## Shared definitions
//!
//! The crate provides a number of definitions that are used by both the read and write
//! APIs. These are defined at the top level module, but none of these are the main entry
//! points of the crate.
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![no_std]
#![warn(rust_2018_idioms)]
// Style.
#![allow(clippy::collapsible_if)]
#![allow(clippy::comparison_chain)]
#![allow(clippy::manual_flatten)]
#![allow(clippy::match_like_matches_macro)]
#![allow(clippy::single_match)]
#![allow(clippy::type_complexity)]
// Occurs due to fallible iteration.
#![allow(clippy::should_implement_trait)]
// Unit errors are converted to other types by callers.
#![allow(clippy::result_unit_err)]
// Worse readability sometimes.
#![allow(clippy::collapsible_else_if)]
#[cfg(feature = "cargo-all")]
compile_error!("'--all-features' is not supported; use '--features all' instead");
#[cfg(any(feature = "read_core", feature = "write_core"))]
#[allow(unused_imports)]
#[macro_use]
extern crate alloc;
#[cfg(feature = "std")]
#[allow(unused_imports)]
#[macro_use]
extern crate std;
mod common;
pub use common::*;
#[macro_use]
pub mod endian;
pub use endian::*;
#[macro_use]
pub mod pod;
pub use pod::*;
#[cfg(feature = "read_core")]
pub mod read;
#[cfg(feature = "read_core")]
pub use read::*;
#[cfg(feature = "write_core")]
pub mod write;
#[cfg(feature = "archive")]
pub mod archive;
#[cfg(feature = "elf")]
pub mod elf;
#[cfg(feature = "macho")]
pub mod macho;
#[cfg(any(feature = "coff", feature = "pe"))]
pub mod pe;
#[cfg(feature = "xcoff")]
pub mod xcoff;

3307
vendor/object/src/macho.rs vendored Normal file

File diff suppressed because it is too large Load Diff

3056
vendor/object/src/pe.rs vendored Normal file

File diff suppressed because it is too large Load Diff

239
vendor/object/src/pod.rs vendored Normal file
View File

@ -0,0 +1,239 @@
//! Tools for converting file format structures to and from bytes.
//!
//! This module should be replaced once rust provides safe transmutes.
// This module provides functions for both read and write features.
#![cfg_attr(
not(all(feature = "read_core", feature = "write_core")),
allow(dead_code)
)]
use core::{mem, result, slice};
type Result<T> = result::Result<T, ()>;
/// A trait for types that can safely be converted from and to byte slices.
///
/// # Safety
/// A type that is `Pod` must:
/// - be `#[repr(C)]` or `#[repr(transparent)]`
/// - have no invalid byte values
/// - have no padding
pub unsafe trait Pod: Copy + 'static {}
/// Cast a byte slice to a `Pod` type.
///
/// Returns the type and the tail of the slice.
#[inline]
pub fn from_bytes<T: Pod>(data: &[u8]) -> Result<(&T, &[u8])> {
let size = mem::size_of::<T>();
let tail = data.get(size..).ok_or(())?;
let ptr = data.as_ptr();
if (ptr as usize) % mem::align_of::<T>() != 0 {
return Err(());
}
// Safety:
// The alignment and size are checked by this function.
// The Pod trait ensures the type is valid to cast from bytes.
let val = unsafe { &*ptr.cast() };
Ok((val, tail))
}
/// Cast a mutable byte slice to a `Pod` type.
///
/// Returns the type and the tail of the slice.
#[inline]
pub fn from_bytes_mut<T: Pod>(data: &mut [u8]) -> Result<(&mut T, &mut [u8])> {
let size = mem::size_of::<T>();
if size > data.len() {
return Err(());
}
let (data, tail) = data.split_at_mut(size);
let ptr = data.as_mut_ptr();
if (ptr as usize) % mem::align_of::<T>() != 0 {
return Err(());
}
// Safety:
// The alignment and size are checked by this function.
// The Pod trait ensures the type is valid to cast from bytes.
let val = unsafe { &mut *ptr.cast() };
Ok((val, tail))
}
/// Cast a byte slice to a slice of a `Pod` type.
///
/// Returns the type slice and the tail of the byte slice.
#[inline]
pub fn slice_from_bytes<T: Pod>(data: &[u8], count: usize) -> Result<(&[T], &[u8])> {
let size = count.checked_mul(mem::size_of::<T>()).ok_or(())?;
let tail = data.get(size..).ok_or(())?;
let ptr = data.as_ptr();
if (ptr as usize) % mem::align_of::<T>() != 0 {
return Err(());
}
// Safety:
// The alignment and size are checked by this function.
// The Pod trait ensures the type is valid to cast from bytes.
let slice = unsafe { slice::from_raw_parts(ptr.cast(), count) };
Ok((slice, tail))
}
/// Cast a mutable byte slice to a slice of a `Pod` type.
///
/// Returns the type slice and the tail of the byte slice.
#[inline]
pub fn slice_from_bytes_mut<T: Pod>(
data: &mut [u8],
count: usize,
) -> Result<(&mut [T], &mut [u8])> {
let size = count.checked_mul(mem::size_of::<T>()).ok_or(())?;
if size > data.len() {
return Err(());
}
let (data, tail) = data.split_at_mut(size);
let ptr = data.as_mut_ptr();
if (ptr as usize) % mem::align_of::<T>() != 0 {
return Err(());
}
// Safety:
// The alignment and size are checked by this function.
// The Pod trait ensures the type is valid to cast from bytes.
let slice = unsafe { slice::from_raw_parts_mut(ptr.cast(), count) };
Ok((slice, tail))
}
/// Cast a `Pod` type to a byte slice.
#[inline]
pub fn bytes_of<T: Pod>(val: &T) -> &[u8] {
let size = mem::size_of::<T>();
// Safety:
// Any alignment is allowed.
// The size is determined in this function.
// The Pod trait ensures the type is valid to cast to bytes.
unsafe { slice::from_raw_parts(slice::from_ref(val).as_ptr().cast(), size) }
}
/// Cast a `Pod` type to a mutable byte slice.
#[inline]
pub fn bytes_of_mut<T: Pod>(val: &mut T) -> &mut [u8] {
let size = mem::size_of::<T>();
// Safety:
// Any alignment is allowed.
// The size is determined in this function.
// The Pod trait ensures the type is valid to cast to bytes.
unsafe { slice::from_raw_parts_mut(slice::from_mut(val).as_mut_ptr().cast(), size) }
}
/// Cast a slice of a `Pod` type to a byte slice.
#[inline]
pub fn bytes_of_slice<T: Pod>(val: &[T]) -> &[u8] {
let size = val.len().wrapping_mul(mem::size_of::<T>());
// Safety:
// Any alignment is allowed.
// The size is determined in this function.
// The Pod trait ensures the type is valid to cast to bytes.
unsafe { slice::from_raw_parts(val.as_ptr().cast(), size) }
}
/// Cast a slice of a `Pod` type to a mutable byte slice.
#[inline]
pub fn bytes_of_slice_mut<T: Pod>(val: &mut [T]) -> &mut [u8] {
let size = val.len().wrapping_mul(mem::size_of::<T>());
// Safety:
// Any alignment is allowed.
// The size is determined in this function.
// The Pod trait ensures the type is valid to cast to bytes.
unsafe { slice::from_raw_parts_mut(val.as_mut_ptr().cast(), size) }
}
macro_rules! unsafe_impl_pod {
($($struct_name:ident),+ $(,)?) => {
$(
unsafe impl Pod for $struct_name { }
)+
}
}
unsafe_impl_pod!(u8, u16, u32, u64);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn single() {
let x = u32::to_be(0x0123_4567);
let mut x_mut = x;
let bytes = bytes_of(&x);
let bytes_mut = bytes_of_mut(&mut x_mut);
assert_eq!(bytes, [0x01, 0x23, 0x45, 0x67]);
assert_eq!(bytes, bytes_mut);
let x16 = [u16::to_be(0x0123), u16::to_be(0x4567)];
let (y, tail) = from_bytes::<u32>(bytes).unwrap();
let (y_mut, tail_mut) = from_bytes_mut::<u32>(bytes_mut).unwrap();
assert_eq!(*y, x);
assert_eq!(y, y_mut);
assert_eq!(tail, &[]);
assert_eq!(tail, tail_mut);
let (y, tail) = from_bytes::<u16>(bytes).unwrap();
let (y_mut, tail_mut) = from_bytes_mut::<u16>(bytes_mut).unwrap();
assert_eq!(*y, x16[0]);
assert_eq!(y, y_mut);
assert_eq!(tail, &bytes[2..]);
assert_eq!(tail, tail_mut);
let (y, tail) = from_bytes::<u16>(&bytes[2..]).unwrap();
let (y_mut, tail_mut) = from_bytes_mut::<u16>(&mut bytes_mut[2..]).unwrap();
assert_eq!(*y, x16[1]);
assert_eq!(y, y_mut);
assert_eq!(tail, &[]);
assert_eq!(tail, tail_mut);
assert_eq!(from_bytes::<u16>(&bytes[1..]), Err(()));
assert_eq!(from_bytes::<u16>(&bytes[3..]), Err(()));
assert_eq!(from_bytes::<u16>(&bytes[4..]), Err(()));
assert_eq!(from_bytes_mut::<u16>(&mut bytes_mut[1..]), Err(()));
assert_eq!(from_bytes_mut::<u16>(&mut bytes_mut[3..]), Err(()));
assert_eq!(from_bytes_mut::<u16>(&mut bytes_mut[4..]), Err(()));
}
#[test]
fn slice() {
let x = [
u16::to_be(0x0123),
u16::to_be(0x4567),
u16::to_be(0x89ab),
u16::to_be(0xcdef),
];
let mut x_mut = x;
let bytes = bytes_of_slice(&x);
let bytes_mut = bytes_of_slice_mut(&mut x_mut);
assert_eq!(bytes, [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
assert_eq!(bytes, bytes_mut);
let (y, tail) = slice_from_bytes::<u16>(bytes, 4).unwrap();
let (y_mut, tail_mut) = slice_from_bytes_mut::<u16>(bytes_mut, 4).unwrap();
assert_eq!(y, x);
assert_eq!(y, y_mut);
assert_eq!(tail, &[]);
assert_eq!(tail, tail_mut);
let (y, tail) = slice_from_bytes::<u16>(&bytes[2..], 2).unwrap();
let (y_mut, tail_mut) = slice_from_bytes::<u16>(&mut bytes_mut[2..], 2).unwrap();
assert_eq!(y, &x[1..3]);
assert_eq!(y, y_mut);
assert_eq!(tail, &bytes[6..]);
assert_eq!(tail, tail_mut);
assert_eq!(slice_from_bytes::<u16>(bytes, 5), Err(()));
assert_eq!(slice_from_bytes::<u16>(&bytes[2..], 4), Err(()));
assert_eq!(slice_from_bytes::<u16>(&bytes[1..], 2), Err(()));
assert_eq!(slice_from_bytes_mut::<u16>(bytes_mut, 5), Err(()));
assert_eq!(slice_from_bytes_mut::<u16>(&mut bytes_mut[2..], 4), Err(()));
assert_eq!(slice_from_bytes_mut::<u16>(&mut bytes_mut[1..], 2), Err(()));
}
}

1328
vendor/object/src/read/any.rs vendored Normal file

File diff suppressed because it is too large Load Diff

759
vendor/object/src/read/archive.rs vendored Normal file
View File

@ -0,0 +1,759 @@
//! Support for archive files.
//!
//! ## Example
//! ```no_run
//! use object::{Object, ObjectSection};
//! use std::error::Error;
//! use std::fs;
//!
//! /// Reads an archive and displays the name of each member.
//! fn main() -> Result<(), Box<dyn Error>> {
//! # #[cfg(feature = "std")] {
//! let data = fs::read("path/to/binary")?;
//! let file = object::read::archive::ArchiveFile::parse(&*data)?;
//! for member in file.members() {
//! let member = member?;
//! println!("{}", String::from_utf8_lossy(member.name()));
//! }
//! # }
//! Ok(())
//! }
//! ```
use core::convert::TryInto;
use crate::archive;
use crate::read::{self, Bytes, Error, ReadError, ReadRef};
/// The kind of archive format.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum ArchiveKind {
/// There are no special files that indicate the archive format.
Unknown,
/// The GNU (or System V) archive format.
Gnu,
/// The GNU (or System V) archive format with 64-bit symbol table.
Gnu64,
/// The BSD archive format.
Bsd,
/// The BSD archive format with 64-bit symbol table.
///
/// This is used for Darwin.
Bsd64,
/// The Windows COFF archive format.
Coff,
/// The AIX big archive format.
AixBig,
}
/// The list of members in the archive.
#[derive(Debug, Clone, Copy)]
enum Members<'data> {
Common {
offset: u64,
end_offset: u64,
},
AixBig {
index: &'data [archive::AixMemberOffset],
},
}
/// A partially parsed archive file.
#[derive(Debug, Clone, Copy)]
pub struct ArchiveFile<'data, R: ReadRef<'data> = &'data [u8]> {
data: R,
kind: ArchiveKind,
members: Members<'data>,
symbols: (u64, u64),
names: &'data [u8],
}
impl<'data, R: ReadRef<'data>> ArchiveFile<'data, R> {
/// Parse the archive header and special members.
pub fn parse(data: R) -> read::Result<Self> {
let len = data.len().read_error("Unknown archive length")?;
let mut tail = 0;
let magic = data
.read_bytes(&mut tail, archive::MAGIC.len() as u64)
.read_error("Invalid archive size")?;
if magic == archive::AIX_BIG_MAGIC {
return Self::parse_aixbig(data);
} else if magic != archive::MAGIC {
return Err(Error("Unsupported archive identifier"));
}
let mut members_offset = tail;
let members_end_offset = len;
let mut file = ArchiveFile {
data,
kind: ArchiveKind::Unknown,
members: Members::Common {
offset: 0,
end_offset: 0,
},
symbols: (0, 0),
names: &[],
};
// The first few members may be special, so parse them.
// GNU has:
// - "/" or "/SYM64/": symbol table (optional)
// - "//": names table (optional)
// COFF has:
// - "/": first linker member
// - "/": second linker member
// - "//": names table
// BSD has:
// - "__.SYMDEF" or "__.SYMDEF SORTED": symbol table (optional)
// BSD 64-bit has:
// - "__.SYMDEF_64" or "__.SYMDEF_64 SORTED": symbol table (optional)
// BSD may use the extended name for the symbol table. This is handled
// by `ArchiveMember::parse`.
if tail < len {
let member = ArchiveMember::parse(data, &mut tail, &[])?;
if member.name == b"/" {
// GNU symbol table (unless we later determine this is COFF).
file.kind = ArchiveKind::Gnu;
file.symbols = member.file_range();
members_offset = tail;
if tail < len {
let member = ArchiveMember::parse(data, &mut tail, &[])?;
if member.name == b"/" {
// COFF linker member.
file.kind = ArchiveKind::Coff;
file.symbols = member.file_range();
members_offset = tail;
if tail < len {
let member = ArchiveMember::parse(data, &mut tail, &[])?;
if member.name == b"//" {
// COFF names table.
file.names = member.data(data)?;
members_offset = tail;
}
}
} else if member.name == b"//" {
// GNU names table.
file.names = member.data(data)?;
members_offset = tail;
}
}
} else if member.name == b"/SYM64/" {
// GNU 64-bit symbol table.
file.kind = ArchiveKind::Gnu64;
file.symbols = member.file_range();
members_offset = tail;
if tail < len {
let member = ArchiveMember::parse(data, &mut tail, &[])?;
if member.name == b"//" {
// GNU names table.
file.names = member.data(data)?;
members_offset = tail;
}
}
} else if member.name == b"//" {
// GNU names table.
file.kind = ArchiveKind::Gnu;
file.names = member.data(data)?;
members_offset = tail;
} else if member.name == b"__.SYMDEF" || member.name == b"__.SYMDEF SORTED" {
// BSD symbol table.
file.kind = ArchiveKind::Bsd;
file.symbols = member.file_range();
members_offset = tail;
} else if member.name == b"__.SYMDEF_64" || member.name == b"__.SYMDEF_64 SORTED" {
// BSD 64-bit symbol table.
file.kind = ArchiveKind::Bsd64;
file.symbols = member.file_range();
members_offset = tail;
} else {
// TODO: This could still be a BSD file. We leave this as unknown for now.
}
}
file.members = Members::Common {
offset: members_offset,
end_offset: members_end_offset,
};
Ok(file)
}
fn parse_aixbig(data: R) -> read::Result<Self> {
let mut tail = 0;
let file_header = data
.read::<archive::AixFileHeader>(&mut tail)
.read_error("Invalid AIX big archive file header")?;
// Caller already validated this.
debug_assert_eq!(file_header.magic, archive::AIX_BIG_MAGIC);
let mut file = ArchiveFile {
data,
kind: ArchiveKind::AixBig,
members: Members::AixBig { index: &[] },
symbols: (0, 0),
names: &[],
};
// Read the span of symbol table.
let symtbl64 = parse_u64_digits(&file_header.gst64off, 10)
.read_error("Invalid offset to 64-bit symbol table in AIX big archive")?;
if symtbl64 > 0 {
// The symbol table is also a file with header.
let member = ArchiveMember::parse_aixbig(data, symtbl64)?;
file.symbols = member.file_range();
} else {
let symtbl = parse_u64_digits(&file_header.gstoff, 10)
.read_error("Invalid offset to symbol table in AIX big archive")?;
if symtbl > 0 {
// The symbol table is also a file with header.
let member = ArchiveMember::parse_aixbig(data, symtbl)?;
file.symbols = member.file_range();
}
}
// Big archive member index table lists file entries with offsets and names.
// To avoid potential infinite loop (members are double-linked list), the
// iterator goes through the index instead of real members.
let member_table_offset = parse_u64_digits(&file_header.memoff, 10)
.read_error("Invalid offset for member table of AIX big archive")?;
if member_table_offset == 0 {
// The offset would be zero if archive contains no file.
return Ok(file);
}
// The member index table is also a file with header.
let member = ArchiveMember::parse_aixbig(data, member_table_offset)?;
let mut member_data = Bytes(member.data(data)?);
// Structure of member index table:
// Number of entries (20 bytes)
// Offsets of each entry (20*N bytes)
// Names string table (the rest of bytes to fill size defined in header)
let members_count_bytes = member_data
.read_slice::<u8>(20)
.read_error("Missing member count in AIX big archive")?;
let members_count = parse_u64_digits(members_count_bytes, 10)
.and_then(|size| size.try_into().ok())
.read_error("Invalid member count in AIX big archive")?;
let index = member_data
.read_slice::<archive::AixMemberOffset>(members_count)
.read_error("Member count overflow in AIX big archive")?;
file.members = Members::AixBig { index };
Ok(file)
}
/// Return the archive format.
#[inline]
pub fn kind(&self) -> ArchiveKind {
self.kind
}
/// Iterate over the members of the archive.
///
/// This does not return special members.
#[inline]
pub fn members(&self) -> ArchiveMemberIterator<'data, R> {
ArchiveMemberIterator {
data: self.data,
members: self.members,
names: self.names,
}
}
}
/// An iterator over the members of an archive.
#[derive(Debug)]
pub struct ArchiveMemberIterator<'data, R: ReadRef<'data> = &'data [u8]> {
data: R,
members: Members<'data>,
names: &'data [u8],
}
impl<'data, R: ReadRef<'data>> Iterator for ArchiveMemberIterator<'data, R> {
type Item = read::Result<ArchiveMember<'data>>;
fn next(&mut self) -> Option<Self::Item> {
match &mut self.members {
Members::Common {
ref mut offset,
ref mut end_offset,
} => {
if *offset >= *end_offset {
return None;
}
let member = ArchiveMember::parse(self.data, offset, self.names);
if member.is_err() {
*offset = *end_offset;
}
Some(member)
}
Members::AixBig { ref mut index } => match **index {
[] => None,
[ref first, ref rest @ ..] => {
*index = rest;
let member = ArchiveMember::parse_aixbig_index(self.data, first);
if member.is_err() {
*index = &[];
}
Some(member)
}
},
}
}
}
/// An archive member header.
#[derive(Debug, Clone, Copy)]
enum MemberHeader<'data> {
/// Common header used by many formats.
Common(&'data archive::Header),
/// AIX big archive header
AixBig(&'data archive::AixHeader),
}
/// A partially parsed archive member.
#[derive(Debug)]
pub struct ArchiveMember<'data> {
header: MemberHeader<'data>,
name: &'data [u8],
offset: u64,
size: u64,
}
impl<'data> ArchiveMember<'data> {
/// Parse the member header, name, and file data in an archive with the common format.
///
/// This reads the extended name (if any) and adjusts the file size.
fn parse<R: ReadRef<'data>>(
data: R,
offset: &mut u64,
names: &'data [u8],
) -> read::Result<Self> {
let header = data
.read::<archive::Header>(offset)
.read_error("Invalid archive member header")?;
if header.terminator != archive::TERMINATOR {
return Err(Error("Invalid archive terminator"));
}
let mut file_offset = *offset;
let mut file_size =
parse_u64_digits(&header.size, 10).read_error("Invalid archive member size")?;
*offset = offset
.checked_add(file_size)
.read_error("Archive member size is too large")?;
// Entries are padded to an even number of bytes.
if (file_size & 1) != 0 {
*offset = offset.saturating_add(1);
}
let name = if header.name[0] == b'/' && (header.name[1] as char).is_ascii_digit() {
// Read file name from the names table.
parse_sysv_extended_name(&header.name[1..], names)
.read_error("Invalid archive extended name offset")?
} else if &header.name[..3] == b"#1/" && (header.name[3] as char).is_ascii_digit() {
// Read file name from the start of the file data.
parse_bsd_extended_name(&header.name[3..], data, &mut file_offset, &mut file_size)
.read_error("Invalid archive extended name length")?
} else if header.name[0] == b'/' {
let name_len = memchr::memchr(b' ', &header.name).unwrap_or(header.name.len());
&header.name[..name_len]
} else {
let name_len = memchr::memchr(b'/', &header.name)
.or_else(|| memchr::memchr(b' ', &header.name))
.unwrap_or(header.name.len());
&header.name[..name_len]
};
Ok(ArchiveMember {
header: MemberHeader::Common(header),
name,
offset: file_offset,
size: file_size,
})
}
/// Parse a member index entry in an AIX big archive,
/// and then parse the member header, name, and file data.
fn parse_aixbig_index<R: ReadRef<'data>>(
data: R,
index: &archive::AixMemberOffset,
) -> read::Result<Self> {
let offset = parse_u64_digits(&index.0, 10)
.read_error("Invalid AIX big archive file member offset")?;
Self::parse_aixbig(data, offset)
}
/// Parse the member header, name, and file data in an AIX big archive.
fn parse_aixbig<R: ReadRef<'data>>(data: R, mut offset: u64) -> read::Result<Self> {
// The format was described at
// https://www.ibm.com/docs/en/aix/7.3?topic=formats-ar-file-format-big
let header = data
.read::<archive::AixHeader>(&mut offset)
.read_error("Invalid AIX big archive member header")?;
let name_length = parse_u64_digits(&header.namlen, 10)
.read_error("Invalid AIX big archive member name length")?;
let name = data
.read_bytes(&mut offset, name_length)
.read_error("Invalid AIX big archive member name")?;
// The actual data for a file member begins at the first even-byte boundary beyond the
// member header and continues for the number of bytes specified by the ar_size field. The
// ar command inserts null bytes for padding where necessary.
if offset & 1 != 0 {
offset = offset.saturating_add(1);
}
// Because of the even-byte boundary, we have to read and check terminator after header.
let terminator = data
.read_bytes(&mut offset, 2)
.read_error("Invalid AIX big archive terminator")?;
if terminator != archive::TERMINATOR {
return Err(Error("Invalid AIX big archive terminator"));
}
let size = parse_u64_digits(&header.size, 10)
.read_error("Invalid archive member size in AIX big archive")?;
Ok(ArchiveMember {
header: MemberHeader::AixBig(header),
name,
offset,
size,
})
}
/// Return the raw header that is common to many archive formats.
///
/// Returns `None` if this archive does not use the common header format.
#[inline]
pub fn header(&self) -> Option<&'data archive::Header> {
match self.header {
MemberHeader::Common(header) => Some(header),
_ => None,
}
}
/// Return the raw header for AIX big archives.
///
/// Returns `None` if this is not an AIX big archive.
#[inline]
pub fn aix_header(&self) -> Option<&'data archive::AixHeader> {
match self.header {
MemberHeader::AixBig(header) => Some(header),
_ => None,
}
}
/// Return the parsed file name.
///
/// This may be an extended file name.
#[inline]
pub fn name(&self) -> &'data [u8] {
self.name
}
/// Parse the file modification timestamp from the header.
#[inline]
pub fn date(&self) -> Option<u64> {
match &self.header {
MemberHeader::Common(header) => parse_u64_digits(&header.date, 10),
MemberHeader::AixBig(header) => parse_u64_digits(&header.date, 10),
}
}
/// Parse the user ID from the header.
#[inline]
pub fn uid(&self) -> Option<u64> {
match &self.header {
MemberHeader::Common(header) => parse_u64_digits(&header.uid, 10),
MemberHeader::AixBig(header) => parse_u64_digits(&header.uid, 10),
}
}
/// Parse the group ID from the header.
#[inline]
pub fn gid(&self) -> Option<u64> {
match &self.header {
MemberHeader::Common(header) => parse_u64_digits(&header.gid, 10),
MemberHeader::AixBig(header) => parse_u64_digits(&header.gid, 10),
}
}
/// Parse the file mode from the header.
#[inline]
pub fn mode(&self) -> Option<u64> {
match &self.header {
MemberHeader::Common(header) => parse_u64_digits(&header.mode, 8),
MemberHeader::AixBig(header) => parse_u64_digits(&header.mode, 8),
}
}
/// Return the offset and size of the file data.
pub fn file_range(&self) -> (u64, u64) {
(self.offset, self.size)
}
/// Return the file data.
#[inline]
pub fn data<R: ReadRef<'data>>(&self, data: R) -> read::Result<&'data [u8]> {
data.read_bytes_at(self.offset, self.size)
.read_error("Archive member size is too large")
}
}
// Ignores bytes starting from the first space.
fn parse_u64_digits(digits: &[u8], radix: u32) -> Option<u64> {
if let [b' ', ..] = digits {
return None;
}
let mut result: u64 = 0;
for &c in digits {
if c == b' ' {
return Some(result);
} else {
let x = (c as char).to_digit(radix)?;
result = result
.checked_mul(u64::from(radix))?
.checked_add(u64::from(x))?;
}
}
Some(result)
}
fn parse_sysv_extended_name<'data>(digits: &[u8], names: &'data [u8]) -> Result<&'data [u8], ()> {
let offset = parse_u64_digits(digits, 10).ok_or(())?;
let offset = offset.try_into().map_err(|_| ())?;
let name_data = names.get(offset..).ok_or(())?;
let name = match memchr::memchr2(b'/', b'\0', name_data) {
Some(len) => &name_data[..len],
None => name_data,
};
Ok(name)
}
/// Modifies `data` to start after the extended name.
fn parse_bsd_extended_name<'data, R: ReadRef<'data>>(
digits: &[u8],
data: R,
offset: &mut u64,
size: &mut u64,
) -> Result<&'data [u8], ()> {
let len = parse_u64_digits(digits, 10).ok_or(())?;
*size = size.checked_sub(len).ok_or(())?;
let name_data = data.read_bytes(offset, len)?;
let name = match memchr::memchr(b'\0', name_data) {
Some(len) => &name_data[..len],
None => name_data,
};
Ok(name)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn kind() {
let data = b"!<arch>\n";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Unknown);
let data = b"\
!<arch>\n\
/ 4 `\n\
0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Gnu);
let data = b"\
!<arch>\n\
// 4 `\n\
0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Gnu);
let data = b"\
!<arch>\n\
/ 4 `\n\
0000\
// 4 `\n\
0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Gnu);
let data = b"\
!<arch>\n\
/SYM64/ 4 `\n\
0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Gnu64);
let data = b"\
!<arch>\n\
/SYM64/ 4 `\n\
0000\
// 4 `\n\
0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Gnu64);
let data = b"\
!<arch>\n\
__.SYMDEF 4 `\n\
0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Bsd);
let data = b"\
!<arch>\n\
#1/9 13 `\n\
__.SYMDEF0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Bsd);
let data = b"\
!<arch>\n\
#1/16 20 `\n\
__.SYMDEF SORTED0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Bsd);
let data = b"\
!<arch>\n\
__.SYMDEF_64 4 `\n\
0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Bsd64);
let data = b"\
!<arch>\n\
#1/12 16 `\n\
__.SYMDEF_640000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Bsd64);
let data = b"\
!<arch>\n\
#1/19 23 `\n\
__.SYMDEF_64 SORTED0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Bsd64);
let data = b"\
!<arch>\n\
/ 4 `\n\
0000\
/ 4 `\n\
0000\
// 4 `\n\
0000";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Coff);
let data = b"\
<bigaf>\n\
0 0 \
0 0 \
0 128 \
6 0 \
0 \0\0\0\0\0\0\0\0\0\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
let archive = ArchiveFile::parse(&data[..]).unwrap();
assert_eq!(archive.kind(), ArchiveKind::AixBig);
}
#[test]
fn gnu_names() {
let data = b"\
!<arch>\n\
// 18 `\n\
0123456789abcdef/\n\
s p a c e/ 0 0 0 644 4 `\n\
0000\
0123456789abcde/0 0 0 644 3 `\n\
odd\n\
/0 0 0 0 644 4 `\n\
even";
let data = &data[..];
let archive = ArchiveFile::parse(data).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Gnu);
let mut members = archive.members();
let member = members.next().unwrap().unwrap();
assert_eq!(member.name(), b"s p a c e");
assert_eq!(member.data(data).unwrap(), &b"0000"[..]);
let member = members.next().unwrap().unwrap();
assert_eq!(member.name(), b"0123456789abcde");
assert_eq!(member.data(data).unwrap(), &b"odd"[..]);
let member = members.next().unwrap().unwrap();
assert_eq!(member.name(), b"0123456789abcdef");
assert_eq!(member.data(data).unwrap(), &b"even"[..]);
assert!(members.next().is_none());
}
#[test]
fn bsd_names() {
let data = b"\
!<arch>\n\
0123456789abcde 0 0 0 644 3 `\n\
odd\n\
#1/16 0 0 0 644 20 `\n\
0123456789abcdefeven";
let data = &data[..];
let archive = ArchiveFile::parse(data).unwrap();
assert_eq!(archive.kind(), ArchiveKind::Unknown);
let mut members = archive.members();
let member = members.next().unwrap().unwrap();
assert_eq!(member.name(), b"0123456789abcde");
assert_eq!(member.data(data).unwrap(), &b"odd"[..]);
let member = members.next().unwrap().unwrap();
assert_eq!(member.name(), b"0123456789abcdef");
assert_eq!(member.data(data).unwrap(), &b"even"[..]);
assert!(members.next().is_none());
}
#[test]
fn aix_names() {
let data = b"\
<bigaf>\n\
396 0 0 \
128 262 0 \
4 262 0 \
1662610370 223 1 644 16 \
0123456789abcdef`\nord\n\
4 396 128 \
1662610374 223 1 644 16 \
fedcba9876543210`\nrev\n\
94 0 262 \
0 0 0 0 0 \
`\n2 128 \
262 0123456789abcdef\0fedcba9876543210\0";
let data = &data[..];
let archive = ArchiveFile::parse(data).unwrap();
assert_eq!(archive.kind(), ArchiveKind::AixBig);
let mut members = archive.members();
let member = members.next().unwrap().unwrap();
assert_eq!(member.name(), b"0123456789abcdef");
assert_eq!(member.data(data).unwrap(), &b"ord\n"[..]);
let member = members.next().unwrap().unwrap();
assert_eq!(member.name(), b"fedcba9876543210");
assert_eq!(member.data(data).unwrap(), &b"rev\n"[..]);
assert!(members.next().is_none());
}
}

211
vendor/object/src/read/coff/comdat.rs vendored Normal file
View File

@ -0,0 +1,211 @@
use core::str;
use crate::endian::LittleEndian as LE;
use crate::pe;
use crate::read::{
self, ComdatKind, ObjectComdat, ReadError, ReadRef, Result, SectionIndex, SymbolIndex,
};
use super::{CoffFile, CoffHeader, ImageSymbol};
/// An iterator for the COMDAT section groups in a [`CoffBigFile`](super::CoffBigFile).
pub type CoffBigComdatIterator<'data, 'file, R = &'data [u8]> =
CoffComdatIterator<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// An iterator for the COMDAT section groups in a [`CoffFile`].
#[derive(Debug)]
pub struct CoffComdatIterator<
'data,
'file,
R: ReadRef<'data> = &'data [u8],
Coff: CoffHeader = pe::ImageFileHeader,
> {
pub(super) file: &'file CoffFile<'data, R, Coff>,
pub(super) index: usize,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> Iterator
for CoffComdatIterator<'data, 'file, R, Coff>
{
type Item = CoffComdat<'data, 'file, R, Coff>;
fn next(&mut self) -> Option<Self::Item> {
loop {
let index = self.index;
let symbol = self.file.common.symbols.symbol(index).ok()?;
self.index += 1 + symbol.number_of_aux_symbols() as usize;
if let Some(comdat) = CoffComdat::parse(self.file, symbol, index) {
return Some(comdat);
}
}
}
}
/// A COMDAT section group in a [`CoffBigFile`](super::CoffBigFile).
///
/// Most functionality is provided by the [`ObjectComdat`] trait implementation.
pub type CoffBigComdat<'data, 'file, R = &'data [u8]> =
CoffComdat<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// A COMDAT section group in a [`CoffFile`].
///
/// Most functionality is provided by the [`ObjectComdat`] trait implementation.
#[derive(Debug)]
pub struct CoffComdat<
'data,
'file,
R: ReadRef<'data> = &'data [u8],
Coff: CoffHeader = pe::ImageFileHeader,
> {
file: &'file CoffFile<'data, R, Coff>,
symbol_index: SymbolIndex,
symbol: &'data Coff::ImageSymbol,
selection: u8,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> CoffComdat<'data, 'file, R, Coff> {
fn parse(
file: &'file CoffFile<'data, R, Coff>,
section_symbol: &'data Coff::ImageSymbol,
index: usize,
) -> Option<CoffComdat<'data, 'file, R, Coff>> {
// Must be a section symbol.
if !section_symbol.has_aux_section() {
return None;
}
// Auxiliary record must have a non-associative selection.
let aux = file.common.symbols.aux_section(index).ok()?;
let selection = aux.selection;
if selection == 0 || selection == pe::IMAGE_COMDAT_SELECT_ASSOCIATIVE {
return None;
}
// Find the COMDAT symbol.
let mut symbol_index = index;
let mut symbol = section_symbol;
let section_number = section_symbol.section_number();
loop {
symbol_index += 1 + symbol.number_of_aux_symbols() as usize;
symbol = file.common.symbols.symbol(symbol_index).ok()?;
if section_number == symbol.section_number() {
break;
}
}
Some(CoffComdat {
file,
symbol_index: SymbolIndex(symbol_index),
symbol,
selection,
})
}
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> read::private::Sealed
for CoffComdat<'data, 'file, R, Coff>
{
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> ObjectComdat<'data>
for CoffComdat<'data, 'file, R, Coff>
{
type SectionIterator = CoffComdatSectionIterator<'data, 'file, R, Coff>;
#[inline]
fn kind(&self) -> ComdatKind {
match self.selection {
pe::IMAGE_COMDAT_SELECT_NODUPLICATES => ComdatKind::NoDuplicates,
pe::IMAGE_COMDAT_SELECT_ANY => ComdatKind::Any,
pe::IMAGE_COMDAT_SELECT_SAME_SIZE => ComdatKind::SameSize,
pe::IMAGE_COMDAT_SELECT_EXACT_MATCH => ComdatKind::ExactMatch,
pe::IMAGE_COMDAT_SELECT_LARGEST => ComdatKind::Largest,
pe::IMAGE_COMDAT_SELECT_NEWEST => ComdatKind::Newest,
_ => ComdatKind::Unknown,
}
}
#[inline]
fn symbol(&self) -> SymbolIndex {
self.symbol_index
}
#[inline]
fn name_bytes(&self) -> Result<&[u8]> {
// Find the name of first symbol referring to the section.
self.symbol.name(self.file.common.symbols.strings())
}
#[inline]
fn name(&self) -> Result<&str> {
let bytes = self.name_bytes()?;
str::from_utf8(bytes)
.ok()
.read_error("Non UTF-8 COFF COMDAT name")
}
#[inline]
fn sections(&self) -> Self::SectionIterator {
CoffComdatSectionIterator {
file: self.file,
section_number: self.symbol.section_number(),
index: 0,
}
}
}
/// An iterator for the sections in a COMDAT section group in a [`CoffBigFile`](super::CoffBigFile).
pub type CoffBigComdatSectionIterator<'data, 'file, R = &'data [u8]> =
CoffComdatSectionIterator<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// An iterator for the sections in a COMDAT section group in a [`CoffFile`].
#[derive(Debug)]
pub struct CoffComdatSectionIterator<
'data,
'file,
R: ReadRef<'data> = &'data [u8],
Coff: CoffHeader = pe::ImageFileHeader,
> {
file: &'file CoffFile<'data, R, Coff>,
section_number: i32,
index: usize,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> Iterator
for CoffComdatSectionIterator<'data, 'file, R, Coff>
{
type Item = SectionIndex;
fn next(&mut self) -> Option<Self::Item> {
// Find associated COMDAT symbols.
// TODO: it seems gcc doesn't use associated symbols for this
loop {
let index = self.index;
let symbol = self.file.common.symbols.symbol(index).ok()?;
self.index += 1 + symbol.number_of_aux_symbols() as usize;
// Must be a section symbol.
if !symbol.has_aux_section() {
continue;
}
let section_number = symbol.section_number();
let aux = self.file.common.symbols.aux_section(index).ok()?;
if aux.selection == pe::IMAGE_COMDAT_SELECT_ASSOCIATIVE {
let number = if Coff::is_type_bigobj() {
u32::from(aux.number.get(LE)) | (u32::from(aux.high_number.get(LE)) << 16)
} else {
u32::from(aux.number.get(LE))
};
if number as i32 == self.section_number {
return Some(SectionIndex(section_number as usize));
}
} else if aux.selection != 0 {
if section_number == self.section_number {
return Some(SectionIndex(section_number as usize));
}
}
}
}
}

381
vendor/object/src/read/coff/file.rs vendored Normal file
View File

@ -0,0 +1,381 @@
use alloc::vec::Vec;
use core::fmt::Debug;
use crate::read::{
self, Architecture, Export, FileFlags, Import, NoDynamicRelocationIterator, Object, ObjectKind,
ObjectSection, ReadError, ReadRef, Result, SectionIndex, SubArchitecture, SymbolIndex,
};
use crate::{pe, LittleEndian as LE, Pod};
use super::{
CoffComdat, CoffComdatIterator, CoffSection, CoffSectionIterator, CoffSegment,
CoffSegmentIterator, CoffSymbol, CoffSymbolIterator, CoffSymbolTable, ImageSymbol,
SectionTable, SymbolTable,
};
/// The common parts of `PeFile` and `CoffFile`.
#[derive(Debug)]
pub(crate) struct CoffCommon<'data, R: ReadRef<'data>, Coff: CoffHeader = pe::ImageFileHeader> {
pub(crate) sections: SectionTable<'data>,
pub(crate) symbols: SymbolTable<'data, R, Coff>,
pub(crate) image_base: u64,
}
/// A COFF bigobj object file with 32-bit section numbers.
///
/// This is a file that starts with [`pe::AnonObjectHeaderBigobj`], and corresponds
/// to [`crate::FileKind::CoffBig`].
///
/// Most functionality is provided by the [`Object`] trait implementation.
pub type CoffBigFile<'data, R = &'data [u8]> = CoffFile<'data, R, pe::AnonObjectHeaderBigobj>;
/// A COFF object file.
///
/// This is a file that starts with [`pe::ImageFileHeader`], and corresponds
/// to [`crate::FileKind::Coff`].
///
/// Most functionality is provided by the [`Object`] trait implementation.
#[derive(Debug)]
pub struct CoffFile<'data, R: ReadRef<'data> = &'data [u8], Coff: CoffHeader = pe::ImageFileHeader>
{
pub(super) header: &'data Coff,
pub(super) common: CoffCommon<'data, R, Coff>,
pub(super) data: R,
}
impl<'data, R: ReadRef<'data>, Coff: CoffHeader> CoffFile<'data, R, Coff> {
/// Parse the raw COFF file data.
pub fn parse(data: R) -> Result<Self> {
let mut offset = 0;
let header = Coff::parse(data, &mut offset)?;
let sections = header.sections(data, offset)?;
let symbols = header.symbols(data)?;
Ok(CoffFile {
header,
common: CoffCommon {
sections,
symbols,
image_base: 0,
},
data,
})
}
}
impl<'data, R: ReadRef<'data>, Coff: CoffHeader> read::private::Sealed
for CoffFile<'data, R, Coff>
{
}
impl<'data, 'file, R, Coff> Object<'data, 'file> for CoffFile<'data, R, Coff>
where
'data: 'file,
R: 'file + ReadRef<'data>,
Coff: CoffHeader,
{
type Segment = CoffSegment<'data, 'file, R, Coff>;
type SegmentIterator = CoffSegmentIterator<'data, 'file, R, Coff>;
type Section = CoffSection<'data, 'file, R, Coff>;
type SectionIterator = CoffSectionIterator<'data, 'file, R, Coff>;
type Comdat = CoffComdat<'data, 'file, R, Coff>;
type ComdatIterator = CoffComdatIterator<'data, 'file, R, Coff>;
type Symbol = CoffSymbol<'data, 'file, R, Coff>;
type SymbolIterator = CoffSymbolIterator<'data, 'file, R, Coff>;
type SymbolTable = CoffSymbolTable<'data, 'file, R, Coff>;
type DynamicRelocationIterator = NoDynamicRelocationIterator;
fn architecture(&self) -> Architecture {
match self.header.machine() {
pe::IMAGE_FILE_MACHINE_ARMNT => Architecture::Arm,
pe::IMAGE_FILE_MACHINE_ARM64 | pe::IMAGE_FILE_MACHINE_ARM64EC => Architecture::Aarch64,
pe::IMAGE_FILE_MACHINE_I386 => Architecture::I386,
pe::IMAGE_FILE_MACHINE_AMD64 => Architecture::X86_64,
_ => Architecture::Unknown,
}
}
fn sub_architecture(&self) -> Option<SubArchitecture> {
match self.header.machine() {
pe::IMAGE_FILE_MACHINE_ARM64EC => Some(SubArchitecture::Arm64EC),
_ => None,
}
}
#[inline]
fn is_little_endian(&self) -> bool {
true
}
#[inline]
fn is_64(&self) -> bool {
// Windows COFF is always 32-bit, even for 64-bit architectures. This could be confusing.
false
}
fn kind(&self) -> ObjectKind {
ObjectKind::Relocatable
}
fn segments(&'file self) -> CoffSegmentIterator<'data, 'file, R, Coff> {
CoffSegmentIterator {
file: self,
iter: self.common.sections.iter(),
}
}
fn section_by_name_bytes(
&'file self,
section_name: &[u8],
) -> Option<CoffSection<'data, 'file, R, Coff>> {
self.sections()
.find(|section| section.name_bytes() == Ok(section_name))
}
fn section_by_index(
&'file self,
index: SectionIndex,
) -> Result<CoffSection<'data, 'file, R, Coff>> {
let section = self.common.sections.section(index.0)?;
Ok(CoffSection {
file: self,
index,
section,
})
}
fn sections(&'file self) -> CoffSectionIterator<'data, 'file, R, Coff> {
CoffSectionIterator {
file: self,
iter: self.common.sections.iter().enumerate(),
}
}
fn comdats(&'file self) -> CoffComdatIterator<'data, 'file, R, Coff> {
CoffComdatIterator {
file: self,
index: 0,
}
}
fn symbol_by_index(
&'file self,
index: SymbolIndex,
) -> Result<CoffSymbol<'data, 'file, R, Coff>> {
let symbol = self.common.symbols.symbol(index.0)?;
Ok(CoffSymbol {
file: &self.common,
index,
symbol,
})
}
fn symbols(&'file self) -> CoffSymbolIterator<'data, 'file, R, Coff> {
CoffSymbolIterator {
file: &self.common,
index: 0,
}
}
#[inline]
fn symbol_table(&'file self) -> Option<CoffSymbolTable<'data, 'file, R, Coff>> {
Some(CoffSymbolTable { file: &self.common })
}
fn dynamic_symbols(&'file self) -> CoffSymbolIterator<'data, 'file, R, Coff> {
CoffSymbolIterator {
file: &self.common,
// Hack: don't return any.
index: self.common.symbols.len(),
}
}
#[inline]
fn dynamic_symbol_table(&'file self) -> Option<CoffSymbolTable<'data, 'file, R, Coff>> {
None
}
#[inline]
fn dynamic_relocations(&'file self) -> Option<NoDynamicRelocationIterator> {
None
}
#[inline]
fn imports(&self) -> Result<Vec<Import<'data>>> {
// TODO: this could return undefined symbols, but not needed yet.
Ok(Vec::new())
}
#[inline]
fn exports(&self) -> Result<Vec<Export<'data>>> {
// TODO: this could return global symbols, but not needed yet.
Ok(Vec::new())
}
fn has_debug_symbols(&self) -> bool {
self.section_by_name(".debug_info").is_some()
}
fn relative_address_base(&self) -> u64 {
0
}
#[inline]
fn entry(&self) -> u64 {
0
}
fn flags(&self) -> FileFlags {
FileFlags::Coff {
characteristics: self.header.characteristics(),
}
}
}
/// Read the `class_id` field from a [`pe::AnonObjectHeader`].
///
/// This can be used to determine the format of the header.
pub fn anon_object_class_id<'data, R: ReadRef<'data>>(data: R) -> Result<pe::ClsId> {
let header = data
.read_at::<pe::AnonObjectHeader>(0)
.read_error("Invalid anon object header size or alignment")?;
Ok(header.class_id)
}
/// A trait for generic access to [`pe::ImageFileHeader`] and [`pe::AnonObjectHeaderBigobj`].
#[allow(missing_docs)]
pub trait CoffHeader: Debug + Pod {
type ImageSymbol: ImageSymbol;
type ImageSymbolBytes: Debug + Pod;
/// Return true if this type is [`pe::AnonObjectHeaderBigobj`].
///
/// This is a property of the type, not a value in the header data.
fn is_type_bigobj() -> bool;
fn machine(&self) -> u16;
fn number_of_sections(&self) -> u32;
fn pointer_to_symbol_table(&self) -> u32;
fn number_of_symbols(&self) -> u32;
fn characteristics(&self) -> u16;
/// Read the file header.
///
/// `data` must be the entire file data.
/// `offset` must be the file header offset. It is updated to point after the optional header,
/// which is where the section headers are located.
fn parse<'data, R: ReadRef<'data>>(data: R, offset: &mut u64) -> read::Result<&'data Self>;
/// Read the section table.
///
/// `data` must be the entire file data.
/// `offset` must be after the optional file header.
#[inline]
fn sections<'data, R: ReadRef<'data>>(
&self,
data: R,
offset: u64,
) -> read::Result<SectionTable<'data>> {
SectionTable::parse(self, data, offset)
}
/// Read the symbol table and string table.
///
/// `data` must be the entire file data.
#[inline]
fn symbols<'data, R: ReadRef<'data>>(
&self,
data: R,
) -> read::Result<SymbolTable<'data, R, Self>> {
SymbolTable::parse(self, data)
}
}
impl CoffHeader for pe::ImageFileHeader {
type ImageSymbol = pe::ImageSymbol;
type ImageSymbolBytes = pe::ImageSymbolBytes;
fn is_type_bigobj() -> bool {
false
}
fn machine(&self) -> u16 {
self.machine.get(LE)
}
fn number_of_sections(&self) -> u32 {
self.number_of_sections.get(LE).into()
}
fn pointer_to_symbol_table(&self) -> u32 {
self.pointer_to_symbol_table.get(LE)
}
fn number_of_symbols(&self) -> u32 {
self.number_of_symbols.get(LE)
}
fn characteristics(&self) -> u16 {
self.characteristics.get(LE)
}
fn parse<'data, R: ReadRef<'data>>(data: R, offset: &mut u64) -> read::Result<&'data Self> {
let header = data
.read::<pe::ImageFileHeader>(offset)
.read_error("Invalid COFF file header size or alignment")?;
// Skip over the optional header.
*offset = offset
.checked_add(header.size_of_optional_header.get(LE).into())
.read_error("Invalid COFF optional header size")?;
// TODO: maybe validate that the machine is known?
Ok(header)
}
}
impl CoffHeader for pe::AnonObjectHeaderBigobj {
type ImageSymbol = pe::ImageSymbolEx;
type ImageSymbolBytes = pe::ImageSymbolExBytes;
fn is_type_bigobj() -> bool {
true
}
fn machine(&self) -> u16 {
self.machine.get(LE)
}
fn number_of_sections(&self) -> u32 {
self.number_of_sections.get(LE)
}
fn pointer_to_symbol_table(&self) -> u32 {
self.pointer_to_symbol_table.get(LE)
}
fn number_of_symbols(&self) -> u32 {
self.number_of_symbols.get(LE)
}
fn characteristics(&self) -> u16 {
0
}
fn parse<'data, R: ReadRef<'data>>(data: R, offset: &mut u64) -> read::Result<&'data Self> {
let header = data
.read::<pe::AnonObjectHeaderBigobj>(offset)
.read_error("Invalid COFF bigobj file header size or alignment")?;
if header.sig1.get(LE) != pe::IMAGE_FILE_MACHINE_UNKNOWN
|| header.sig2.get(LE) != 0xffff
|| header.version.get(LE) < 2
|| header.class_id != pe::ANON_OBJECT_HEADER_BIGOBJ_CLASS_ID
{
return Err(read::Error("Invalid COFF bigobj header values"));
}
// TODO: maybe validate that the machine is known?
Ok(header)
}
}

220
vendor/object/src/read/coff/import.rs vendored Normal file
View File

@ -0,0 +1,220 @@
//! Support for reading short import files.
//!
//! These are used by some Windows linkers as a more compact way to describe
//! dynamically imported symbols.
use crate::read::{Architecture, Error, ReadError, ReadRef, Result};
use crate::{pe, ByteString, Bytes, LittleEndian as LE, SubArchitecture};
/// A Windows short form description of a symbol to import.
///
/// Used in Windows import libraries to provide a mapping from
/// a symbol name to a DLL export. This is not an object file.
///
/// This is a file that starts with [`pe::ImportObjectHeader`], and corresponds
/// to [`crate::FileKind::CoffImport`].
#[derive(Debug, Clone)]
pub struct ImportFile<'data> {
header: &'data pe::ImportObjectHeader,
kind: ImportType,
dll: ByteString<'data>,
symbol: ByteString<'data>,
import: Option<ByteString<'data>>,
}
impl<'data> ImportFile<'data> {
/// Parse it.
pub fn parse<R: ReadRef<'data>>(data: R) -> Result<Self> {
let mut offset = 0;
let header = pe::ImportObjectHeader::parse(data, &mut offset)?;
let data = header.parse_data(data, &mut offset)?;
// Unmangles a name by removing a `?`, `@` or `_` prefix.
fn strip_prefix(s: &[u8]) -> &[u8] {
match s.split_first() {
Some((b, rest)) if [b'?', b'@', b'_'].contains(b) => rest,
_ => s,
}
}
Ok(Self {
header,
dll: data.dll,
symbol: data.symbol,
kind: match header.import_type() {
pe::IMPORT_OBJECT_CODE => ImportType::Code,
pe::IMPORT_OBJECT_DATA => ImportType::Data,
pe::IMPORT_OBJECT_CONST => ImportType::Const,
_ => return Err(Error("Invalid COFF import library import type")),
},
import: match header.name_type() {
pe::IMPORT_OBJECT_ORDINAL => None,
pe::IMPORT_OBJECT_NAME => Some(data.symbol()),
pe::IMPORT_OBJECT_NAME_NO_PREFIX => Some(strip_prefix(data.symbol())),
pe::IMPORT_OBJECT_NAME_UNDECORATE => Some(
strip_prefix(data.symbol())
.split(|&b| b == b'@')
.next()
.unwrap(),
),
pe::IMPORT_OBJECT_NAME_EXPORTAS => data.export(),
_ => return Err(Error("Unknown COFF import library name type")),
}
.map(ByteString),
})
}
/// Get the machine type.
pub fn architecture(&self) -> Architecture {
match self.header.machine.get(LE) {
pe::IMAGE_FILE_MACHINE_ARMNT => Architecture::Arm,
pe::IMAGE_FILE_MACHINE_ARM64 | pe::IMAGE_FILE_MACHINE_ARM64EC => Architecture::Aarch64,
pe::IMAGE_FILE_MACHINE_I386 => Architecture::I386,
pe::IMAGE_FILE_MACHINE_AMD64 => Architecture::X86_64,
_ => Architecture::Unknown,
}
}
/// Get the sub machine type, if available.
pub fn sub_architecture(&self) -> Option<SubArchitecture> {
match self.header.machine.get(LE) {
pe::IMAGE_FILE_MACHINE_ARM64EC => Some(SubArchitecture::Arm64EC),
_ => None,
}
}
/// The public symbol name.
pub fn symbol(&self) -> &'data [u8] {
self.symbol.0
}
/// The name of the DLL to import the symbol from.
pub fn dll(&self) -> &'data [u8] {
self.dll.0
}
/// The name exported from the DLL.
pub fn import(&self) -> ImportName<'data> {
match self.import {
Some(name) => ImportName::Name(name.0),
None => ImportName::Ordinal(self.header.ordinal_or_hint.get(LE)),
}
}
/// The type of import. Usually either a function or data.
pub fn import_type(&self) -> ImportType {
self.kind
}
}
/// The name or ordinal to import from a DLL.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ImportName<'data> {
/// Import by ordinal. Ordinarily this is a 1-based index.
Ordinal(u16),
/// Import by name.
Name(&'data [u8]),
}
/// The kind of import symbol.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ImportType {
/// An executable code symbol.
Code,
/// A data symbol.
Data,
/// A constant value.
Const,
}
impl pe::ImportObjectHeader {
/// Read the short import header.
///
/// Also checks that the signature and version are valid.
/// Directly following this header will be the string data.
pub fn parse<'data, R: ReadRef<'data>>(data: R, offset: &mut u64) -> Result<&'data Self> {
let header = data
.read::<pe::ImportObjectHeader>(offset)
.read_error("Invalid COFF import library header size")?;
if header.sig1.get(LE) != 0 || header.sig2.get(LE) != pe::IMPORT_OBJECT_HDR_SIG2 {
Err(Error("Invalid COFF import library header"))
} else if header.version.get(LE) != 0 {
Err(Error("Unknown COFF import library header version"))
} else {
Ok(header)
}
}
/// Parse the data following the header.
pub fn parse_data<'data, R: ReadRef<'data>>(
&self,
data: R,
offset: &mut u64,
) -> Result<ImportObjectData<'data>> {
let mut data = Bytes(
data.read_bytes(offset, u64::from(self.size_of_data.get(LE)))
.read_error("Invalid COFF import library data size")?,
);
let symbol = data
.read_string()
.map(ByteString)
.read_error("Could not read COFF import library symbol name")?;
let dll = data
.read_string()
.map(ByteString)
.read_error("Could not read COFF import library DLL name")?;
let export = if self.name_type() == pe::IMPORT_OBJECT_NAME_EXPORTAS {
data.read_string()
.map(ByteString)
.map(Some)
.read_error("Could not read COFF import library export name")?
} else {
None
};
Ok(ImportObjectData {
symbol,
dll,
export,
})
}
/// The type of import.
///
/// This is one of the `IMPORT_OBJECT_*` constants.
pub fn import_type(&self) -> u16 {
self.name_type.get(LE) & pe::IMPORT_OBJECT_TYPE_MASK
}
/// The type of import name.
///
/// This is one of the `IMPORT_OBJECT_*` constants.
pub fn name_type(&self) -> u16 {
(self.name_type.get(LE) >> pe::IMPORT_OBJECT_NAME_SHIFT) & pe::IMPORT_OBJECT_NAME_MASK
}
}
/// The data following [`pe::ImportObjectHeader`].
#[derive(Debug, Clone)]
pub struct ImportObjectData<'data> {
symbol: ByteString<'data>,
dll: ByteString<'data>,
export: Option<ByteString<'data>>,
}
impl<'data> ImportObjectData<'data> {
/// The public symbol name.
pub fn symbol(&self) -> &'data [u8] {
self.symbol.0
}
/// The name of the DLL to import the symbol from.
pub fn dll(&self) -> &'data [u8] {
self.dll.0
}
/// The name exported from the DLL.
///
/// This is only set if the name is not derived from the symbol name.
pub fn export(&self) -> Option<&'data [u8]> {
self.export.map(|export| export.0)
}
}

66
vendor/object/src/read/coff/mod.rs vendored Normal file
View File

@ -0,0 +1,66 @@
//! Support for reading Windows COFF files.
//!
//! Traits are used to abstract over the difference between COFF object files
//! and COFF bigobj files. The primary trait for this is [`CoffHeader`].
//!
//! ## High level API
//!
//! [`CoffFile`] implements the [`Object`](crate::read::Object) trait for
//! COFF files. [`CoffFile`] is parameterised by [`CoffHeader`].
//! The default parameter allows reading regular COFF object files,
//! while the type alias [`CoffBigFile`] allows reading COFF bigobj files.
//!
//! [`ImportFile`] allows reading COFF short imports that are used in import
//! libraries. Currently these are not integrated with the unified read API.
//!
//! ## Low level API
//!
//! The [`CoffHeader`] trait can be directly used to parse both COFF
//! object files (which start with [`pe::ImageFileHeader`]) and COFF bigobj
//! files (which start with [`pe::AnonObjectHeaderBigobj`]).
//!
//! ### Example for low level API
//! ```no_run
//! use object::pe;
//! use object::read::coff::{CoffHeader, ImageSymbol as _};
//! use std::error::Error;
//! use std::fs;
//!
//! /// Reads a file and displays the name of each section and symbol.
//! fn main() -> Result<(), Box<dyn Error>> {
//! # #[cfg(feature = "std")] {
//! let data = fs::read("path/to/binary")?;
//! let mut offset = 0;
//! let header = pe::ImageFileHeader::parse(&*data, &mut offset)?;
//! let sections = header.sections(&*data, offset)?;
//! let symbols = header.symbols(&*data)?;
//! for section in sections.iter() {
//! println!("{}", String::from_utf8_lossy(section.name(symbols.strings())?));
//! }
//! for (_index, symbol) in symbols.iter() {
//! println!("{}", String::from_utf8_lossy(symbol.name(symbols.strings())?));
//! }
//! # }
//! Ok(())
//! }
//! ```
#[cfg(doc)]
use crate::pe;
mod file;
pub use file::*;
mod section;
pub use section::*;
mod symbol;
pub use symbol::*;
mod relocation;
pub use relocation::*;
mod comdat;
pub use comdat::*;
mod import;
pub use import::*;

View File

@ -0,0 +1,106 @@
use alloc::fmt;
use core::slice;
use crate::endian::LittleEndian as LE;
use crate::pe;
use crate::read::{
ReadRef, Relocation, RelocationEncoding, RelocationKind, RelocationTarget, SymbolIndex,
};
use super::{CoffFile, CoffHeader};
/// An iterator for the relocations in a [`CoffBigSection`](super::CoffBigSection).
pub type CoffBigRelocationIterator<'data, 'file, R = &'data [u8]> =
CoffRelocationIterator<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// An iterator for the relocations in a [`CoffSection`](super::CoffSection).
pub struct CoffRelocationIterator<
'data,
'file,
R: ReadRef<'data> = &'data [u8],
Coff: CoffHeader = pe::ImageFileHeader,
> {
pub(super) file: &'file CoffFile<'data, R, Coff>,
pub(super) iter: slice::Iter<'data, pe::ImageRelocation>,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> Iterator
for CoffRelocationIterator<'data, 'file, R, Coff>
{
type Item = (u64, Relocation);
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|relocation| {
let (kind, size, addend) = match self.file.header.machine() {
pe::IMAGE_FILE_MACHINE_ARMNT => match relocation.typ.get(LE) {
pe::IMAGE_REL_ARM_ADDR32 => (RelocationKind::Absolute, 32, 0),
pe::IMAGE_REL_ARM_ADDR32NB => (RelocationKind::ImageOffset, 32, 0),
pe::IMAGE_REL_ARM_REL32 => (RelocationKind::Relative, 32, -4),
pe::IMAGE_REL_ARM_SECTION => (RelocationKind::SectionIndex, 16, 0),
pe::IMAGE_REL_ARM_SECREL => (RelocationKind::SectionOffset, 32, 0),
typ => (RelocationKind::Coff(typ), 0, 0),
},
pe::IMAGE_FILE_MACHINE_ARM64 | pe::IMAGE_FILE_MACHINE_ARM64EC => {
match relocation.typ.get(LE) {
pe::IMAGE_REL_ARM64_ADDR32 => (RelocationKind::Absolute, 32, 0),
pe::IMAGE_REL_ARM64_ADDR32NB => (RelocationKind::ImageOffset, 32, 0),
pe::IMAGE_REL_ARM64_SECREL => (RelocationKind::SectionOffset, 32, 0),
pe::IMAGE_REL_ARM64_SECTION => (RelocationKind::SectionIndex, 16, 0),
pe::IMAGE_REL_ARM64_ADDR64 => (RelocationKind::Absolute, 64, 0),
pe::IMAGE_REL_ARM64_REL32 => (RelocationKind::Relative, 32, -4),
typ => (RelocationKind::Coff(typ), 0, 0),
}
}
pe::IMAGE_FILE_MACHINE_I386 => match relocation.typ.get(LE) {
pe::IMAGE_REL_I386_DIR16 => (RelocationKind::Absolute, 16, 0),
pe::IMAGE_REL_I386_REL16 => (RelocationKind::Relative, 16, 0),
pe::IMAGE_REL_I386_DIR32 => (RelocationKind::Absolute, 32, 0),
pe::IMAGE_REL_I386_DIR32NB => (RelocationKind::ImageOffset, 32, 0),
pe::IMAGE_REL_I386_SECTION => (RelocationKind::SectionIndex, 16, 0),
pe::IMAGE_REL_I386_SECREL => (RelocationKind::SectionOffset, 32, 0),
pe::IMAGE_REL_I386_SECREL7 => (RelocationKind::SectionOffset, 7, 0),
pe::IMAGE_REL_I386_REL32 => (RelocationKind::Relative, 32, -4),
typ => (RelocationKind::Coff(typ), 0, 0),
},
pe::IMAGE_FILE_MACHINE_AMD64 => match relocation.typ.get(LE) {
pe::IMAGE_REL_AMD64_ADDR64 => (RelocationKind::Absolute, 64, 0),
pe::IMAGE_REL_AMD64_ADDR32 => (RelocationKind::Absolute, 32, 0),
pe::IMAGE_REL_AMD64_ADDR32NB => (RelocationKind::ImageOffset, 32, 0),
pe::IMAGE_REL_AMD64_REL32 => (RelocationKind::Relative, 32, -4),
pe::IMAGE_REL_AMD64_REL32_1 => (RelocationKind::Relative, 32, -5),
pe::IMAGE_REL_AMD64_REL32_2 => (RelocationKind::Relative, 32, -6),
pe::IMAGE_REL_AMD64_REL32_3 => (RelocationKind::Relative, 32, -7),
pe::IMAGE_REL_AMD64_REL32_4 => (RelocationKind::Relative, 32, -8),
pe::IMAGE_REL_AMD64_REL32_5 => (RelocationKind::Relative, 32, -9),
pe::IMAGE_REL_AMD64_SECTION => (RelocationKind::SectionIndex, 16, 0),
pe::IMAGE_REL_AMD64_SECREL => (RelocationKind::SectionOffset, 32, 0),
pe::IMAGE_REL_AMD64_SECREL7 => (RelocationKind::SectionOffset, 7, 0),
typ => (RelocationKind::Coff(typ), 0, 0),
},
_ => (RelocationKind::Coff(relocation.typ.get(LE)), 0, 0),
};
let target = RelocationTarget::Symbol(SymbolIndex(
relocation.symbol_table_index.get(LE) as usize,
));
(
u64::from(relocation.virtual_address.get(LE)),
Relocation {
kind,
encoding: RelocationEncoding::Generic,
size,
target,
addend,
implicit_addend: true,
},
)
})
}
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> fmt::Debug
for CoffRelocationIterator<'data, 'file, R, Coff>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("CoffRelocationIterator").finish()
}
}

585
vendor/object/src/read/coff/section.rs vendored Normal file
View File

@ -0,0 +1,585 @@
use core::convert::TryFrom;
use core::{iter, result, slice, str};
use crate::endian::LittleEndian as LE;
use crate::pe;
use crate::read::util::StringTable;
use crate::read::{
self, CompressedData, CompressedFileRange, Error, ObjectSection, ObjectSegment, ReadError,
ReadRef, Result, SectionFlags, SectionIndex, SectionKind, SegmentFlags,
};
use super::{CoffFile, CoffHeader, CoffRelocationIterator};
/// The table of section headers in a COFF or PE file.
///
/// Returned by [`CoffHeader::sections`] and
/// [`ImageNtHeaders::sections`](crate::read::pe::ImageNtHeaders::sections).
#[derive(Debug, Default, Clone, Copy)]
pub struct SectionTable<'data> {
sections: &'data [pe::ImageSectionHeader],
}
impl<'data> SectionTable<'data> {
/// Parse the section table.
///
/// `data` must be the entire file data.
/// `offset` must be after the optional file header.
pub fn parse<Coff: CoffHeader, R: ReadRef<'data>>(
header: &Coff,
data: R,
offset: u64,
) -> Result<Self> {
let sections = data
.read_slice_at(offset, header.number_of_sections() as usize)
.read_error("Invalid COFF/PE section headers")?;
Ok(SectionTable { sections })
}
/// Iterate over the section headers.
///
/// Warning: sections indices start at 1.
#[inline]
pub fn iter(&self) -> slice::Iter<'data, pe::ImageSectionHeader> {
self.sections.iter()
}
/// Return true if the section table is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.sections.is_empty()
}
/// The number of section headers.
#[inline]
pub fn len(&self) -> usize {
self.sections.len()
}
/// Return the section header at the given index.
///
/// The index is 1-based.
pub fn section(&self, index: usize) -> read::Result<&'data pe::ImageSectionHeader> {
self.sections
.get(index.wrapping_sub(1))
.read_error("Invalid COFF/PE section index")
}
/// Return the section header with the given name.
///
/// The returned index is 1-based.
///
/// Ignores sections with invalid names.
pub fn section_by_name<R: ReadRef<'data>>(
&self,
strings: StringTable<'data, R>,
name: &[u8],
) -> Option<(usize, &'data pe::ImageSectionHeader)> {
self.sections
.iter()
.enumerate()
.find(|(_, section)| section.name(strings) == Ok(name))
.map(|(index, section)| (index + 1, section))
}
/// Compute the maximum file offset used by sections.
///
/// This will usually match the end of file, unless the PE file has a
/// [data overlay](https://security.stackexchange.com/questions/77336/how-is-the-file-overlay-read-by-an-exe-virus)
pub fn max_section_file_offset(&self) -> u64 {
let mut max = 0;
for section in self.iter() {
match (section.pointer_to_raw_data.get(LE) as u64)
.checked_add(section.size_of_raw_data.get(LE) as u64)
{
None => {
// This cannot happen, we're suming two u32 into a u64
continue;
}
Some(end_of_section) => {
if end_of_section > max {
max = end_of_section;
}
}
}
}
max
}
}
/// An iterator for the loadable sections in a [`CoffBigFile`](super::CoffBigFile).
pub type CoffBigSegmentIterator<'data, 'file, R = &'data [u8]> =
CoffSegmentIterator<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// An iterator for the loadable sections in a [`CoffFile`].
#[derive(Debug)]
pub struct CoffSegmentIterator<
'data,
'file,
R: ReadRef<'data> = &'data [u8],
Coff: CoffHeader = pe::ImageFileHeader,
> {
pub(super) file: &'file CoffFile<'data, R, Coff>,
pub(super) iter: slice::Iter<'data, pe::ImageSectionHeader>,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> Iterator
for CoffSegmentIterator<'data, 'file, R, Coff>
{
type Item = CoffSegment<'data, 'file, R, Coff>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|section| CoffSegment {
file: self.file,
section,
})
}
}
/// A loadable section in a [`CoffBigFile`](super::CoffBigFile).
///
/// Most functionality is provided by the [`ObjectSegment`] trait implementation.
pub type CoffBigSegment<'data, 'file, R = &'data [u8]> =
CoffSegment<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// A loadable section in a [`CoffFile`].
///
/// Most functionality is provided by the [`ObjectSegment`] trait implementation.
#[derive(Debug)]
pub struct CoffSegment<
'data,
'file,
R: ReadRef<'data> = &'data [u8],
Coff: CoffHeader = pe::ImageFileHeader,
> {
pub(super) file: &'file CoffFile<'data, R, Coff>,
pub(super) section: &'data pe::ImageSectionHeader,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> CoffSegment<'data, 'file, R, Coff> {
fn bytes(&self) -> Result<&'data [u8]> {
self.section
.coff_data(self.file.data)
.read_error("Invalid COFF section offset or size")
}
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> read::private::Sealed
for CoffSegment<'data, 'file, R, Coff>
{
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> ObjectSegment<'data>
for CoffSegment<'data, 'file, R, Coff>
{
#[inline]
fn address(&self) -> u64 {
u64::from(self.section.virtual_address.get(LE))
}
#[inline]
fn size(&self) -> u64 {
u64::from(self.section.virtual_size.get(LE))
}
#[inline]
fn align(&self) -> u64 {
self.section.coff_alignment()
}
#[inline]
fn file_range(&self) -> (u64, u64) {
let (offset, size) = self.section.coff_file_range().unwrap_or((0, 0));
(u64::from(offset), u64::from(size))
}
fn data(&self) -> Result<&'data [u8]> {
self.bytes()
}
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>> {
Ok(read::util::data_range(
self.bytes()?,
self.address(),
address,
size,
))
}
#[inline]
fn name_bytes(&self) -> Result<Option<&[u8]>> {
self.section
.name(self.file.common.symbols.strings())
.map(Some)
}
#[inline]
fn name(&self) -> Result<Option<&str>> {
let name = self.section.name(self.file.common.symbols.strings())?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 COFF section name")
.map(Some)
}
#[inline]
fn flags(&self) -> SegmentFlags {
let characteristics = self.section.characteristics.get(LE);
SegmentFlags::Coff { characteristics }
}
}
/// An iterator for the sections in a [`CoffBigFile`](super::CoffBigFile).
pub type CoffBigSectionIterator<'data, 'file, R = &'data [u8]> =
CoffSectionIterator<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// An iterator for the sections in a [`CoffFile`].
#[derive(Debug)]
pub struct CoffSectionIterator<
'data,
'file,
R: ReadRef<'data> = &'data [u8],
Coff: CoffHeader = pe::ImageFileHeader,
> {
pub(super) file: &'file CoffFile<'data, R, Coff>,
pub(super) iter: iter::Enumerate<slice::Iter<'data, pe::ImageSectionHeader>>,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> Iterator
for CoffSectionIterator<'data, 'file, R, Coff>
{
type Item = CoffSection<'data, 'file, R, Coff>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(index, section)| CoffSection {
file: self.file,
index: SectionIndex(index + 1),
section,
})
}
}
/// A section in a [`CoffBigFile`](super::CoffBigFile).
///
/// Most functionality is provided by the [`ObjectSection`] trait implementation.
pub type CoffBigSection<'data, 'file, R = &'data [u8]> =
CoffSection<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// A section in a [`CoffFile`].
///
/// Most functionality is provided by the [`ObjectSection`] trait implementation.
#[derive(Debug)]
pub struct CoffSection<
'data,
'file,
R: ReadRef<'data> = &'data [u8],
Coff: CoffHeader = pe::ImageFileHeader,
> {
pub(super) file: &'file CoffFile<'data, R, Coff>,
pub(super) index: SectionIndex,
pub(super) section: &'data pe::ImageSectionHeader,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> CoffSection<'data, 'file, R, Coff> {
fn bytes(&self) -> Result<&'data [u8]> {
self.section
.coff_data(self.file.data)
.read_error("Invalid COFF section offset or size")
}
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> read::private::Sealed
for CoffSection<'data, 'file, R, Coff>
{
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> ObjectSection<'data>
for CoffSection<'data, 'file, R, Coff>
{
type RelocationIterator = CoffRelocationIterator<'data, 'file, R, Coff>;
#[inline]
fn index(&self) -> SectionIndex {
self.index
}
#[inline]
fn address(&self) -> u64 {
u64::from(self.section.virtual_address.get(LE))
}
#[inline]
fn size(&self) -> u64 {
// TODO: This may need to be the length from the auxiliary symbol for this section.
u64::from(self.section.size_of_raw_data.get(LE))
}
#[inline]
fn align(&self) -> u64 {
self.section.coff_alignment()
}
#[inline]
fn file_range(&self) -> Option<(u64, u64)> {
let (offset, size) = self.section.coff_file_range()?;
Some((u64::from(offset), u64::from(size)))
}
fn data(&self) -> Result<&'data [u8]> {
self.bytes()
}
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>> {
Ok(read::util::data_range(
self.bytes()?,
self.address(),
address,
size,
))
}
#[inline]
fn compressed_file_range(&self) -> Result<CompressedFileRange> {
Ok(CompressedFileRange::none(self.file_range()))
}
#[inline]
fn compressed_data(&self) -> Result<CompressedData<'data>> {
self.data().map(CompressedData::none)
}
#[inline]
fn name_bytes(&self) -> Result<&[u8]> {
self.section.name(self.file.common.symbols.strings())
}
#[inline]
fn name(&self) -> Result<&str> {
let name = self.name_bytes()?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 COFF section name")
}
#[inline]
fn segment_name_bytes(&self) -> Result<Option<&[u8]>> {
Ok(None)
}
#[inline]
fn segment_name(&self) -> Result<Option<&str>> {
Ok(None)
}
#[inline]
fn kind(&self) -> SectionKind {
self.section.kind()
}
fn relocations(&self) -> CoffRelocationIterator<'data, 'file, R, Coff> {
let relocations = self.section.coff_relocations(self.file.data).unwrap_or(&[]);
CoffRelocationIterator {
file: self.file,
iter: relocations.iter(),
}
}
fn flags(&self) -> SectionFlags {
SectionFlags::Coff {
characteristics: self.section.characteristics.get(LE),
}
}
}
impl pe::ImageSectionHeader {
pub(crate) fn kind(&self) -> SectionKind {
let characteristics = self.characteristics.get(LE);
if characteristics & (pe::IMAGE_SCN_CNT_CODE | pe::IMAGE_SCN_MEM_EXECUTE) != 0 {
SectionKind::Text
} else if characteristics & pe::IMAGE_SCN_CNT_INITIALIZED_DATA != 0 {
if characteristics & pe::IMAGE_SCN_MEM_DISCARDABLE != 0 {
SectionKind::Other
} else if characteristics & pe::IMAGE_SCN_MEM_WRITE != 0 {
SectionKind::Data
} else {
SectionKind::ReadOnlyData
}
} else if characteristics & pe::IMAGE_SCN_CNT_UNINITIALIZED_DATA != 0 {
SectionKind::UninitializedData
} else if characteristics & pe::IMAGE_SCN_LNK_INFO != 0 {
SectionKind::Linker
} else {
SectionKind::Unknown
}
}
}
impl pe::ImageSectionHeader {
/// Return the string table offset of the section name.
///
/// Returns `Ok(None)` if the name doesn't use the string table
/// and can be obtained with `raw_name` instead.
pub fn name_offset(&self) -> Result<Option<u32>> {
let bytes = &self.name;
if bytes[0] != b'/' {
return Ok(None);
}
if bytes[1] == b'/' {
let mut offset = 0;
for byte in bytes[2..].iter() {
let digit = match byte {
b'A'..=b'Z' => byte - b'A',
b'a'..=b'z' => byte - b'a' + 26,
b'0'..=b'9' => byte - b'0' + 52,
b'+' => 62,
b'/' => 63,
_ => return Err(Error("Invalid COFF section name base-64 offset")),
};
offset = offset * 64 + digit as u64;
}
u32::try_from(offset)
.ok()
.read_error("Invalid COFF section name base-64 offset")
.map(Some)
} else {
let mut offset = 0;
for byte in bytes[1..].iter() {
let digit = match byte {
b'0'..=b'9' => byte - b'0',
0 => break,
_ => return Err(Error("Invalid COFF section name base-10 offset")),
};
offset = offset * 10 + digit as u32;
}
Ok(Some(offset))
}
}
/// Return the section name.
///
/// This handles decoding names that are offsets into the symbol string table.
pub fn name<'data, R: ReadRef<'data>>(
&'data self,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
if let Some(offset) = self.name_offset()? {
strings
.get(offset)
.read_error("Invalid COFF section name offset")
} else {
Ok(self.raw_name())
}
}
/// Return the raw section name.
pub fn raw_name(&self) -> &[u8] {
let bytes = &self.name;
match memchr::memchr(b'\0', bytes) {
Some(end) => &bytes[..end],
None => &bytes[..],
}
}
/// Return the offset and size of the section in a COFF file.
///
/// Returns `None` for sections that have no data in the file.
pub fn coff_file_range(&self) -> Option<(u32, u32)> {
if self.characteristics.get(LE) & pe::IMAGE_SCN_CNT_UNINITIALIZED_DATA != 0 {
None
} else {
let offset = self.pointer_to_raw_data.get(LE);
// Note: virtual size is not used for COFF.
let size = self.size_of_raw_data.get(LE);
Some((offset, size))
}
}
/// Return the section data in a COFF file.
///
/// Returns `Ok(&[])` if the section has no data.
/// Returns `Err` for invalid values.
pub fn coff_data<'data, R: ReadRef<'data>>(&self, data: R) -> result::Result<&'data [u8], ()> {
if let Some((offset, size)) = self.coff_file_range() {
data.read_bytes_at(offset.into(), size.into())
} else {
Ok(&[])
}
}
/// Return the section alignment in bytes.
///
/// This is only valid for sections in a COFF file.
pub fn coff_alignment(&self) -> u64 {
match self.characteristics.get(LE) & pe::IMAGE_SCN_ALIGN_MASK {
pe::IMAGE_SCN_ALIGN_1BYTES => 1,
pe::IMAGE_SCN_ALIGN_2BYTES => 2,
pe::IMAGE_SCN_ALIGN_4BYTES => 4,
pe::IMAGE_SCN_ALIGN_8BYTES => 8,
pe::IMAGE_SCN_ALIGN_16BYTES => 16,
pe::IMAGE_SCN_ALIGN_32BYTES => 32,
pe::IMAGE_SCN_ALIGN_64BYTES => 64,
pe::IMAGE_SCN_ALIGN_128BYTES => 128,
pe::IMAGE_SCN_ALIGN_256BYTES => 256,
pe::IMAGE_SCN_ALIGN_512BYTES => 512,
pe::IMAGE_SCN_ALIGN_1024BYTES => 1024,
pe::IMAGE_SCN_ALIGN_2048BYTES => 2048,
pe::IMAGE_SCN_ALIGN_4096BYTES => 4096,
pe::IMAGE_SCN_ALIGN_8192BYTES => 8192,
_ => 16,
}
}
/// Read the relocations in a COFF file.
///
/// `data` must be the entire file data.
pub fn coff_relocations<'data, R: ReadRef<'data>>(
&self,
data: R,
) -> read::Result<&'data [pe::ImageRelocation]> {
let mut pointer = self.pointer_to_relocations.get(LE).into();
let mut number: usize = self.number_of_relocations.get(LE).into();
if number == core::u16::MAX.into()
&& self.characteristics.get(LE) & pe::IMAGE_SCN_LNK_NRELOC_OVFL != 0
{
// Extended relocations. Read first relocation (which contains extended count) & adjust
// relocations pointer.
let extended_relocation_info = data
.read_at::<pe::ImageRelocation>(pointer)
.read_error("Invalid COFF relocation offset or number")?;
number = extended_relocation_info.virtual_address.get(LE) as usize;
if number == 0 {
return Err(Error("Invalid COFF relocation number"));
}
pointer += core::mem::size_of::<pe::ImageRelocation>() as u64;
// Extended relocation info does not contribute to the count of sections.
number -= 1;
}
data.read_slice_at(pointer, number)
.read_error("Invalid COFF relocation offset or number")
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn name_offset() {
let mut section = pe::ImageSectionHeader::default();
section.name = *b"xxxxxxxx";
assert_eq!(section.name_offset(), Ok(None));
section.name = *b"/0\0\0\0\0\0\0";
assert_eq!(section.name_offset(), Ok(Some(0)));
section.name = *b"/9999999";
assert_eq!(section.name_offset(), Ok(Some(999_9999)));
section.name = *b"//AAAAAA";
assert_eq!(section.name_offset(), Ok(Some(0)));
section.name = *b"//D/////";
assert_eq!(section.name_offset(), Ok(Some(0xffff_ffff)));
section.name = *b"//EAAAAA";
assert!(section.name_offset().is_err());
section.name = *b"////////";
assert!(section.name_offset().is_err());
}
}

635
vendor/object/src/read/coff/symbol.rs vendored Normal file
View File

@ -0,0 +1,635 @@
use alloc::fmt;
use alloc::vec::Vec;
use core::convert::TryInto;
use core::fmt::Debug;
use core::str;
use super::{CoffCommon, CoffHeader, SectionTable};
use crate::endian::{LittleEndian as LE, U32Bytes};
use crate::pe;
use crate::pod::{bytes_of, bytes_of_slice, Pod};
use crate::read::util::StringTable;
use crate::read::{
self, Bytes, ObjectSymbol, ObjectSymbolTable, ReadError, ReadRef, Result, SectionIndex,
SymbolFlags, SymbolIndex, SymbolKind, SymbolMap, SymbolMapEntry, SymbolScope, SymbolSection,
};
/// A table of symbol entries in a COFF or PE file.
///
/// Also includes the string table used for the symbol names.
///
/// Returned by [`CoffHeader::symbols`] and
/// [`ImageNtHeaders::symbols`](crate::read::pe::ImageNtHeaders::symbols).
#[derive(Debug)]
pub struct SymbolTable<'data, R = &'data [u8], Coff = pe::ImageFileHeader>
where
R: ReadRef<'data>,
Coff: CoffHeader,
{
symbols: &'data [Coff::ImageSymbolBytes],
strings: StringTable<'data, R>,
}
impl<'data, R: ReadRef<'data>, Coff: CoffHeader> Default for SymbolTable<'data, R, Coff> {
fn default() -> Self {
Self {
symbols: &[],
strings: StringTable::default(),
}
}
}
impl<'data, R: ReadRef<'data>, Coff: CoffHeader> SymbolTable<'data, R, Coff> {
/// Read the symbol table.
pub fn parse(header: &Coff, data: R) -> Result<Self> {
// The symbol table may not be present.
let mut offset = header.pointer_to_symbol_table().into();
let (symbols, strings) = if offset != 0 {
let symbols = data
.read_slice(&mut offset, header.number_of_symbols() as usize)
.read_error("Invalid COFF symbol table offset or size")?;
// Note: don't update data when reading length; the length includes itself.
let length = data
.read_at::<U32Bytes<_>>(offset)
.read_error("Missing COFF string table")?
.get(LE);
let str_end = offset
.checked_add(length as u64)
.read_error("Invalid COFF string table length")?;
let strings = StringTable::new(data, offset, str_end);
(symbols, strings)
} else {
(&[][..], StringTable::default())
};
Ok(SymbolTable { symbols, strings })
}
/// Return the string table used for the symbol names.
#[inline]
pub fn strings(&self) -> StringTable<'data, R> {
self.strings
}
/// Return true if the symbol table is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.symbols.is_empty()
}
/// The number of symbol table entries.
///
/// This includes auxiliary symbol table entries.
#[inline]
pub fn len(&self) -> usize {
self.symbols.len()
}
/// Iterate over the symbols.
#[inline]
pub fn iter<'table>(&'table self) -> SymbolIterator<'data, 'table, R, Coff> {
SymbolIterator {
symbols: self,
index: 0,
}
}
/// Return the symbol table entry at the given index.
#[inline]
pub fn symbol(&self, index: usize) -> Result<&'data Coff::ImageSymbol> {
self.get::<Coff::ImageSymbol>(index, 0)
}
/// Return the auxiliary function symbol for the symbol table entry at the given index.
///
/// Note that the index is of the symbol, not the first auxiliary record.
#[inline]
pub fn aux_function(&self, index: usize) -> Result<&'data pe::ImageAuxSymbolFunction> {
self.get::<pe::ImageAuxSymbolFunction>(index, 1)
}
/// Return the auxiliary section symbol for the symbol table entry at the given index.
///
/// Note that the index is of the symbol, not the first auxiliary record.
#[inline]
pub fn aux_section(&self, index: usize) -> Result<&'data pe::ImageAuxSymbolSection> {
self.get::<pe::ImageAuxSymbolSection>(index, 1)
}
/// Return the auxiliary file name for the symbol table entry at the given index.
///
/// Note that the index is of the symbol, not the first auxiliary record.
pub fn aux_file_name(&self, index: usize, aux_count: u8) -> Result<&'data [u8]> {
let entries = index
.checked_add(1)
.and_then(|x| Some(x..x.checked_add(aux_count.into())?))
.and_then(|x| self.symbols.get(x))
.read_error("Invalid COFF symbol index")?;
let bytes = bytes_of_slice(entries);
// The name is padded with nulls.
Ok(match memchr::memchr(b'\0', bytes) {
Some(end) => &bytes[..end],
None => bytes,
})
}
/// Return the symbol table entry or auxiliary record at the given index and offset.
pub fn get<T: Pod>(&self, index: usize, offset: usize) -> Result<&'data T> {
let bytes = index
.checked_add(offset)
.and_then(|x| self.symbols.get(x))
.read_error("Invalid COFF symbol index")?;
Bytes(bytes_of(bytes))
.read()
.read_error("Invalid COFF symbol data")
}
/// Construct a map from addresses to a user-defined map entry.
pub fn map<Entry: SymbolMapEntry, F: Fn(&'data Coff::ImageSymbol) -> Option<Entry>>(
&self,
f: F,
) -> SymbolMap<Entry> {
let mut symbols = Vec::with_capacity(self.symbols.len());
for (_, symbol) in self.iter() {
if !symbol.is_definition() {
continue;
}
if let Some(entry) = f(symbol) {
symbols.push(entry);
}
}
SymbolMap::new(symbols)
}
}
/// An iterator for symbol entries in a COFF or PE file.
///
/// Yields the index and symbol structure for each symbol.
#[derive(Debug)]
pub struct SymbolIterator<'data, 'table, R = &'data [u8], Coff = pe::ImageFileHeader>
where
R: ReadRef<'data>,
Coff: CoffHeader,
{
symbols: &'table SymbolTable<'data, R, Coff>,
index: usize,
}
impl<'data, 'table, R: ReadRef<'data>, Coff: CoffHeader> Iterator
for SymbolIterator<'data, 'table, R, Coff>
{
type Item = (usize, &'data Coff::ImageSymbol);
fn next(&mut self) -> Option<Self::Item> {
let index = self.index;
let symbol = self.symbols.symbol(index).ok()?;
self.index += 1 + symbol.number_of_aux_symbols() as usize;
Some((index, symbol))
}
}
/// A symbol table in a [`CoffBigFile`](super::CoffBigFile).
pub type CoffBigSymbolTable<'data, 'file, R = &'data [u8]> =
CoffSymbolTable<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// A symbol table in a [`CoffFile`](super::CoffFile)
/// or [`PeFile`](crate::read::pe::PeFile).
#[derive(Debug, Clone, Copy)]
pub struct CoffSymbolTable<'data, 'file, R = &'data [u8], Coff = pe::ImageFileHeader>
where
R: ReadRef<'data>,
Coff: CoffHeader,
{
pub(crate) file: &'file CoffCommon<'data, R, Coff>,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> read::private::Sealed
for CoffSymbolTable<'data, 'file, R, Coff>
{
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> ObjectSymbolTable<'data>
for CoffSymbolTable<'data, 'file, R, Coff>
{
type Symbol = CoffSymbol<'data, 'file, R, Coff>;
type SymbolIterator = CoffSymbolIterator<'data, 'file, R, Coff>;
fn symbols(&self) -> Self::SymbolIterator {
CoffSymbolIterator {
file: self.file,
index: 0,
}
}
fn symbol_by_index(&self, index: SymbolIndex) -> Result<Self::Symbol> {
let symbol = self.file.symbols.symbol(index.0)?;
Ok(CoffSymbol {
file: self.file,
index,
symbol,
})
}
}
/// An iterator for the symbols in a [`CoffBigFile`](super::CoffBigFile).
pub type CoffBigSymbolIterator<'data, 'file, R = &'data [u8]> =
CoffSymbolIterator<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// An iterator for the symbols in a [`CoffFile`](super::CoffFile)
/// or [`PeFile`](crate::read::pe::PeFile).
pub struct CoffSymbolIterator<'data, 'file, R = &'data [u8], Coff = pe::ImageFileHeader>
where
R: ReadRef<'data>,
Coff: CoffHeader,
{
pub(crate) file: &'file CoffCommon<'data, R, Coff>,
pub(crate) index: usize,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> fmt::Debug
for CoffSymbolIterator<'data, 'file, R, Coff>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("CoffSymbolIterator").finish()
}
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> Iterator
for CoffSymbolIterator<'data, 'file, R, Coff>
{
type Item = CoffSymbol<'data, 'file, R, Coff>;
fn next(&mut self) -> Option<Self::Item> {
let index = self.index;
let symbol = self.file.symbols.symbol(index).ok()?;
self.index += 1 + symbol.number_of_aux_symbols() as usize;
Some(CoffSymbol {
file: self.file,
index: SymbolIndex(index),
symbol,
})
}
}
/// A symbol in a [`CoffBigFile`](super::CoffBigFile).
///
/// Most functionality is provided by the [`ObjectSymbol`] trait implementation.
pub type CoffBigSymbol<'data, 'file, R = &'data [u8]> =
CoffSymbol<'data, 'file, R, pe::AnonObjectHeaderBigobj>;
/// A symbol in a [`CoffFile`](super::CoffFile) or [`PeFile`](crate::read::pe::PeFile).
///
/// Most functionality is provided by the [`ObjectSymbol`] trait implementation.
#[derive(Debug, Clone, Copy)]
pub struct CoffSymbol<'data, 'file, R = &'data [u8], Coff = pe::ImageFileHeader>
where
R: ReadRef<'data>,
Coff: CoffHeader,
{
pub(crate) file: &'file CoffCommon<'data, R, Coff>,
pub(crate) index: SymbolIndex,
pub(crate) symbol: &'data Coff::ImageSymbol,
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> CoffSymbol<'data, 'file, R, Coff> {
#[inline]
/// Get the raw `ImageSymbol` struct.
pub fn raw_symbol(&self) -> &'data Coff::ImageSymbol {
self.symbol
}
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> read::private::Sealed
for CoffSymbol<'data, 'file, R, Coff>
{
}
impl<'data, 'file, R: ReadRef<'data>, Coff: CoffHeader> ObjectSymbol<'data>
for CoffSymbol<'data, 'file, R, Coff>
{
#[inline]
fn index(&self) -> SymbolIndex {
self.index
}
fn name_bytes(&self) -> read::Result<&'data [u8]> {
if self.symbol.has_aux_file_name() {
self.file
.symbols
.aux_file_name(self.index.0, self.symbol.number_of_aux_symbols())
} else {
self.symbol.name(self.file.symbols.strings())
}
}
fn name(&self) -> read::Result<&'data str> {
let name = self.name_bytes()?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 COFF symbol name")
}
fn address(&self) -> u64 {
// Only return an address for storage classes that we know use an address.
match self.symbol.storage_class() {
pe::IMAGE_SYM_CLASS_STATIC
| pe::IMAGE_SYM_CLASS_WEAK_EXTERNAL
| pe::IMAGE_SYM_CLASS_LABEL => {}
pe::IMAGE_SYM_CLASS_EXTERNAL => {
if self.symbol.section_number() == pe::IMAGE_SYM_UNDEFINED {
// Undefined or common data, neither of which have an address.
return 0;
}
}
_ => return 0,
}
self.symbol
.address(self.file.image_base, &self.file.sections)
.unwrap_or(0)
}
fn size(&self) -> u64 {
match self.symbol.storage_class() {
pe::IMAGE_SYM_CLASS_STATIC => {
// Section symbols may duplicate the size from the section table.
if self.symbol.has_aux_section() {
if let Ok(aux) = self.file.symbols.aux_section(self.index.0) {
u64::from(aux.length.get(LE))
} else {
0
}
} else {
0
}
}
pe::IMAGE_SYM_CLASS_EXTERNAL => {
if self.symbol.section_number() == pe::IMAGE_SYM_UNDEFINED {
// For undefined symbols, symbol.value is 0 and the size is 0.
// For common data, symbol.value is the size.
u64::from(self.symbol.value())
} else if self.symbol.has_aux_function() {
// Function symbols may have a size.
if let Ok(aux) = self.file.symbols.aux_function(self.index.0) {
u64::from(aux.total_size.get(LE))
} else {
0
}
} else {
0
}
}
// Most symbols don't have sizes.
_ => 0,
}
}
fn kind(&self) -> SymbolKind {
let derived_kind = if self.symbol.derived_type() == pe::IMAGE_SYM_DTYPE_FUNCTION {
SymbolKind::Text
} else {
SymbolKind::Data
};
match self.symbol.storage_class() {
pe::IMAGE_SYM_CLASS_STATIC => {
if self.symbol.has_aux_section() {
SymbolKind::Section
} else {
derived_kind
}
}
pe::IMAGE_SYM_CLASS_EXTERNAL | pe::IMAGE_SYM_CLASS_WEAK_EXTERNAL => derived_kind,
pe::IMAGE_SYM_CLASS_SECTION => SymbolKind::Section,
pe::IMAGE_SYM_CLASS_FILE => SymbolKind::File,
pe::IMAGE_SYM_CLASS_LABEL => SymbolKind::Label,
_ => SymbolKind::Unknown,
}
}
fn section(&self) -> SymbolSection {
match self.symbol.section_number() {
pe::IMAGE_SYM_UNDEFINED => {
if self.symbol.storage_class() == pe::IMAGE_SYM_CLASS_EXTERNAL {
if self.symbol.value() == 0 {
SymbolSection::Undefined
} else {
SymbolSection::Common
}
} else if self.symbol.storage_class() == pe::IMAGE_SYM_CLASS_SECTION {
SymbolSection::Undefined
} else {
SymbolSection::Unknown
}
}
pe::IMAGE_SYM_ABSOLUTE => SymbolSection::Absolute,
pe::IMAGE_SYM_DEBUG => {
if self.symbol.storage_class() == pe::IMAGE_SYM_CLASS_FILE {
SymbolSection::None
} else {
SymbolSection::Unknown
}
}
index if index > 0 => SymbolSection::Section(SectionIndex(index as usize)),
_ => SymbolSection::Unknown,
}
}
#[inline]
fn is_undefined(&self) -> bool {
self.symbol.storage_class() == pe::IMAGE_SYM_CLASS_EXTERNAL
&& self.symbol.section_number() == pe::IMAGE_SYM_UNDEFINED
&& self.symbol.value() == 0
}
#[inline]
fn is_definition(&self) -> bool {
self.symbol.is_definition()
}
#[inline]
fn is_common(&self) -> bool {
self.symbol.storage_class() == pe::IMAGE_SYM_CLASS_EXTERNAL
&& self.symbol.section_number() == pe::IMAGE_SYM_UNDEFINED
&& self.symbol.value() != 0
}
#[inline]
fn is_weak(&self) -> bool {
self.symbol.storage_class() == pe::IMAGE_SYM_CLASS_WEAK_EXTERNAL
}
#[inline]
fn scope(&self) -> SymbolScope {
match self.symbol.storage_class() {
pe::IMAGE_SYM_CLASS_EXTERNAL | pe::IMAGE_SYM_CLASS_WEAK_EXTERNAL => {
// TODO: determine if symbol is exported
SymbolScope::Linkage
}
_ => SymbolScope::Compilation,
}
}
#[inline]
fn is_global(&self) -> bool {
match self.symbol.storage_class() {
pe::IMAGE_SYM_CLASS_EXTERNAL | pe::IMAGE_SYM_CLASS_WEAK_EXTERNAL => true,
_ => false,
}
}
#[inline]
fn is_local(&self) -> bool {
!self.is_global()
}
fn flags(&self) -> SymbolFlags<SectionIndex, SymbolIndex> {
if self.symbol.has_aux_section() {
if let Ok(aux) = self.file.symbols.aux_section(self.index.0) {
let number = if Coff::is_type_bigobj() {
u32::from(aux.number.get(LE)) | (u32::from(aux.high_number.get(LE)) << 16)
} else {
u32::from(aux.number.get(LE))
};
return SymbolFlags::CoffSection {
selection: aux.selection,
associative_section: if number == 0 {
None
} else {
Some(SectionIndex(number as usize))
},
};
}
}
SymbolFlags::None
}
}
/// A trait for generic access to [`pe::ImageSymbol`] and [`pe::ImageSymbolEx`].
#[allow(missing_docs)]
pub trait ImageSymbol: Debug + Pod {
fn raw_name(&self) -> &[u8; 8];
fn value(&self) -> u32;
fn section_number(&self) -> i32;
fn typ(&self) -> u16;
fn storage_class(&self) -> u8;
fn number_of_aux_symbols(&self) -> u8;
/// Parse a COFF symbol name.
///
/// `strings` must be the string table used for symbol names.
fn name<'data, R: ReadRef<'data>>(
&'data self,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
let name = self.raw_name();
if name[0] == 0 {
// If the name starts with 0 then the last 4 bytes are a string table offset.
let offset = u32::from_le_bytes(name[4..8].try_into().unwrap());
strings
.get(offset)
.read_error("Invalid COFF symbol name offset")
} else {
// The name is inline and padded with nulls.
Ok(match memchr::memchr(b'\0', name) {
Some(end) => &name[..end],
None => &name[..],
})
}
}
/// Return the symbol address.
///
/// This takes into account the image base and the section address.
fn address(&self, image_base: u64, sections: &SectionTable<'_>) -> Result<u64> {
let section_number = self.section_number() as usize;
let section = sections.section(section_number)?;
let virtual_address = u64::from(section.virtual_address.get(LE));
let value = u64::from(self.value());
Ok(image_base + virtual_address + value)
}
/// Return true if the symbol is a definition of a function or data object.
fn is_definition(&self) -> bool {
if self.section_number() <= 0 {
return false;
}
match self.storage_class() {
pe::IMAGE_SYM_CLASS_STATIC => !self.has_aux_section(),
pe::IMAGE_SYM_CLASS_EXTERNAL | pe::IMAGE_SYM_CLASS_WEAK_EXTERNAL => true,
_ => false,
}
}
/// Return true if the symbol has an auxiliary file name.
fn has_aux_file_name(&self) -> bool {
self.number_of_aux_symbols() > 0 && self.storage_class() == pe::IMAGE_SYM_CLASS_FILE
}
/// Return true if the symbol has an auxiliary function symbol.
fn has_aux_function(&self) -> bool {
self.number_of_aux_symbols() > 0 && self.derived_type() == pe::IMAGE_SYM_DTYPE_FUNCTION
}
/// Return true if the symbol has an auxiliary section symbol.
fn has_aux_section(&self) -> bool {
self.number_of_aux_symbols() > 0
&& self.storage_class() == pe::IMAGE_SYM_CLASS_STATIC
&& self.typ() == 0
}
fn base_type(&self) -> u16 {
self.typ() & pe::N_BTMASK
}
fn derived_type(&self) -> u16 {
(self.typ() & pe::N_TMASK) >> pe::N_BTSHFT
}
}
impl ImageSymbol for pe::ImageSymbol {
fn raw_name(&self) -> &[u8; 8] {
&self.name
}
fn value(&self) -> u32 {
self.value.get(LE)
}
fn section_number(&self) -> i32 {
let section_number = self.section_number.get(LE);
if section_number >= pe::IMAGE_SYM_SECTION_MAX {
(section_number as i16) as i32
} else {
section_number as i32
}
}
fn typ(&self) -> u16 {
self.typ.get(LE)
}
fn storage_class(&self) -> u8 {
self.storage_class
}
fn number_of_aux_symbols(&self) -> u8 {
self.number_of_aux_symbols
}
}
impl ImageSymbol for pe::ImageSymbolEx {
fn raw_name(&self) -> &[u8; 8] {
&self.name
}
fn value(&self) -> u32 {
self.value.get(LE)
}
fn section_number(&self) -> i32 {
self.section_number.get(LE)
}
fn typ(&self) -> u16 {
self.typ.get(LE)
}
fn storage_class(&self) -> u8 {
self.storage_class
}
fn number_of_aux_symbols(&self) -> u8 {
self.number_of_aux_symbols
}
}

307
vendor/object/src/read/elf/attributes.rs vendored Normal file
View File

@ -0,0 +1,307 @@
use core::convert::TryInto;
use crate::elf;
use crate::endian;
use crate::read::{Bytes, Error, ReadError, Result};
use super::FileHeader;
/// An ELF attributes section.
///
/// This may be a GNU attributes section, or an architecture specific attributes section.
///
/// An attributes section contains a series of [`AttributesSubsection`].
///
/// Returned by [`SectionHeader::attributes`](super::SectionHeader::attributes)
/// and [`SectionHeader::gnu_attributes`](super::SectionHeader::gnu_attributes).
#[derive(Debug, Clone)]
pub struct AttributesSection<'data, Elf: FileHeader> {
endian: Elf::Endian,
version: u8,
data: Bytes<'data>,
}
impl<'data, Elf: FileHeader> AttributesSection<'data, Elf> {
/// Parse an ELF attributes section given the section data.
pub fn new(endian: Elf::Endian, data: &'data [u8]) -> Result<Self> {
let mut data = Bytes(data);
// Skip the version field that is one byte long.
let version = *data
.read::<u8>()
.read_error("Invalid ELF attributes section offset or size")?;
Ok(AttributesSection {
endian,
version,
data,
})
}
/// Return the version of the attributes section.
pub fn version(&self) -> u8 {
self.version
}
/// Return an iterator over the subsections.
pub fn subsections(&self) -> Result<AttributesSubsectionIterator<'data, Elf>> {
// There is currently only one format version.
if self.version != b'A' {
return Err(Error("Unsupported ELF attributes section version"));
}
Ok(AttributesSubsectionIterator {
endian: self.endian,
data: self.data,
})
}
}
/// An iterator for the subsections in an [`AttributesSection`].
#[derive(Debug, Clone)]
pub struct AttributesSubsectionIterator<'data, Elf: FileHeader> {
endian: Elf::Endian,
data: Bytes<'data>,
}
impl<'data, Elf: FileHeader> AttributesSubsectionIterator<'data, Elf> {
/// Return the next subsection.
pub fn next(&mut self) -> Result<Option<AttributesSubsection<'data, Elf>>> {
if self.data.is_empty() {
return Ok(None);
}
let result = self.parse();
if result.is_err() {
self.data = Bytes(&[]);
}
result
}
fn parse(&mut self) -> Result<Option<AttributesSubsection<'data, Elf>>> {
// First read the subsection length.
let mut data = self.data;
let length = data
.read::<endian::U32Bytes<Elf::Endian>>()
.read_error("ELF attributes section is too short")?
.get(self.endian);
// Now read the entire subsection, updating self.data.
let mut data = self
.data
.read_bytes(length as usize)
.read_error("Invalid ELF attributes subsection length")?;
// Skip the subsection length field.
data.skip(4)
.read_error("Invalid ELF attributes subsection length")?;
let vendor = data
.read_string()
.read_error("Invalid ELF attributes vendor")?;
Ok(Some(AttributesSubsection {
endian: self.endian,
length,
vendor,
data,
}))
}
}
/// A subsection in an [`AttributesSection`].
///
/// A subsection is identified by a vendor name. It contains a series of
/// [`AttributesSubsubsection`].
#[derive(Debug, Clone)]
pub struct AttributesSubsection<'data, Elf: FileHeader> {
endian: Elf::Endian,
length: u32,
vendor: &'data [u8],
data: Bytes<'data>,
}
impl<'data, Elf: FileHeader> AttributesSubsection<'data, Elf> {
/// Return the length of the attributes subsection.
pub fn length(&self) -> u32 {
self.length
}
/// Return the vendor name of the attributes subsection.
pub fn vendor(&self) -> &'data [u8] {
self.vendor
}
/// Return an iterator over the sub-subsections.
pub fn subsubsections(&self) -> AttributesSubsubsectionIterator<'data, Elf> {
AttributesSubsubsectionIterator {
endian: self.endian,
data: self.data,
}
}
}
/// An iterator for the sub-subsections in an [`AttributesSubsection`].
#[derive(Debug, Clone)]
pub struct AttributesSubsubsectionIterator<'data, Elf: FileHeader> {
endian: Elf::Endian,
data: Bytes<'data>,
}
impl<'data, Elf: FileHeader> AttributesSubsubsectionIterator<'data, Elf> {
/// Return the next sub-subsection.
pub fn next(&mut self) -> Result<Option<AttributesSubsubsection<'data>>> {
if self.data.is_empty() {
return Ok(None);
}
let result = self.parse();
if result.is_err() {
self.data = Bytes(&[]);
}
result
}
fn parse(&mut self) -> Result<Option<AttributesSubsubsection<'data>>> {
// The format of a sub-section looks like this:
//
// <file-tag> <size> <attribute>*
// | <section-tag> <size> <section-number>* 0 <attribute>*
// | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
let mut data = self.data;
let tag = *data
.read::<u8>()
.read_error("ELF attributes subsection is too short")?;
let length = data
.read::<endian::U32Bytes<Elf::Endian>>()
.read_error("ELF attributes subsection is too short")?
.get(self.endian);
// Now read the entire sub-subsection, updating self.data.
let mut data = self
.data
.read_bytes(length as usize)
.read_error("Invalid ELF attributes sub-subsection length")?;
// Skip the tag and sub-subsection size field.
data.skip(1 + 4)
.read_error("Invalid ELF attributes sub-subsection length")?;
let indices = if tag == elf::Tag_Section || tag == elf::Tag_Symbol {
data.read_string()
.map(Bytes)
.read_error("Missing ELF attributes sub-subsection indices")?
} else if tag == elf::Tag_File {
Bytes(&[])
} else {
return Err(Error("Unimplemented ELF attributes sub-subsection tag"));
};
Ok(Some(AttributesSubsubsection {
tag,
length,
indices,
data,
}))
}
}
/// A sub-subsection in an [`AttributesSubsection`].
///
/// A sub-subsection is identified by a tag. It contains an optional series of indices,
/// followed by a series of attributes.
#[derive(Debug, Clone)]
pub struct AttributesSubsubsection<'data> {
tag: u8,
length: u32,
indices: Bytes<'data>,
data: Bytes<'data>,
}
impl<'data> AttributesSubsubsection<'data> {
/// Return the tag of the attributes sub-subsection.
pub fn tag(&self) -> u8 {
self.tag
}
/// Return the length of the attributes sub-subsection.
pub fn length(&self) -> u32 {
self.length
}
/// Return the data containing the indices.
pub fn indices_data(&self) -> &'data [u8] {
self.indices.0
}
/// Return the indices.
///
/// This will be section indices if the tag is `Tag_Section`,
/// or symbol indices if the tag is `Tag_Symbol`,
/// and otherwise it will be empty.
pub fn indices(&self) -> AttributeIndexIterator<'data> {
AttributeIndexIterator { data: self.indices }
}
/// Return the data containing the attributes.
pub fn attributes_data(&self) -> &'data [u8] {
self.data.0
}
/// Return a parser for the data containing the attributes.
pub fn attributes(&self) -> AttributeReader<'data> {
AttributeReader { data: self.data }
}
}
/// An iterator over the indices in an [`AttributesSubsubsection`].
#[derive(Debug, Clone)]
pub struct AttributeIndexIterator<'data> {
data: Bytes<'data>,
}
impl<'data> AttributeIndexIterator<'data> {
/// Parse the next index.
pub fn next(&mut self) -> Result<Option<u32>> {
if self.data.is_empty() {
return Ok(None);
}
let err = "Invalid ELF attribute index";
self.data
.read_uleb128()
.read_error(err)?
.try_into()
.map_err(|_| ())
.read_error(err)
.map(Some)
}
}
/// A parser for the attributes in an [`AttributesSubsubsection`].
///
/// The parser relies on the caller to know the format of the data for each attribute tag.
#[derive(Debug, Clone)]
pub struct AttributeReader<'data> {
data: Bytes<'data>,
}
impl<'data> AttributeReader<'data> {
/// Parse a tag.
pub fn read_tag(&mut self) -> Result<Option<u64>> {
if self.data.is_empty() {
return Ok(None);
}
let err = "Invalid ELF attribute tag";
self.data.read_uleb128().read_error(err).map(Some)
}
/// Parse an integer value.
pub fn read_integer(&mut self) -> Result<u64> {
let err = "Invalid ELF attribute integer value";
self.data.read_uleb128().read_error(err)
}
/// Parse a string value.
pub fn read_string(&mut self) -> Result<&'data [u8]> {
let err = "Invalid ELF attribute string value";
self.data.read_string().read_error(err)
}
}

162
vendor/object/src/read/elf/comdat.rs vendored Normal file
View File

@ -0,0 +1,162 @@
use core::fmt::Debug;
use core::{iter, slice, str};
use crate::elf;
use crate::endian::{Endianness, U32Bytes};
use crate::read::{self, ComdatKind, ObjectComdat, ReadError, ReadRef, SectionIndex, SymbolIndex};
use super::{ElfFile, FileHeader, SectionHeader, Sym};
/// An iterator for the COMDAT section groups in an [`ElfFile32`](super::ElfFile32).
pub type ElfComdatIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfComdatIterator<'data, 'file, elf::FileHeader32<Endian>, R>;
/// An iterator for the COMDAT section groups in an [`ElfFile64`](super::ElfFile64).
pub type ElfComdatIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfComdatIterator<'data, 'file, elf::FileHeader64<Endian>, R>;
/// An iterator for the COMDAT section groups in an [`ElfFile`].
#[derive(Debug)]
pub struct ElfComdatIterator<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file ElfFile<'data, Elf, R>,
pub(super) iter: iter::Enumerate<slice::Iter<'data, Elf::SectionHeader>>,
}
impl<'data, 'file, Elf, R> Iterator for ElfComdatIterator<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
type Item = ElfComdat<'data, 'file, Elf, R>;
fn next(&mut self) -> Option<Self::Item> {
for (_index, section) in self.iter.by_ref() {
if let Some(comdat) = ElfComdat::parse(self.file, section) {
return Some(comdat);
}
}
None
}
}
/// A COMDAT section group in an [`ElfFile32`](super::ElfFile32).
pub type ElfComdat32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfComdat<'data, 'file, elf::FileHeader32<Endian>, R>;
/// A COMDAT section group in an [`ElfFile64`](super::ElfFile64).
pub type ElfComdat64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfComdat<'data, 'file, elf::FileHeader64<Endian>, R>;
/// A COMDAT section group in an [`ElfFile`].
///
/// Most functionality is provided by the [`ObjectComdat`] trait implementation.
#[derive(Debug)]
pub struct ElfComdat<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
file: &'file ElfFile<'data, Elf, R>,
section: &'data Elf::SectionHeader,
sections: &'data [U32Bytes<Elf::Endian>],
}
impl<'data, 'file, Elf, R> ElfComdat<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
fn parse(
file: &'file ElfFile<'data, Elf, R>,
section: &'data Elf::SectionHeader,
) -> Option<ElfComdat<'data, 'file, Elf, R>> {
let (flag, sections) = section.group(file.endian, file.data).ok()??;
if flag != elf::GRP_COMDAT {
return None;
}
Some(ElfComdat {
file,
section,
sections,
})
}
}
impl<'data, 'file, Elf, R> read::private::Sealed for ElfComdat<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Elf, R> ObjectComdat<'data> for ElfComdat<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
type SectionIterator = ElfComdatSectionIterator<'data, 'file, Elf, R>;
#[inline]
fn kind(&self) -> ComdatKind {
ComdatKind::Any
}
#[inline]
fn symbol(&self) -> SymbolIndex {
SymbolIndex(self.section.sh_info(self.file.endian) as usize)
}
fn name_bytes(&self) -> read::Result<&[u8]> {
// FIXME: check sh_link
let index = self.section.sh_info(self.file.endian) as usize;
let symbol = self.file.symbols.symbol(index)?;
symbol.name(self.file.endian, self.file.symbols.strings())
}
fn name(&self) -> read::Result<&str> {
let name = self.name_bytes()?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 ELF COMDAT name")
}
fn sections(&self) -> Self::SectionIterator {
ElfComdatSectionIterator {
file: self.file,
sections: self.sections.iter(),
}
}
}
/// An iterator for the sections in a COMDAT section group in an [`ElfFile32`](super::ElfFile32).
pub type ElfComdatSectionIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfComdatSectionIterator<'data, 'file, elf::FileHeader32<Endian>, R>;
/// An iterator for the sections in a COMDAT section group in an [`ElfFile64`](super::ElfFile64).
pub type ElfComdatSectionIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfComdatSectionIterator<'data, 'file, elf::FileHeader64<Endian>, R>;
/// An iterator for the sections in a COMDAT section group in an [`ElfFile`].
#[derive(Debug)]
pub struct ElfComdatSectionIterator<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
file: &'file ElfFile<'data, Elf, R>,
sections: slice::Iter<'data, U32Bytes<Elf::Endian>>,
}
impl<'data, 'file, Elf, R> Iterator for ElfComdatSectionIterator<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
type Item = SectionIndex;
fn next(&mut self) -> Option<Self::Item> {
let index = self.sections.next()?;
Some(SectionIndex(index.get(self.file.endian) as usize))
}
}

View File

@ -0,0 +1,56 @@
use core::fmt::Debug;
use crate::elf;
use crate::endian;
use crate::pod::Pod;
/// A trait for generic access to [`elf::CompressionHeader32`] and [`elf::CompressionHeader64`].
#[allow(missing_docs)]
pub trait CompressionHeader: Debug + Pod {
type Word: Into<u64>;
type Endian: endian::Endian;
fn ch_type(&self, endian: Self::Endian) -> u32;
fn ch_size(&self, endian: Self::Endian) -> Self::Word;
fn ch_addralign(&self, endian: Self::Endian) -> Self::Word;
}
impl<Endian: endian::Endian> CompressionHeader for elf::CompressionHeader32<Endian> {
type Word = u32;
type Endian = Endian;
#[inline]
fn ch_type(&self, endian: Self::Endian) -> u32 {
self.ch_type.get(endian)
}
#[inline]
fn ch_size(&self, endian: Self::Endian) -> Self::Word {
self.ch_size.get(endian)
}
#[inline]
fn ch_addralign(&self, endian: Self::Endian) -> Self::Word {
self.ch_addralign.get(endian)
}
}
impl<Endian: endian::Endian> CompressionHeader for elf::CompressionHeader64<Endian> {
type Word = u64;
type Endian = Endian;
#[inline]
fn ch_type(&self, endian: Self::Endian) -> u32 {
self.ch_type.get(endian)
}
#[inline]
fn ch_size(&self, endian: Self::Endian) -> Self::Word {
self.ch_size.get(endian)
}
#[inline]
fn ch_addralign(&self, endian: Self::Endian) -> Self::Word {
self.ch_addralign.get(endian)
}
}

117
vendor/object/src/read/elf/dynamic.rs vendored Normal file
View File

@ -0,0 +1,117 @@
use core::convert::TryInto;
use core::fmt::Debug;
use crate::elf;
use crate::endian;
use crate::pod::Pod;
use crate::read::{ReadError, Result, StringTable};
/// A trait for generic access to [`elf::Dyn32`] and [`elf::Dyn64`].
#[allow(missing_docs)]
pub trait Dyn: Debug + Pod {
type Word: Into<u64>;
type Endian: endian::Endian;
fn d_tag(&self, endian: Self::Endian) -> Self::Word;
fn d_val(&self, endian: Self::Endian) -> Self::Word;
/// Try to convert the tag to a `u32`.
fn tag32(&self, endian: Self::Endian) -> Option<u32> {
self.d_tag(endian).into().try_into().ok()
}
/// Try to convert the value to a `u32`.
fn val32(&self, endian: Self::Endian) -> Option<u32> {
self.d_val(endian).into().try_into().ok()
}
/// Return true if the value is an offset in the dynamic string table.
fn is_string(&self, endian: Self::Endian) -> bool {
if let Some(tag) = self.tag32(endian) {
match tag {
elf::DT_NEEDED
| elf::DT_SONAME
| elf::DT_RPATH
| elf::DT_RUNPATH
| elf::DT_AUXILIARY
| elf::DT_FILTER => true,
_ => false,
}
} else {
false
}
}
/// Use the value to get a string in a string table.
///
/// Does not check for an appropriate tag.
fn string<'data>(
&self,
endian: Self::Endian,
strings: StringTable<'data>,
) -> Result<&'data [u8]> {
self.val32(endian)
.and_then(|val| strings.get(val).ok())
.read_error("Invalid ELF dyn string")
}
/// Return true if the value is an address.
fn is_address(&self, endian: Self::Endian) -> bool {
if let Some(tag) = self.tag32(endian) {
match tag {
elf::DT_PLTGOT
| elf::DT_HASH
| elf::DT_STRTAB
| elf::DT_SYMTAB
| elf::DT_RELA
| elf::DT_INIT
| elf::DT_FINI
| elf::DT_SYMBOLIC
| elf::DT_REL
| elf::DT_DEBUG
| elf::DT_JMPREL
| elf::DT_FINI_ARRAY
| elf::DT_INIT_ARRAY
| elf::DT_PREINIT_ARRAY
| elf::DT_SYMTAB_SHNDX
| elf::DT_VERDEF
| elf::DT_VERNEED
| elf::DT_VERSYM
| elf::DT_ADDRRNGLO..=elf::DT_ADDRRNGHI => true,
_ => false,
}
} else {
false
}
}
}
impl<Endian: endian::Endian> Dyn for elf::Dyn32<Endian> {
type Word = u32;
type Endian = Endian;
#[inline]
fn d_tag(&self, endian: Self::Endian) -> Self::Word {
self.d_tag.get(endian)
}
#[inline]
fn d_val(&self, endian: Self::Endian) -> Self::Word {
self.d_val.get(endian)
}
}
impl<Endian: endian::Endian> Dyn for elf::Dyn64<Endian> {
type Word = u64;
type Endian = Endian;
#[inline]
fn d_tag(&self, endian: Self::Endian) -> Self::Word {
self.d_tag.get(endian)
}
#[inline]
fn d_val(&self, endian: Self::Endian) -> Self::Word {
self.d_val.get(endian)
}
}

916
vendor/object/src/read/elf/file.rs vendored Normal file
View File

@ -0,0 +1,916 @@
use alloc::vec::Vec;
use core::convert::TryInto;
use core::fmt::Debug;
use core::mem;
use crate::read::{
self, util, Architecture, ByteString, Bytes, Error, Export, FileFlags, Import, Object,
ObjectKind, ReadError, ReadRef, SectionIndex, StringTable, SymbolIndex,
};
use crate::{elf, endian, Endian, Endianness, Pod, U32};
use super::{
CompressionHeader, Dyn, ElfComdat, ElfComdatIterator, ElfDynamicRelocationIterator, ElfSection,
ElfSectionIterator, ElfSegment, ElfSegmentIterator, ElfSymbol, ElfSymbolIterator,
ElfSymbolTable, NoteHeader, ProgramHeader, Rel, Rela, RelocationSections, SectionHeader,
SectionTable, Sym, SymbolTable,
};
/// A 32-bit ELF object file.
///
/// This is a file that starts with [`elf::FileHeader32`], and corresponds
/// to [`crate::FileKind::Elf32`].
pub type ElfFile32<'data, Endian = Endianness, R = &'data [u8]> =
ElfFile<'data, elf::FileHeader32<Endian>, R>;
/// A 64-bit ELF object file.
///
/// This is a file that starts with [`elf::FileHeader64`], and corresponds
/// to [`crate::FileKind::Elf64`].
pub type ElfFile64<'data, Endian = Endianness, R = &'data [u8]> =
ElfFile<'data, elf::FileHeader64<Endian>, R>;
/// A partially parsed ELF file.
///
/// Most functionality is provided by the [`Object`] trait implementation.
#[derive(Debug)]
pub struct ElfFile<'data, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
pub(super) endian: Elf::Endian,
pub(super) data: R,
pub(super) header: &'data Elf,
pub(super) segments: &'data [Elf::ProgramHeader],
pub(super) sections: SectionTable<'data, Elf, R>,
pub(super) relocations: RelocationSections,
pub(super) symbols: SymbolTable<'data, Elf, R>,
pub(super) dynamic_symbols: SymbolTable<'data, Elf, R>,
}
impl<'data, Elf, R> ElfFile<'data, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
/// Parse the raw ELF file data.
pub fn parse(data: R) -> read::Result<Self> {
let header = Elf::parse(data)?;
let endian = header.endian()?;
let segments = header.program_headers(endian, data)?;
let sections = header.sections(endian, data)?;
let symbols = sections.symbols(endian, data, elf::SHT_SYMTAB)?;
// TODO: get dynamic symbols from DT_SYMTAB if there are no sections
let dynamic_symbols = sections.symbols(endian, data, elf::SHT_DYNSYM)?;
// The API we provide requires a mapping from section to relocations, so build it now.
let relocations = sections.relocation_sections(endian, symbols.section())?;
Ok(ElfFile {
endian,
data,
header,
segments,
sections,
relocations,
symbols,
dynamic_symbols,
})
}
/// Returns the endianness.
pub fn endian(&self) -> Elf::Endian {
self.endian
}
/// Returns the raw data.
pub fn data(&self) -> R {
self.data
}
/// Returns the raw ELF file header.
pub fn raw_header(&self) -> &'data Elf {
self.header
}
/// Returns the raw ELF segments.
pub fn raw_segments(&self) -> &'data [Elf::ProgramHeader] {
self.segments
}
fn raw_section_by_name<'file>(
&'file self,
section_name: &[u8],
) -> Option<ElfSection<'data, 'file, Elf, R>> {
self.sections
.section_by_name(self.endian, section_name)
.map(|(index, section)| ElfSection {
file: self,
index: SectionIndex(index),
section,
})
}
#[cfg(feature = "compression")]
fn zdebug_section_by_name<'file>(
&'file self,
section_name: &[u8],
) -> Option<ElfSection<'data, 'file, Elf, R>> {
if !section_name.starts_with(b".debug_") {
return None;
}
let mut name = Vec::with_capacity(section_name.len() + 1);
name.extend_from_slice(b".zdebug_");
name.extend_from_slice(&section_name[7..]);
self.raw_section_by_name(&name)
}
#[cfg(not(feature = "compression"))]
fn zdebug_section_by_name<'file>(
&'file self,
_section_name: &[u8],
) -> Option<ElfSection<'data, 'file, Elf, R>> {
None
}
}
impl<'data, Elf, R> read::private::Sealed for ElfFile<'data, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Elf, R> Object<'data, 'file> for ElfFile<'data, Elf, R>
where
'data: 'file,
Elf: FileHeader,
R: 'file + ReadRef<'data>,
{
type Segment = ElfSegment<'data, 'file, Elf, R>;
type SegmentIterator = ElfSegmentIterator<'data, 'file, Elf, R>;
type Section = ElfSection<'data, 'file, Elf, R>;
type SectionIterator = ElfSectionIterator<'data, 'file, Elf, R>;
type Comdat = ElfComdat<'data, 'file, Elf, R>;
type ComdatIterator = ElfComdatIterator<'data, 'file, Elf, R>;
type Symbol = ElfSymbol<'data, 'file, Elf, R>;
type SymbolIterator = ElfSymbolIterator<'data, 'file, Elf, R>;
type SymbolTable = ElfSymbolTable<'data, 'file, Elf, R>;
type DynamicRelocationIterator = ElfDynamicRelocationIterator<'data, 'file, Elf, R>;
fn architecture(&self) -> Architecture {
match (
self.header.e_machine(self.endian),
self.header.is_class_64(),
) {
(elf::EM_AARCH64, true) => Architecture::Aarch64,
(elf::EM_AARCH64, false) => Architecture::Aarch64_Ilp32,
(elf::EM_ARM, _) => Architecture::Arm,
(elf::EM_AVR, _) => Architecture::Avr,
(elf::EM_BPF, _) => Architecture::Bpf,
(elf::EM_CSKY, _) => Architecture::Csky,
(elf::EM_386, _) => Architecture::I386,
(elf::EM_X86_64, false) => Architecture::X86_64_X32,
(elf::EM_X86_64, true) => Architecture::X86_64,
(elf::EM_HEXAGON, _) => Architecture::Hexagon,
(elf::EM_LOONGARCH, true) => Architecture::LoongArch64,
(elf::EM_MIPS, false) => Architecture::Mips,
(elf::EM_MIPS, true) => Architecture::Mips64,
(elf::EM_MSP430, _) => Architecture::Msp430,
(elf::EM_PPC, _) => Architecture::PowerPc,
(elf::EM_PPC64, _) => Architecture::PowerPc64,
(elf::EM_RISCV, false) => Architecture::Riscv32,
(elf::EM_RISCV, true) => Architecture::Riscv64,
// This is either s390 or s390x, depending on the ELF class.
// We only support the 64-bit variant s390x here.
(elf::EM_S390, true) => Architecture::S390x,
(elf::EM_SBF, _) => Architecture::Sbf,
(elf::EM_SHARC, false) => Architecture::Sharc,
(elf::EM_SPARCV9, true) => Architecture::Sparc64,
(elf::EM_XTENSA, false) => Architecture::Xtensa,
_ => Architecture::Unknown,
}
}
#[inline]
fn is_little_endian(&self) -> bool {
self.header.is_little_endian()
}
#[inline]
fn is_64(&self) -> bool {
self.header.is_class_64()
}
fn kind(&self) -> ObjectKind {
match self.header.e_type(self.endian) {
elf::ET_REL => ObjectKind::Relocatable,
elf::ET_EXEC => ObjectKind::Executable,
// TODO: check for `DF_1_PIE`?
elf::ET_DYN => ObjectKind::Dynamic,
elf::ET_CORE => ObjectKind::Core,
_ => ObjectKind::Unknown,
}
}
fn segments(&'file self) -> ElfSegmentIterator<'data, 'file, Elf, R> {
ElfSegmentIterator {
file: self,
iter: self.segments.iter(),
}
}
fn section_by_name_bytes(
&'file self,
section_name: &[u8],
) -> Option<ElfSection<'data, 'file, Elf, R>> {
self.raw_section_by_name(section_name)
.or_else(|| self.zdebug_section_by_name(section_name))
}
fn section_by_index(
&'file self,
index: SectionIndex,
) -> read::Result<ElfSection<'data, 'file, Elf, R>> {
let section = self.sections.section(index)?;
Ok(ElfSection {
file: self,
index,
section,
})
}
fn sections(&'file self) -> ElfSectionIterator<'data, 'file, Elf, R> {
ElfSectionIterator {
file: self,
iter: self.sections.iter().enumerate(),
}
}
fn comdats(&'file self) -> ElfComdatIterator<'data, 'file, Elf, R> {
ElfComdatIterator {
file: self,
iter: self.sections.iter().enumerate(),
}
}
fn symbol_by_index(
&'file self,
index: SymbolIndex,
) -> read::Result<ElfSymbol<'data, 'file, Elf, R>> {
let symbol = self.symbols.symbol(index.0)?;
Ok(ElfSymbol {
endian: self.endian,
symbols: &self.symbols,
index,
symbol,
})
}
fn symbols(&'file self) -> ElfSymbolIterator<'data, 'file, Elf, R> {
ElfSymbolIterator {
endian: self.endian,
symbols: &self.symbols,
index: 0,
}
}
fn symbol_table(&'file self) -> Option<ElfSymbolTable<'data, 'file, Elf, R>> {
if self.symbols.is_empty() {
return None;
}
Some(ElfSymbolTable {
endian: self.endian,
symbols: &self.symbols,
})
}
fn dynamic_symbols(&'file self) -> ElfSymbolIterator<'data, 'file, Elf, R> {
ElfSymbolIterator {
endian: self.endian,
symbols: &self.dynamic_symbols,
index: 0,
}
}
fn dynamic_symbol_table(&'file self) -> Option<ElfSymbolTable<'data, 'file, Elf, R>> {
if self.dynamic_symbols.is_empty() {
return None;
}
Some(ElfSymbolTable {
endian: self.endian,
symbols: &self.dynamic_symbols,
})
}
fn dynamic_relocations(
&'file self,
) -> Option<ElfDynamicRelocationIterator<'data, 'file, Elf, R>> {
Some(ElfDynamicRelocationIterator {
section_index: SectionIndex(1),
file: self,
relocations: None,
})
}
fn imports(&self) -> read::Result<Vec<Import<'data>>> {
let mut imports = Vec::new();
for symbol in self.dynamic_symbols.iter() {
if symbol.is_undefined(self.endian) {
let name = symbol.name(self.endian, self.dynamic_symbols.strings())?;
if !name.is_empty() {
// TODO: use symbol versioning to determine library
imports.push(Import {
name: ByteString(name),
library: ByteString(&[]),
});
}
}
}
Ok(imports)
}
fn exports(&self) -> read::Result<Vec<Export<'data>>> {
let mut exports = Vec::new();
for symbol in self.dynamic_symbols.iter() {
if symbol.is_definition(self.endian) {
let name = symbol.name(self.endian, self.dynamic_symbols.strings())?;
let address = symbol.st_value(self.endian).into();
exports.push(Export {
name: ByteString(name),
address,
});
}
}
Ok(exports)
}
fn has_debug_symbols(&self) -> bool {
for section in self.sections.iter() {
if let Ok(name) = self.sections.section_name(self.endian, section) {
if name == b".debug_info" || name == b".zdebug_info" {
return true;
}
}
}
false
}
fn build_id(&self) -> read::Result<Option<&'data [u8]>> {
let endian = self.endian;
// Use section headers if present, otherwise use program headers.
if !self.sections.is_empty() {
for section in self.sections.iter() {
if let Some(mut notes) = section.notes(endian, self.data)? {
while let Some(note) = notes.next()? {
if note.name() == elf::ELF_NOTE_GNU
&& note.n_type(endian) == elf::NT_GNU_BUILD_ID
{
return Ok(Some(note.desc()));
}
}
}
}
} else {
for segment in self.segments {
if let Some(mut notes) = segment.notes(endian, self.data)? {
while let Some(note) = notes.next()? {
if note.name() == elf::ELF_NOTE_GNU
&& note.n_type(endian) == elf::NT_GNU_BUILD_ID
{
return Ok(Some(note.desc()));
}
}
}
}
}
Ok(None)
}
fn gnu_debuglink(&self) -> read::Result<Option<(&'data [u8], u32)>> {
let section = match self.raw_section_by_name(b".gnu_debuglink") {
Some(section) => section,
None => return Ok(None),
};
let data = section
.section
.data(self.endian, self.data)
.read_error("Invalid ELF .gnu_debuglink section offset or size")
.map(Bytes)?;
let filename = data
.read_string_at(0)
.read_error("Missing ELF .gnu_debuglink filename")?;
let crc_offset = util::align(filename.len() + 1, 4);
let crc = data
.read_at::<U32<_>>(crc_offset)
.read_error("Missing ELF .gnu_debuglink crc")?
.get(self.endian);
Ok(Some((filename, crc)))
}
fn gnu_debugaltlink(&self) -> read::Result<Option<(&'data [u8], &'data [u8])>> {
let section = match self.raw_section_by_name(b".gnu_debugaltlink") {
Some(section) => section,
None => return Ok(None),
};
let mut data = section
.section
.data(self.endian, self.data)
.read_error("Invalid ELF .gnu_debugaltlink section offset or size")
.map(Bytes)?;
let filename = data
.read_string()
.read_error("Missing ELF .gnu_debugaltlink filename")?;
let build_id = data.0;
Ok(Some((filename, build_id)))
}
fn relative_address_base(&self) -> u64 {
0
}
fn entry(&self) -> u64 {
self.header.e_entry(self.endian).into()
}
fn flags(&self) -> FileFlags {
FileFlags::Elf {
os_abi: self.header.e_ident().os_abi,
abi_version: self.header.e_ident().abi_version,
e_flags: self.header.e_flags(self.endian),
}
}
}
/// A trait for generic access to [`elf::FileHeader32`] and [`elf::FileHeader64`].
#[allow(missing_docs)]
pub trait FileHeader: Debug + Pod {
// Ideally this would be a `u64: From<Word>`, but can't express that.
type Word: Into<u64>;
type Sword: Into<i64>;
type Endian: endian::Endian;
type ProgramHeader: ProgramHeader<Elf = Self, Endian = Self::Endian, Word = Self::Word>;
type SectionHeader: SectionHeader<Elf = Self, Endian = Self::Endian, Word = Self::Word>;
type CompressionHeader: CompressionHeader<Endian = Self::Endian, Word = Self::Word>;
type NoteHeader: NoteHeader<Endian = Self::Endian>;
type Dyn: Dyn<Endian = Self::Endian, Word = Self::Word>;
type Sym: Sym<Endian = Self::Endian, Word = Self::Word>;
type Rel: Rel<Endian = Self::Endian, Word = Self::Word>;
type Rela: Rela<Endian = Self::Endian, Word = Self::Word> + From<Self::Rel>;
/// Return true if this type is a 64-bit header.
///
/// This is a property of the type, not a value in the header data.
fn is_type_64(&self) -> bool;
/// Return true if this type is a 64-bit header.
///
/// This is a property of the type, not a value in the header data.
///
/// This is the same as [`Self::is_type_64`], but is non-dispatchable.
fn is_type_64_sized() -> bool
where
Self: Sized;
fn e_ident(&self) -> &elf::Ident;
fn e_type(&self, endian: Self::Endian) -> u16;
fn e_machine(&self, endian: Self::Endian) -> u16;
fn e_version(&self, endian: Self::Endian) -> u32;
fn e_entry(&self, endian: Self::Endian) -> Self::Word;
fn e_phoff(&self, endian: Self::Endian) -> Self::Word;
fn e_shoff(&self, endian: Self::Endian) -> Self::Word;
fn e_flags(&self, endian: Self::Endian) -> u32;
fn e_ehsize(&self, endian: Self::Endian) -> u16;
fn e_phentsize(&self, endian: Self::Endian) -> u16;
fn e_phnum(&self, endian: Self::Endian) -> u16;
fn e_shentsize(&self, endian: Self::Endian) -> u16;
fn e_shnum(&self, endian: Self::Endian) -> u16;
fn e_shstrndx(&self, endian: Self::Endian) -> u16;
// Provided methods.
/// Read the file header.
///
/// Also checks that the ident field in the file header is a supported format.
fn parse<'data, R: ReadRef<'data>>(data: R) -> read::Result<&'data Self> {
let header = data
.read_at::<Self>(0)
.read_error("Invalid ELF header size or alignment")?;
if !header.is_supported() {
return Err(Error("Unsupported ELF header"));
}
// TODO: Check self.e_ehsize?
Ok(header)
}
/// Check that the ident field in the file header is a supported format.
///
/// This checks the magic number, version, class, and endianness.
fn is_supported(&self) -> bool {
let ident = self.e_ident();
// TODO: Check self.e_version too? Requires endian though.
ident.magic == elf::ELFMAG
&& (self.is_type_64() || self.is_class_32())
&& (!self.is_type_64() || self.is_class_64())
&& (self.is_little_endian() || self.is_big_endian())
&& ident.version == elf::EV_CURRENT
}
fn is_class_32(&self) -> bool {
self.e_ident().class == elf::ELFCLASS32
}
fn is_class_64(&self) -> bool {
self.e_ident().class == elf::ELFCLASS64
}
fn is_little_endian(&self) -> bool {
self.e_ident().data == elf::ELFDATA2LSB
}
fn is_big_endian(&self) -> bool {
self.e_ident().data == elf::ELFDATA2MSB
}
fn endian(&self) -> read::Result<Self::Endian> {
Self::Endian::from_big_endian(self.is_big_endian()).read_error("Unsupported ELF endian")
}
/// Return the first section header, if present.
///
/// Section 0 is a special case because getting the section headers normally
/// requires `shnum`, but `shnum` may be in the first section header.
fn section_0<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<Option<&'data Self::SectionHeader>> {
let shoff: u64 = self.e_shoff(endian).into();
if shoff == 0 {
// No section headers is ok.
return Ok(None);
}
let shentsize = usize::from(self.e_shentsize(endian));
if shentsize != mem::size_of::<Self::SectionHeader>() {
// Section header size must match.
return Err(Error("Invalid ELF section header entry size"));
}
data.read_at(shoff)
.map(Some)
.read_error("Invalid ELF section header offset or size")
}
/// Return the `e_phnum` field of the header. Handles extended values.
///
/// Returns `Err` for invalid values.
fn phnum<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<usize> {
let e_phnum = self.e_phnum(endian);
if e_phnum < elf::PN_XNUM {
Ok(e_phnum as usize)
} else if let Some(section_0) = self.section_0(endian, data)? {
Ok(section_0.sh_info(endian) as usize)
} else {
// Section 0 must exist if e_phnum overflows.
Err(Error("Missing ELF section headers for e_phnum overflow"))
}
}
/// Return the `e_shnum` field of the header. Handles extended values.
///
/// Returns `Err` for invalid values.
fn shnum<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<usize> {
let e_shnum = self.e_shnum(endian);
if e_shnum > 0 {
Ok(e_shnum as usize)
} else if let Some(section_0) = self.section_0(endian, data)? {
section_0
.sh_size(endian)
.into()
.try_into()
.ok()
.read_error("Invalid ELF extended e_shnum")
} else {
// No section headers is ok.
Ok(0)
}
}
/// Return the `e_shstrndx` field of the header. Handles extended values.
///
/// Returns `Err` for invalid values (including if the index is 0).
fn shstrndx<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<u32> {
let e_shstrndx = self.e_shstrndx(endian);
let index = if e_shstrndx != elf::SHN_XINDEX {
e_shstrndx.into()
} else if let Some(section_0) = self.section_0(endian, data)? {
section_0.sh_link(endian)
} else {
// Section 0 must exist if we're trying to read e_shstrndx.
return Err(Error("Missing ELF section headers for e_shstrndx overflow"));
};
if index == 0 {
return Err(Error("Missing ELF e_shstrndx"));
}
Ok(index)
}
/// Return the slice of program headers.
///
/// Returns `Ok(&[])` if there are no program headers.
/// Returns `Err` for invalid values.
fn program_headers<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<&'data [Self::ProgramHeader]> {
let phoff: u64 = self.e_phoff(endian).into();
if phoff == 0 {
// No program headers is ok.
return Ok(&[]);
}
let phnum = self.phnum(endian, data)?;
if phnum == 0 {
// No program headers is ok.
return Ok(&[]);
}
let phentsize = self.e_phentsize(endian) as usize;
if phentsize != mem::size_of::<Self::ProgramHeader>() {
// Program header size must match.
return Err(Error("Invalid ELF program header entry size"));
}
data.read_slice_at(phoff, phnum)
.read_error("Invalid ELF program header size or alignment")
}
/// Return the slice of section headers.
///
/// Returns `Ok(&[])` if there are no section headers.
/// Returns `Err` for invalid values.
fn section_headers<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<&'data [Self::SectionHeader]> {
let shoff: u64 = self.e_shoff(endian).into();
if shoff == 0 {
// No section headers is ok.
return Ok(&[]);
}
let shnum = self.shnum(endian, data)?;
if shnum == 0 {
// No section headers is ok.
return Ok(&[]);
}
let shentsize = usize::from(self.e_shentsize(endian));
if shentsize != mem::size_of::<Self::SectionHeader>() {
// Section header size must match.
return Err(Error("Invalid ELF section header entry size"));
}
data.read_slice_at(shoff, shnum)
.read_error("Invalid ELF section header offset/size/alignment")
}
/// Return the string table for the section headers.
fn section_strings<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
sections: &[Self::SectionHeader],
) -> read::Result<StringTable<'data, R>> {
if sections.is_empty() {
return Ok(StringTable::default());
}
let index = self.shstrndx(endian, data)? as usize;
let shstrtab = sections.get(index).read_error("Invalid ELF e_shstrndx")?;
let strings = if let Some((shstrtab_offset, shstrtab_size)) = shstrtab.file_range(endian) {
let shstrtab_end = shstrtab_offset
.checked_add(shstrtab_size)
.read_error("Invalid ELF shstrtab size")?;
StringTable::new(data, shstrtab_offset, shstrtab_end)
} else {
StringTable::default()
};
Ok(strings)
}
/// Return the section table.
fn sections<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<SectionTable<'data, Self, R>> {
let sections = self.section_headers(endian, data)?;
let strings = self.section_strings(endian, data, sections)?;
Ok(SectionTable::new(sections, strings))
}
/// Returns whether this is a mips64el elf file.
fn is_mips64el(&self, endian: Self::Endian) -> bool {
self.is_class_64() && self.is_little_endian() && self.e_machine(endian) == elf::EM_MIPS
}
}
impl<Endian: endian::Endian> FileHeader for elf::FileHeader32<Endian> {
type Word = u32;
type Sword = i32;
type Endian = Endian;
type ProgramHeader = elf::ProgramHeader32<Endian>;
type SectionHeader = elf::SectionHeader32<Endian>;
type CompressionHeader = elf::CompressionHeader32<Endian>;
type NoteHeader = elf::NoteHeader32<Endian>;
type Dyn = elf::Dyn32<Endian>;
type Sym = elf::Sym32<Endian>;
type Rel = elf::Rel32<Endian>;
type Rela = elf::Rela32<Endian>;
#[inline]
fn is_type_64(&self) -> bool {
false
}
#[inline]
fn is_type_64_sized() -> bool
where
Self: Sized,
{
false
}
#[inline]
fn e_ident(&self) -> &elf::Ident {
&self.e_ident
}
#[inline]
fn e_type(&self, endian: Self::Endian) -> u16 {
self.e_type.get(endian)
}
#[inline]
fn e_machine(&self, endian: Self::Endian) -> u16 {
self.e_machine.get(endian)
}
#[inline]
fn e_version(&self, endian: Self::Endian) -> u32 {
self.e_version.get(endian)
}
#[inline]
fn e_entry(&self, endian: Self::Endian) -> Self::Word {
self.e_entry.get(endian)
}
#[inline]
fn e_phoff(&self, endian: Self::Endian) -> Self::Word {
self.e_phoff.get(endian)
}
#[inline]
fn e_shoff(&self, endian: Self::Endian) -> Self::Word {
self.e_shoff.get(endian)
}
#[inline]
fn e_flags(&self, endian: Self::Endian) -> u32 {
self.e_flags.get(endian)
}
#[inline]
fn e_ehsize(&self, endian: Self::Endian) -> u16 {
self.e_ehsize.get(endian)
}
#[inline]
fn e_phentsize(&self, endian: Self::Endian) -> u16 {
self.e_phentsize.get(endian)
}
#[inline]
fn e_phnum(&self, endian: Self::Endian) -> u16 {
self.e_phnum.get(endian)
}
#[inline]
fn e_shentsize(&self, endian: Self::Endian) -> u16 {
self.e_shentsize.get(endian)
}
#[inline]
fn e_shnum(&self, endian: Self::Endian) -> u16 {
self.e_shnum.get(endian)
}
#[inline]
fn e_shstrndx(&self, endian: Self::Endian) -> u16 {
self.e_shstrndx.get(endian)
}
}
impl<Endian: endian::Endian> FileHeader for elf::FileHeader64<Endian> {
type Word = u64;
type Sword = i64;
type Endian = Endian;
type ProgramHeader = elf::ProgramHeader64<Endian>;
type SectionHeader = elf::SectionHeader64<Endian>;
type CompressionHeader = elf::CompressionHeader64<Endian>;
type NoteHeader = elf::NoteHeader32<Endian>;
type Dyn = elf::Dyn64<Endian>;
type Sym = elf::Sym64<Endian>;
type Rel = elf::Rel64<Endian>;
type Rela = elf::Rela64<Endian>;
#[inline]
fn is_type_64(&self) -> bool {
true
}
#[inline]
fn is_type_64_sized() -> bool
where
Self: Sized,
{
true
}
#[inline]
fn e_ident(&self) -> &elf::Ident {
&self.e_ident
}
#[inline]
fn e_type(&self, endian: Self::Endian) -> u16 {
self.e_type.get(endian)
}
#[inline]
fn e_machine(&self, endian: Self::Endian) -> u16 {
self.e_machine.get(endian)
}
#[inline]
fn e_version(&self, endian: Self::Endian) -> u32 {
self.e_version.get(endian)
}
#[inline]
fn e_entry(&self, endian: Self::Endian) -> Self::Word {
self.e_entry.get(endian)
}
#[inline]
fn e_phoff(&self, endian: Self::Endian) -> Self::Word {
self.e_phoff.get(endian)
}
#[inline]
fn e_shoff(&self, endian: Self::Endian) -> Self::Word {
self.e_shoff.get(endian)
}
#[inline]
fn e_flags(&self, endian: Self::Endian) -> u32 {
self.e_flags.get(endian)
}
#[inline]
fn e_ehsize(&self, endian: Self::Endian) -> u16 {
self.e_ehsize.get(endian)
}
#[inline]
fn e_phentsize(&self, endian: Self::Endian) -> u16 {
self.e_phentsize.get(endian)
}
#[inline]
fn e_phnum(&self, endian: Self::Endian) -> u16 {
self.e_phnum.get(endian)
}
#[inline]
fn e_shentsize(&self, endian: Self::Endian) -> u16 {
self.e_shentsize.get(endian)
}
#[inline]
fn e_shnum(&self, endian: Self::Endian) -> u16 {
self.e_shnum.get(endian)
}
#[inline]
fn e_shstrndx(&self, endian: Self::Endian) -> u16 {
self.e_shstrndx.get(endian)
}
}

224
vendor/object/src/read/elf/hash.rs vendored Normal file
View File

@ -0,0 +1,224 @@
use core::mem;
use crate::elf;
use crate::read::{ReadError, ReadRef, Result};
use crate::{U32, U64};
use super::{FileHeader, Sym, SymbolTable, Version, VersionTable};
/// A SysV symbol hash table in an ELF file.
///
/// Returned by [`SectionHeader::hash`](super::SectionHeader::hash).
#[derive(Debug)]
pub struct HashTable<'data, Elf: FileHeader> {
buckets: &'data [U32<Elf::Endian>],
chains: &'data [U32<Elf::Endian>],
}
impl<'data, Elf: FileHeader> HashTable<'data, Elf> {
/// Parse a SysV hash table.
///
/// `data` should be from an [`elf::SHT_HASH`] section, or from a
/// segment pointed to via the [`elf::DT_HASH`] entry.
///
/// The header is read at offset 0 in the given `data`.
pub fn parse(endian: Elf::Endian, data: &'data [u8]) -> Result<Self> {
let mut offset = 0;
let header = data
.read::<elf::HashHeader<Elf::Endian>>(&mut offset)
.read_error("Invalid hash header")?;
let buckets = data
.read_slice(&mut offset, header.bucket_count.get(endian) as usize)
.read_error("Invalid hash buckets")?;
let chains = data
.read_slice(&mut offset, header.chain_count.get(endian) as usize)
.read_error("Invalid hash chains")?;
Ok(HashTable { buckets, chains })
}
/// Return the symbol table length.
pub fn symbol_table_length(&self) -> u32 {
self.chains.len() as u32
}
/// Use the hash table to find the symbol table entry with the given name, hash and version.
pub fn find<R: ReadRef<'data>>(
&self,
endian: Elf::Endian,
name: &[u8],
hash: u32,
version: Option<&Version<'_>>,
symbols: &SymbolTable<'data, Elf, R>,
versions: &VersionTable<'data, Elf>,
) -> Option<(usize, &'data Elf::Sym)> {
// Get the chain start from the bucket for this hash.
let mut index = self.buckets[(hash as usize) % self.buckets.len()].get(endian) as usize;
// Avoid infinite loop.
let mut i = 0;
let strings = symbols.strings();
while index != 0 && i < self.chains.len() {
if let Ok(symbol) = symbols.symbol(index) {
if symbol.name(endian, strings) == Ok(name)
&& versions.matches(endian, index, version)
{
return Some((index, symbol));
}
}
index = self.chains.get(index)?.get(endian) as usize;
i += 1;
}
None
}
}
/// A GNU symbol hash table in an ELF file.
///
/// Returned by [`SectionHeader::gnu_hash`](super::SectionHeader::gnu_hash).
#[derive(Debug)]
pub struct GnuHashTable<'data, Elf: FileHeader> {
symbol_base: u32,
bloom_shift: u32,
bloom_filters: &'data [u8],
buckets: &'data [U32<Elf::Endian>],
values: &'data [U32<Elf::Endian>],
}
impl<'data, Elf: FileHeader> GnuHashTable<'data, Elf> {
/// Parse a GNU hash table.
///
/// `data` should be from an [`elf::SHT_GNU_HASH`] section, or from a
/// segment pointed to via the [`elf::DT_GNU_HASH`] entry.
///
/// The header is read at offset 0 in the given `data`.
///
/// The header does not contain a length field, and so all of `data`
/// will be used as the hash table values. It does not matter if this
/// is longer than needed, and this will often the case when accessing
/// the hash table via the [`elf::DT_GNU_HASH`] entry.
pub fn parse(endian: Elf::Endian, data: &'data [u8]) -> Result<Self> {
let mut offset = 0;
let header = data
.read::<elf::GnuHashHeader<Elf::Endian>>(&mut offset)
.read_error("Invalid GNU hash header")?;
let bloom_len =
u64::from(header.bloom_count.get(endian)) * mem::size_of::<Elf::Word>() as u64;
let bloom_filters = data
.read_bytes(&mut offset, bloom_len)
.read_error("Invalid GNU hash bloom filters")?;
let buckets = data
.read_slice(&mut offset, header.bucket_count.get(endian) as usize)
.read_error("Invalid GNU hash buckets")?;
let chain_count = (data.len() - offset as usize) / 4;
let values = data
.read_slice(&mut offset, chain_count)
.read_error("Invalid GNU hash values")?;
Ok(GnuHashTable {
symbol_base: header.symbol_base.get(endian),
bloom_shift: header.bloom_shift.get(endian),
bloom_filters,
buckets,
values,
})
}
/// Return the symbol table index of the first symbol in the hash table.
pub fn symbol_base(&self) -> u32 {
self.symbol_base
}
/// Determine the symbol table length by finding the last entry in the hash table.
///
/// Returns `None` if the hash table is empty or invalid.
pub fn symbol_table_length(&self, endian: Elf::Endian) -> Option<u32> {
// Ensure we find a non-empty bucket.
if self.symbol_base == 0 {
return None;
}
// Find the highest chain index in a bucket.
let mut max_symbol = 0;
for bucket in self.buckets {
let bucket = bucket.get(endian);
if max_symbol < bucket {
max_symbol = bucket;
}
}
// Find the end of the chain.
for value in self
.values
.get(max_symbol.checked_sub(self.symbol_base)? as usize..)?
{
max_symbol += 1;
if value.get(endian) & 1 != 0 {
return Some(max_symbol);
}
}
None
}
/// Use the hash table to find the symbol table entry with the given name, hash, and version.
pub fn find<R: ReadRef<'data>>(
&self,
endian: Elf::Endian,
name: &[u8],
hash: u32,
version: Option<&Version<'_>>,
symbols: &SymbolTable<'data, Elf, R>,
versions: &VersionTable<'data, Elf>,
) -> Option<(usize, &'data Elf::Sym)> {
let word_bits = mem::size_of::<Elf::Word>() as u32 * 8;
// Test against bloom filter.
let bloom_count = self.bloom_filters.len() / mem::size_of::<Elf::Word>();
let offset =
((hash / word_bits) & (bloom_count as u32 - 1)) * mem::size_of::<Elf::Word>() as u32;
let filter = if word_bits == 64 {
self.bloom_filters
.read_at::<U64<Elf::Endian>>(offset.into())
.ok()?
.get(endian)
} else {
self.bloom_filters
.read_at::<U32<Elf::Endian>>(offset.into())
.ok()?
.get(endian)
.into()
};
if filter & (1 << (hash % word_bits)) == 0 {
return None;
}
if filter & (1 << ((hash >> self.bloom_shift) % word_bits)) == 0 {
return None;
}
// Get the chain start from the bucket for this hash.
let mut index = self.buckets[(hash as usize) % self.buckets.len()].get(endian) as usize;
if index == 0 {
return None;
}
// Test symbols in the chain.
let strings = symbols.strings();
let symbols = symbols.symbols().get(index..)?;
let values = self
.values
.get(index.checked_sub(self.symbol_base as usize)?..)?;
for (symbol, value) in symbols.iter().zip(values.iter()) {
let value = value.get(endian);
if value | 1 == hash | 1 {
if symbol.name(endian, strings) == Ok(name)
&& versions.matches(endian, index, version)
{
return Some((index, symbol));
}
}
if value & 1 != 0 {
break;
}
index += 1;
}
None
}
}

78
vendor/object/src/read/elf/mod.rs vendored Normal file
View File

@ -0,0 +1,78 @@
//! Support for reading ELF files.
//!
//! Traits are used to abstract over the difference between 32-bit and 64-bit ELF.
//! The primary trait for this is [`FileHeader`].
//!
//! ## High level API
//!
//! [`ElfFile`] implements the [`Object`](crate::read::Object) trait for ELF files.
//! [`ElfFile`] is parameterised by [`FileHeader`] to allow reading both 32-bit and
//! 64-bit ELF. There are type aliases for these parameters ([`ElfFile32`] and
//! [`ElfFile64`]).
//!
//! ## Low level API
//!
//! The [`FileHeader`] trait can be directly used to parse both [`elf::FileHeader32`]
//! and [`elf::FileHeader64`].
//!
//! ### Example for low level API
//! ```no_run
//! use object::elf;
//! use object::read::elf::{FileHeader, Sym};
//! use std::error::Error;
//! use std::fs;
//!
//! /// Reads a file and displays the name of each symbol.
//! fn main() -> Result<(), Box<dyn Error>> {
//! # #[cfg(feature = "std")] {
//! let data = fs::read("path/to/binary")?;
//! let elf = elf::FileHeader64::<object::Endianness>::parse(&*data)?;
//! let endian = elf.endian()?;
//! let sections = elf.sections(endian, &*data)?;
//! let symbols = sections.symbols(endian, &*data, elf::SHT_SYMTAB)?;
//! for symbol in symbols.iter() {
//! let name = symbol.name(endian, symbols.strings())?;
//! println!("{}", String::from_utf8_lossy(name));
//! }
//! # }
//! Ok(())
//! }
//! ```
#[cfg(doc)]
use crate::elf;
mod file;
pub use file::*;
mod segment;
pub use segment::*;
mod section;
pub use section::*;
mod symbol;
pub use symbol::*;
mod relocation;
pub use relocation::*;
mod comdat;
pub use comdat::*;
mod dynamic;
pub use dynamic::*;
mod compression;
pub use compression::*;
mod note;
pub use note::*;
mod hash;
pub use hash::*;
mod version;
pub use version::*;
mod attributes;
pub use attributes::*;

271
vendor/object/src/read/elf/note.rs vendored Normal file
View File

@ -0,0 +1,271 @@
use core::fmt::Debug;
use core::mem;
use crate::elf;
use crate::endian::{self, U32};
use crate::pod::Pod;
use crate::read::util;
use crate::read::{self, Bytes, Error, ReadError};
use super::FileHeader;
/// An iterator over the notes in an ELF section or segment.
///
/// Returned [`ProgramHeader::notes`](super::ProgramHeader::notes)
/// and [`SectionHeader::notes`](super::SectionHeader::notes).
#[derive(Debug)]
pub struct NoteIterator<'data, Elf>
where
Elf: FileHeader,
{
endian: Elf::Endian,
align: usize,
data: Bytes<'data>,
}
impl<'data, Elf> NoteIterator<'data, Elf>
where
Elf: FileHeader,
{
/// An iterator over the notes in an ELF section or segment.
///
/// `align` should be from the `p_align` field of the segment,
/// or the `sh_addralign` field of the section. Supported values are
/// either 4 or 8, but values less than 4 are treated as 4.
/// This matches the behaviour of binutils.
///
/// Returns `Err` if `align` is invalid.
pub fn new(endian: Elf::Endian, align: Elf::Word, data: &'data [u8]) -> read::Result<Self> {
let align = match align.into() {
0u64..=4 => 4,
8 => 8,
_ => return Err(Error("Invalid ELF note alignment")),
};
// TODO: check data alignment?
Ok(NoteIterator {
endian,
align,
data: Bytes(data),
})
}
/// Returns the next note.
pub fn next(&mut self) -> read::Result<Option<Note<'data, Elf>>> {
let mut data = self.data;
if data.is_empty() {
return Ok(None);
}
let header = data
.read_at::<Elf::NoteHeader>(0)
.read_error("ELF note is too short")?;
// The name has no alignment requirement.
let offset = mem::size_of::<Elf::NoteHeader>();
let namesz = header.n_namesz(self.endian) as usize;
let name = data
.read_bytes_at(offset, namesz)
.read_error("Invalid ELF note namesz")?
.0;
// The descriptor must be aligned.
let offset = util::align(offset + namesz, self.align);
let descsz = header.n_descsz(self.endian) as usize;
let desc = data
.read_bytes_at(offset, descsz)
.read_error("Invalid ELF note descsz")?
.0;
// The next note (if any) must be aligned.
let offset = util::align(offset + descsz, self.align);
if data.skip(offset).is_err() {
data = Bytes(&[]);
}
self.data = data;
Ok(Some(Note { header, name, desc }))
}
}
/// A parsed [`NoteHeader`].
#[derive(Debug)]
pub struct Note<'data, Elf>
where
Elf: FileHeader,
{
header: &'data Elf::NoteHeader,
name: &'data [u8],
desc: &'data [u8],
}
impl<'data, Elf: FileHeader> Note<'data, Elf> {
/// Return the `n_type` field of the `NoteHeader`.
///
/// The meaning of this field is determined by `name`.
pub fn n_type(&self, endian: Elf::Endian) -> u32 {
self.header.n_type(endian)
}
/// Return the `n_namesz` field of the `NoteHeader`.
pub fn n_namesz(&self, endian: Elf::Endian) -> u32 {
self.header.n_namesz(endian)
}
/// Return the `n_descsz` field of the `NoteHeader`.
pub fn n_descsz(&self, endian: Elf::Endian) -> u32 {
self.header.n_descsz(endian)
}
/// Return the bytes for the name field following the `NoteHeader`.
///
/// This field is usually a string including one or more trailing null bytes
/// (but it is not required to be).
///
/// The length of this field is given by `n_namesz`.
pub fn name_bytes(&self) -> &'data [u8] {
self.name
}
/// Return the bytes for the name field following the `NoteHeader`,
/// excluding all trailing null bytes.
pub fn name(&self) -> &'data [u8] {
let mut name = self.name;
while let [rest @ .., 0] = name {
name = rest;
}
name
}
/// Return the bytes for the desc field following the `NoteHeader`.
///
/// The length of this field is given by `n_descsz`. The meaning
/// of this field is determined by `name` and `n_type`.
pub fn desc(&self) -> &'data [u8] {
self.desc
}
/// Return an iterator for properties if this note's type is [`elf::NT_GNU_PROPERTY_TYPE_0`].
pub fn gnu_properties(
&self,
endian: Elf::Endian,
) -> Option<GnuPropertyIterator<'data, Elf::Endian>> {
if self.name() != elf::ELF_NOTE_GNU || self.n_type(endian) != elf::NT_GNU_PROPERTY_TYPE_0 {
return None;
}
// Use the ELF class instead of the section alignment.
// This matches what other parsers do.
let align = if Elf::is_type_64_sized() { 8 } else { 4 };
Some(GnuPropertyIterator {
endian,
align,
data: Bytes(self.desc),
})
}
}
/// A trait for generic access to [`elf::NoteHeader32`] and [`elf::NoteHeader64`].
#[allow(missing_docs)]
pub trait NoteHeader: Debug + Pod {
type Endian: endian::Endian;
fn n_namesz(&self, endian: Self::Endian) -> u32;
fn n_descsz(&self, endian: Self::Endian) -> u32;
fn n_type(&self, endian: Self::Endian) -> u32;
}
impl<Endian: endian::Endian> NoteHeader for elf::NoteHeader32<Endian> {
type Endian = Endian;
#[inline]
fn n_namesz(&self, endian: Self::Endian) -> u32 {
self.n_namesz.get(endian)
}
#[inline]
fn n_descsz(&self, endian: Self::Endian) -> u32 {
self.n_descsz.get(endian)
}
#[inline]
fn n_type(&self, endian: Self::Endian) -> u32 {
self.n_type.get(endian)
}
}
impl<Endian: endian::Endian> NoteHeader for elf::NoteHeader64<Endian> {
type Endian = Endian;
#[inline]
fn n_namesz(&self, endian: Self::Endian) -> u32 {
self.n_namesz.get(endian)
}
#[inline]
fn n_descsz(&self, endian: Self::Endian) -> u32 {
self.n_descsz.get(endian)
}
#[inline]
fn n_type(&self, endian: Self::Endian) -> u32 {
self.n_type.get(endian)
}
}
/// An iterator for the properties in a [`elf::NT_GNU_PROPERTY_TYPE_0`] note.
///
/// Returned by [`Note::gnu_properties`].
#[derive(Debug)]
pub struct GnuPropertyIterator<'data, Endian: endian::Endian> {
endian: Endian,
align: usize,
data: Bytes<'data>,
}
impl<'data, Endian: endian::Endian> GnuPropertyIterator<'data, Endian> {
/// Returns the next property.
pub fn next(&mut self) -> read::Result<Option<GnuProperty<'data>>> {
let mut data = self.data;
if data.is_empty() {
return Ok(None);
}
(|| -> Result<_, ()> {
let pr_type = data.read_at::<U32<Endian>>(0)?.get(self.endian);
let pr_datasz = data.read_at::<U32<Endian>>(4)?.get(self.endian) as usize;
let pr_data = data.read_bytes_at(8, pr_datasz)?.0;
data.skip(util::align(8 + pr_datasz, self.align))?;
self.data = data;
Ok(Some(GnuProperty { pr_type, pr_data }))
})()
.read_error("Invalid ELF GNU property")
}
}
/// A property in a [`elf::NT_GNU_PROPERTY_TYPE_0`] note.
#[derive(Debug)]
pub struct GnuProperty<'data> {
pr_type: u32,
pr_data: &'data [u8],
}
impl<'data> GnuProperty<'data> {
/// Return the property type.
///
/// This is one of the `GNU_PROPERTY_*` constants.
pub fn pr_type(&self) -> u32 {
self.pr_type
}
/// Return the property data.
pub fn pr_data(&self) -> &'data [u8] {
self.pr_data
}
/// Parse the property data as an unsigned 32-bit integer.
pub fn data_u32<E: endian::Endian>(&self, endian: E) -> read::Result<u32> {
Bytes(self.pr_data)
.read_at::<U32<E>>(0)
.read_error("Invalid ELF GNU property data")
.map(|val| val.get(endian))
}
}

628
vendor/object/src/read/elf/relocation.rs vendored Normal file
View File

@ -0,0 +1,628 @@
use alloc::fmt;
use alloc::vec::Vec;
use core::fmt::Debug;
use core::slice;
use crate::elf;
use crate::endian::{self, Endianness};
use crate::pod::Pod;
use crate::read::{
self, Error, ReadRef, Relocation, RelocationEncoding, RelocationKind, RelocationTarget,
SectionIndex, SymbolIndex,
};
use super::{ElfFile, FileHeader, SectionHeader, SectionTable};
/// A mapping from section index to associated relocation sections.
#[derive(Debug)]
pub struct RelocationSections {
relocations: Vec<usize>,
}
impl RelocationSections {
/// Create a new mapping using the section table.
///
/// Skips relocation sections that do not use the given symbol table section.
pub fn parse<'data, Elf: FileHeader, R: ReadRef<'data>>(
endian: Elf::Endian,
sections: &SectionTable<'data, Elf, R>,
symbol_section: SectionIndex,
) -> read::Result<Self> {
let mut relocations = vec![0; sections.len()];
for (index, section) in sections.iter().enumerate().rev() {
let sh_type = section.sh_type(endian);
if sh_type == elf::SHT_REL || sh_type == elf::SHT_RELA {
// The symbol indices used in relocations must be for the symbol table
// we are expecting to use.
let sh_link = SectionIndex(section.sh_link(endian) as usize);
if sh_link != symbol_section {
continue;
}
let sh_info = section.sh_info(endian) as usize;
if sh_info == 0 {
// Skip dynamic relocations.
continue;
}
if sh_info >= relocations.len() {
return Err(Error("Invalid ELF sh_info for relocation section"));
}
// Handle multiple relocation sections by chaining them.
let next = relocations[sh_info];
relocations[sh_info] = index;
relocations[index] = next;
}
}
Ok(Self { relocations })
}
/// Given a section index, return the section index of the associated relocation section.
///
/// This may also be called with a relocation section index, and it will return the
/// next associated relocation section.
pub fn get(&self, index: usize) -> Option<usize> {
self.relocations.get(index).cloned().filter(|x| *x != 0)
}
}
pub(super) enum ElfRelaIterator<'data, Elf: FileHeader> {
Rel(slice::Iter<'data, Elf::Rel>),
Rela(slice::Iter<'data, Elf::Rela>),
}
impl<'data, Elf: FileHeader> ElfRelaIterator<'data, Elf> {
fn is_rel(&self) -> bool {
match self {
ElfRelaIterator::Rel(_) => true,
ElfRelaIterator::Rela(_) => false,
}
}
}
impl<'data, Elf: FileHeader> Iterator for ElfRelaIterator<'data, Elf> {
type Item = Elf::Rela;
fn next(&mut self) -> Option<Self::Item> {
match self {
ElfRelaIterator::Rel(ref mut i) => i.next().cloned().map(Self::Item::from),
ElfRelaIterator::Rela(ref mut i) => i.next().cloned(),
}
}
}
/// An iterator for the dynamic relocations in an [`ElfFile32`](super::ElfFile32).
pub type ElfDynamicRelocationIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfDynamicRelocationIterator<'data, 'file, elf::FileHeader32<Endian>, R>;
/// An iterator for the dynamic relocations in an [`ElfFile64`](super::ElfFile64).
pub type ElfDynamicRelocationIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfDynamicRelocationIterator<'data, 'file, elf::FileHeader64<Endian>, R>;
/// An iterator for the dynamic relocations in an [`ElfFile`].
pub struct ElfDynamicRelocationIterator<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
/// The current relocation section index.
pub(super) section_index: SectionIndex,
pub(super) file: &'file ElfFile<'data, Elf, R>,
pub(super) relocations: Option<ElfRelaIterator<'data, Elf>>,
}
impl<'data, 'file, Elf, R> Iterator for ElfDynamicRelocationIterator<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
type Item = (u64, Relocation);
fn next(&mut self) -> Option<Self::Item> {
let endian = self.file.endian;
loop {
if let Some(ref mut relocations) = self.relocations {
if let Some(reloc) = relocations.next() {
let relocation =
parse_relocation(self.file.header, endian, reloc, relocations.is_rel());
return Some((reloc.r_offset(endian).into(), relocation));
}
self.relocations = None;
}
let section = self.file.sections.section(self.section_index).ok()?;
self.section_index.0 += 1;
let sh_link = SectionIndex(section.sh_link(endian) as usize);
if sh_link != self.file.dynamic_symbols.section() {
continue;
}
match section.sh_type(endian) {
elf::SHT_REL => {
if let Ok(relocations) = section.data_as_array(endian, self.file.data) {
self.relocations = Some(ElfRelaIterator::Rel(relocations.iter()));
}
}
elf::SHT_RELA => {
if let Ok(relocations) = section.data_as_array(endian, self.file.data) {
self.relocations = Some(ElfRelaIterator::Rela(relocations.iter()));
}
}
_ => {}
}
}
}
}
impl<'data, 'file, Elf, R> fmt::Debug for ElfDynamicRelocationIterator<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ElfDynamicRelocationIterator").finish()
}
}
/// An iterator for the relocations for an [`ElfSection32`](super::ElfSection32).
pub type ElfSectionRelocationIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSectionRelocationIterator<'data, 'file, elf::FileHeader32<Endian>, R>;
/// An iterator for the relocations for an [`ElfSection64`](super::ElfSection64).
pub type ElfSectionRelocationIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSectionRelocationIterator<'data, 'file, elf::FileHeader64<Endian>, R>;
/// An iterator for the relocations for an [`ElfSection`](super::ElfSection).
pub struct ElfSectionRelocationIterator<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
/// The current pointer in the chain of relocation sections.
pub(super) section_index: SectionIndex,
pub(super) file: &'file ElfFile<'data, Elf, R>,
pub(super) relocations: Option<ElfRelaIterator<'data, Elf>>,
}
impl<'data, 'file, Elf, R> Iterator for ElfSectionRelocationIterator<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
type Item = (u64, Relocation);
fn next(&mut self) -> Option<Self::Item> {
let endian = self.file.endian;
loop {
if let Some(ref mut relocations) = self.relocations {
if let Some(reloc) = relocations.next() {
let relocation =
parse_relocation(self.file.header, endian, reloc, relocations.is_rel());
return Some((reloc.r_offset(endian).into(), relocation));
}
self.relocations = None;
}
self.section_index = SectionIndex(self.file.relocations.get(self.section_index.0)?);
// The construction of RelocationSections ensures section_index is valid.
let section = self.file.sections.section(self.section_index).unwrap();
match section.sh_type(endian) {
elf::SHT_REL => {
if let Ok(relocations) = section.data_as_array(endian, self.file.data) {
self.relocations = Some(ElfRelaIterator::Rel(relocations.iter()));
}
}
elf::SHT_RELA => {
if let Ok(relocations) = section.data_as_array(endian, self.file.data) {
self.relocations = Some(ElfRelaIterator::Rela(relocations.iter()));
}
}
_ => {}
}
}
}
}
impl<'data, 'file, Elf, R> fmt::Debug for ElfSectionRelocationIterator<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ElfSectionRelocationIterator").finish()
}
}
fn parse_relocation<Elf: FileHeader>(
header: &Elf,
endian: Elf::Endian,
reloc: Elf::Rela,
implicit_addend: bool,
) -> Relocation {
let mut encoding = RelocationEncoding::Generic;
let is_mips64el = header.is_mips64el(endian);
let (kind, size) = match header.e_machine(endian) {
elf::EM_AARCH64 => {
if header.is_type_64() {
match reloc.r_type(endian, false) {
elf::R_AARCH64_ABS64 => (RelocationKind::Absolute, 64),
elf::R_AARCH64_ABS32 => (RelocationKind::Absolute, 32),
elf::R_AARCH64_ABS16 => (RelocationKind::Absolute, 16),
elf::R_AARCH64_PREL64 => (RelocationKind::Relative, 64),
elf::R_AARCH64_PREL32 => (RelocationKind::Relative, 32),
elf::R_AARCH64_PREL16 => (RelocationKind::Relative, 16),
elf::R_AARCH64_CALL26 => {
encoding = RelocationEncoding::AArch64Call;
(RelocationKind::PltRelative, 26)
}
r_type => (RelocationKind::Elf(r_type), 0),
}
} else {
match reloc.r_type(endian, false) {
elf::R_AARCH64_P32_ABS32 => (RelocationKind::Absolute, 32),
r_type => (RelocationKind::Elf(r_type), 0),
}
}
}
elf::EM_ARM => match reloc.r_type(endian, false) {
elf::R_ARM_ABS32 => (RelocationKind::Absolute, 32),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_AVR => match reloc.r_type(endian, false) {
elf::R_AVR_32 => (RelocationKind::Absolute, 32),
elf::R_AVR_16 => (RelocationKind::Absolute, 16),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_BPF => match reloc.r_type(endian, false) {
elf::R_BPF_64_64 => (RelocationKind::Absolute, 64),
elf::R_BPF_64_32 => (RelocationKind::Absolute, 32),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_CSKY => match reloc.r_type(endian, false) {
elf::R_CKCORE_ADDR32 => (RelocationKind::Absolute, 32),
elf::R_CKCORE_PCREL32 => (RelocationKind::Relative, 32),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_386 => match reloc.r_type(endian, false) {
elf::R_386_32 => (RelocationKind::Absolute, 32),
elf::R_386_PC32 => (RelocationKind::Relative, 32),
elf::R_386_GOT32 => (RelocationKind::Got, 32),
elf::R_386_PLT32 => (RelocationKind::PltRelative, 32),
elf::R_386_GOTOFF => (RelocationKind::GotBaseOffset, 32),
elf::R_386_GOTPC => (RelocationKind::GotBaseRelative, 32),
elf::R_386_16 => (RelocationKind::Absolute, 16),
elf::R_386_PC16 => (RelocationKind::Relative, 16),
elf::R_386_8 => (RelocationKind::Absolute, 8),
elf::R_386_PC8 => (RelocationKind::Relative, 8),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_X86_64 => match reloc.r_type(endian, false) {
elf::R_X86_64_64 => (RelocationKind::Absolute, 64),
elf::R_X86_64_PC32 => (RelocationKind::Relative, 32),
elf::R_X86_64_GOT32 => (RelocationKind::Got, 32),
elf::R_X86_64_PLT32 => (RelocationKind::PltRelative, 32),
elf::R_X86_64_GOTPCREL => (RelocationKind::GotRelative, 32),
elf::R_X86_64_32 => (RelocationKind::Absolute, 32),
elf::R_X86_64_32S => {
encoding = RelocationEncoding::X86Signed;
(RelocationKind::Absolute, 32)
}
elf::R_X86_64_16 => (RelocationKind::Absolute, 16),
elf::R_X86_64_PC16 => (RelocationKind::Relative, 16),
elf::R_X86_64_8 => (RelocationKind::Absolute, 8),
elf::R_X86_64_PC8 => (RelocationKind::Relative, 8),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_HEXAGON => match reloc.r_type(endian, false) {
elf::R_HEX_32 => (RelocationKind::Absolute, 32),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_LOONGARCH => match reloc.r_type(endian, false) {
elf::R_LARCH_32 => (RelocationKind::Absolute, 32),
elf::R_LARCH_64 => (RelocationKind::Absolute, 64),
elf::R_LARCH_32_PCREL => (RelocationKind::Relative, 32),
elf::R_LARCH_64_PCREL => (RelocationKind::Relative, 64),
elf::R_LARCH_B16 => {
encoding = RelocationEncoding::LoongArchBranch;
(RelocationKind::Relative, 16)
}
elf::R_LARCH_B21 => {
encoding = RelocationEncoding::LoongArchBranch;
(RelocationKind::Relative, 21)
}
elf::R_LARCH_B26 => {
encoding = RelocationEncoding::LoongArchBranch;
(RelocationKind::Relative, 26)
}
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_MIPS => match reloc.r_type(endian, is_mips64el) {
elf::R_MIPS_16 => (RelocationKind::Absolute, 16),
elf::R_MIPS_32 => (RelocationKind::Absolute, 32),
elf::R_MIPS_64 => (RelocationKind::Absolute, 64),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_MSP430 => match reloc.r_type(endian, false) {
elf::R_MSP430_32 => (RelocationKind::Absolute, 32),
elf::R_MSP430_16_BYTE => (RelocationKind::Absolute, 16),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_PPC => match reloc.r_type(endian, false) {
elf::R_PPC_ADDR32 => (RelocationKind::Absolute, 32),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_PPC64 => match reloc.r_type(endian, false) {
elf::R_PPC64_ADDR32 => (RelocationKind::Absolute, 32),
elf::R_PPC64_ADDR64 => (RelocationKind::Absolute, 64),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_RISCV => match reloc.r_type(endian, false) {
elf::R_RISCV_32 => (RelocationKind::Absolute, 32),
elf::R_RISCV_64 => (RelocationKind::Absolute, 64),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_S390 => match reloc.r_type(endian, false) {
elf::R_390_8 => (RelocationKind::Absolute, 8),
elf::R_390_16 => (RelocationKind::Absolute, 16),
elf::R_390_32 => (RelocationKind::Absolute, 32),
elf::R_390_64 => (RelocationKind::Absolute, 64),
elf::R_390_PC16 => (RelocationKind::Relative, 16),
elf::R_390_PC32 => (RelocationKind::Relative, 32),
elf::R_390_PC64 => (RelocationKind::Relative, 64),
elf::R_390_PC16DBL => {
encoding = RelocationEncoding::S390xDbl;
(RelocationKind::Relative, 16)
}
elf::R_390_PC32DBL => {
encoding = RelocationEncoding::S390xDbl;
(RelocationKind::Relative, 32)
}
elf::R_390_PLT16DBL => {
encoding = RelocationEncoding::S390xDbl;
(RelocationKind::PltRelative, 16)
}
elf::R_390_PLT32DBL => {
encoding = RelocationEncoding::S390xDbl;
(RelocationKind::PltRelative, 32)
}
elf::R_390_GOT16 => (RelocationKind::Got, 16),
elf::R_390_GOT32 => (RelocationKind::Got, 32),
elf::R_390_GOT64 => (RelocationKind::Got, 64),
elf::R_390_GOTENT => {
encoding = RelocationEncoding::S390xDbl;
(RelocationKind::GotRelative, 32)
}
elf::R_390_GOTOFF16 => (RelocationKind::GotBaseOffset, 16),
elf::R_390_GOTOFF32 => (RelocationKind::GotBaseOffset, 32),
elf::R_390_GOTOFF64 => (RelocationKind::GotBaseOffset, 64),
elf::R_390_GOTPC => (RelocationKind::GotBaseRelative, 64),
elf::R_390_GOTPCDBL => {
encoding = RelocationEncoding::S390xDbl;
(RelocationKind::GotBaseRelative, 32)
}
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_SBF => match reloc.r_type(endian, false) {
elf::R_SBF_64_64 => (RelocationKind::Absolute, 64),
elf::R_SBF_64_32 => (RelocationKind::Absolute, 32),
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_SHARC => match reloc.r_type(endian, false) {
elf::R_SHARC_ADDR24_V3 => {
encoding = RelocationEncoding::SharcTypeA;
(RelocationKind::Absolute, 24)
}
elf::R_SHARC_ADDR32_V3 => {
encoding = RelocationEncoding::SharcTypeA;
(RelocationKind::Absolute, 32)
}
elf::R_SHARC_ADDR_VAR_V3 => {
encoding = RelocationEncoding::Generic;
(RelocationKind::Absolute, 32)
}
elf::R_SHARC_PCRSHORT_V3 => {
encoding = RelocationEncoding::SharcTypeA;
(RelocationKind::Relative, 6)
}
elf::R_SHARC_PCRLONG_V3 => {
encoding = RelocationEncoding::SharcTypeA;
(RelocationKind::Relative, 24)
}
elf::R_SHARC_DATA6_V3 => {
encoding = RelocationEncoding::SharcTypeA;
(RelocationKind::Absolute, 6)
}
elf::R_SHARC_DATA16_V3 => {
encoding = RelocationEncoding::SharcTypeA;
(RelocationKind::Absolute, 16)
}
elf::R_SHARC_DATA6_VISA_V3 => {
encoding = RelocationEncoding::SharcTypeB;
(RelocationKind::Absolute, 6)
}
elf::R_SHARC_DATA7_VISA_V3 => {
encoding = RelocationEncoding::SharcTypeB;
(RelocationKind::Absolute, 7)
}
elf::R_SHARC_DATA16_VISA_V3 => {
encoding = RelocationEncoding::SharcTypeB;
(RelocationKind::Absolute, 16)
}
elf::R_SHARC_PCR6_VISA_V3 => {
encoding = RelocationEncoding::SharcTypeB;
(RelocationKind::Relative, 16)
}
elf::R_SHARC_ADDR_VAR16_V3 => {
encoding = RelocationEncoding::Generic;
(RelocationKind::Absolute, 16)
}
r_type => (RelocationKind::Elf(r_type), 0),
},
elf::EM_SPARC | elf::EM_SPARC32PLUS | elf::EM_SPARCV9 => {
match reloc.r_type(endian, false) {
elf::R_SPARC_32 | elf::R_SPARC_UA32 => (RelocationKind::Absolute, 32),
elf::R_SPARC_64 | elf::R_SPARC_UA64 => (RelocationKind::Absolute, 64),
r_type => (RelocationKind::Elf(r_type), 0),
}
}
elf::EM_XTENSA => match reloc.r_type(endian, false) {
elf::R_XTENSA_32 => (RelocationKind::Absolute, 32),
elf::R_XTENSA_32_PCREL => (RelocationKind::Relative, 32),
r_type => (RelocationKind::Elf(r_type), 0),
},
_ => (RelocationKind::Elf(reloc.r_type(endian, false)), 0),
};
let sym = reloc.r_sym(endian, is_mips64el) as usize;
let target = if sym == 0 {
RelocationTarget::Absolute
} else {
RelocationTarget::Symbol(SymbolIndex(sym))
};
Relocation {
kind,
encoding,
size,
target,
addend: reloc.r_addend(endian).into(),
implicit_addend,
}
}
/// A trait for generic access to [`elf::Rel32`] and [`elf::Rel64`].
#[allow(missing_docs)]
pub trait Rel: Debug + Pod + Clone {
type Word: Into<u64>;
type Sword: Into<i64>;
type Endian: endian::Endian;
fn r_offset(&self, endian: Self::Endian) -> Self::Word;
fn r_info(&self, endian: Self::Endian) -> Self::Word;
fn r_sym(&self, endian: Self::Endian) -> u32;
fn r_type(&self, endian: Self::Endian) -> u32;
}
impl<Endian: endian::Endian> Rel for elf::Rel32<Endian> {
type Word = u32;
type Sword = i32;
type Endian = Endian;
#[inline]
fn r_offset(&self, endian: Self::Endian) -> Self::Word {
self.r_offset.get(endian)
}
#[inline]
fn r_info(&self, endian: Self::Endian) -> Self::Word {
self.r_info.get(endian)
}
#[inline]
fn r_sym(&self, endian: Self::Endian) -> u32 {
self.r_sym(endian)
}
#[inline]
fn r_type(&self, endian: Self::Endian) -> u32 {
self.r_type(endian)
}
}
impl<Endian: endian::Endian> Rel for elf::Rel64<Endian> {
type Word = u64;
type Sword = i64;
type Endian = Endian;
#[inline]
fn r_offset(&self, endian: Self::Endian) -> Self::Word {
self.r_offset.get(endian)
}
#[inline]
fn r_info(&self, endian: Self::Endian) -> Self::Word {
self.r_info.get(endian)
}
#[inline]
fn r_sym(&self, endian: Self::Endian) -> u32 {
self.r_sym(endian)
}
#[inline]
fn r_type(&self, endian: Self::Endian) -> u32 {
self.r_type(endian)
}
}
/// A trait for generic access to [`elf::Rela32`] and [`elf::Rela64`].
#[allow(missing_docs)]
pub trait Rela: Debug + Pod + Clone {
type Word: Into<u64>;
type Sword: Into<i64>;
type Endian: endian::Endian;
fn r_offset(&self, endian: Self::Endian) -> Self::Word;
fn r_info(&self, endian: Self::Endian, is_mips64el: bool) -> Self::Word;
fn r_addend(&self, endian: Self::Endian) -> Self::Sword;
fn r_sym(&self, endian: Self::Endian, is_mips64el: bool) -> u32;
fn r_type(&self, endian: Self::Endian, is_mips64el: bool) -> u32;
}
impl<Endian: endian::Endian> Rela for elf::Rela32<Endian> {
type Word = u32;
type Sword = i32;
type Endian = Endian;
#[inline]
fn r_offset(&self, endian: Self::Endian) -> Self::Word {
self.r_offset.get(endian)
}
#[inline]
fn r_info(&self, endian: Self::Endian, _is_mips64el: bool) -> Self::Word {
self.r_info.get(endian)
}
#[inline]
fn r_addend(&self, endian: Self::Endian) -> Self::Sword {
self.r_addend.get(endian)
}
#[inline]
fn r_sym(&self, endian: Self::Endian, _is_mips64el: bool) -> u32 {
self.r_sym(endian)
}
#[inline]
fn r_type(&self, endian: Self::Endian, _is_mips64el: bool) -> u32 {
self.r_type(endian)
}
}
impl<Endian: endian::Endian> Rela for elf::Rela64<Endian> {
type Word = u64;
type Sword = i64;
type Endian = Endian;
#[inline]
fn r_offset(&self, endian: Self::Endian) -> Self::Word {
self.r_offset.get(endian)
}
#[inline]
fn r_info(&self, endian: Self::Endian, is_mips64el: bool) -> Self::Word {
self.get_r_info(endian, is_mips64el)
}
#[inline]
fn r_addend(&self, endian: Self::Endian) -> Self::Sword {
self.r_addend.get(endian)
}
#[inline]
fn r_sym(&self, endian: Self::Endian, is_mips64el: bool) -> u32 {
self.r_sym(endian, is_mips64el)
}
#[inline]
fn r_type(&self, endian: Self::Endian, is_mips64el: bool) -> u32 {
self.r_type(endian, is_mips64el)
}
}

1150
vendor/object/src/read/elf/section.rs vendored Normal file

File diff suppressed because it is too large Load Diff

334
vendor/object/src/read/elf/segment.rs vendored Normal file
View File

@ -0,0 +1,334 @@
use core::fmt::Debug;
use core::{mem, slice, str};
use crate::elf;
use crate::endian::{self, Endianness};
use crate::pod::Pod;
use crate::read::{self, Bytes, ObjectSegment, ReadError, ReadRef, SegmentFlags};
use super::{ElfFile, FileHeader, NoteIterator};
/// An iterator for the segments in an [`ElfFile32`](super::ElfFile32).
pub type ElfSegmentIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSegmentIterator<'data, 'file, elf::FileHeader32<Endian>, R>;
/// An iterator for the segments in an [`ElfFile64`](super::ElfFile64).
pub type ElfSegmentIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSegmentIterator<'data, 'file, elf::FileHeader64<Endian>, R>;
/// An iterator for the segments in an [`ElfFile`].
#[derive(Debug)]
pub struct ElfSegmentIterator<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file ElfFile<'data, Elf, R>,
pub(super) iter: slice::Iter<'data, Elf::ProgramHeader>,
}
impl<'data, 'file, Elf, R> Iterator for ElfSegmentIterator<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
type Item = ElfSegment<'data, 'file, Elf, R>;
fn next(&mut self) -> Option<Self::Item> {
for segment in self.iter.by_ref() {
if segment.p_type(self.file.endian) == elf::PT_LOAD {
return Some(ElfSegment {
file: self.file,
segment,
});
}
}
None
}
}
/// A segment in an [`ElfFile32`](super::ElfFile32).
pub type ElfSegment32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSegment<'data, 'file, elf::FileHeader32<Endian>, R>;
/// A segment in an [`ElfFile64`](super::ElfFile64).
pub type ElfSegment64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSegment<'data, 'file, elf::FileHeader64<Endian>, R>;
/// A segment in an [`ElfFile`].
///
/// Most functionality is provided by the [`ObjectSegment`] trait implementation.
#[derive(Debug)]
pub struct ElfSegment<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file ElfFile<'data, Elf, R>,
pub(super) segment: &'data Elf::ProgramHeader,
}
impl<'data, 'file, Elf: FileHeader, R: ReadRef<'data>> ElfSegment<'data, 'file, Elf, R> {
fn bytes(&self) -> read::Result<&'data [u8]> {
self.segment
.data(self.file.endian, self.file.data)
.read_error("Invalid ELF segment size or offset")
}
}
impl<'data, 'file, Elf, R> read::private::Sealed for ElfSegment<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Elf, R> ObjectSegment<'data> for ElfSegment<'data, 'file, Elf, R>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
#[inline]
fn address(&self) -> u64 {
self.segment.p_vaddr(self.file.endian).into()
}
#[inline]
fn size(&self) -> u64 {
self.segment.p_memsz(self.file.endian).into()
}
#[inline]
fn align(&self) -> u64 {
self.segment.p_align(self.file.endian).into()
}
#[inline]
fn file_range(&self) -> (u64, u64) {
self.segment.file_range(self.file.endian)
}
#[inline]
fn data(&self) -> read::Result<&'data [u8]> {
self.bytes()
}
fn data_range(&self, address: u64, size: u64) -> read::Result<Option<&'data [u8]>> {
Ok(read::util::data_range(
self.bytes()?,
self.address(),
address,
size,
))
}
#[inline]
fn name_bytes(&self) -> read::Result<Option<&[u8]>> {
Ok(None)
}
#[inline]
fn name(&self) -> read::Result<Option<&str>> {
Ok(None)
}
#[inline]
fn flags(&self) -> SegmentFlags {
let p_flags = self.segment.p_flags(self.file.endian);
SegmentFlags::Elf { p_flags }
}
}
/// A trait for generic access to [`elf::ProgramHeader32`] and [`elf::ProgramHeader64`].
#[allow(missing_docs)]
pub trait ProgramHeader: Debug + Pod {
type Elf: FileHeader<ProgramHeader = Self, Endian = Self::Endian, Word = Self::Word>;
type Word: Into<u64>;
type Endian: endian::Endian;
fn p_type(&self, endian: Self::Endian) -> u32;
fn p_flags(&self, endian: Self::Endian) -> u32;
fn p_offset(&self, endian: Self::Endian) -> Self::Word;
fn p_vaddr(&self, endian: Self::Endian) -> Self::Word;
fn p_paddr(&self, endian: Self::Endian) -> Self::Word;
fn p_filesz(&self, endian: Self::Endian) -> Self::Word;
fn p_memsz(&self, endian: Self::Endian) -> Self::Word;
fn p_align(&self, endian: Self::Endian) -> Self::Word;
/// Return the offset and size of the segment in the file.
fn file_range(&self, endian: Self::Endian) -> (u64, u64) {
(self.p_offset(endian).into(), self.p_filesz(endian).into())
}
/// Return the segment data.
///
/// Returns `Err` for invalid values.
fn data<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> Result<&'data [u8], ()> {
let (offset, size) = self.file_range(endian);
data.read_bytes_at(offset, size)
}
/// Return the segment data as a slice of the given type.
///
/// Allows padding at the end of the data.
/// Returns `Ok(&[])` if the segment has no data.
/// Returns `Err` for invalid values, including bad alignment.
fn data_as_array<'data, T: Pod, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> Result<&'data [T], ()> {
let mut data = self.data(endian, data).map(Bytes)?;
data.read_slice(data.len() / mem::size_of::<T>())
}
/// Return the segment data in the given virtual address range
///
/// Returns `Ok(None)` if the segment does not contain the address.
/// Returns `Err` for invalid values.
fn data_range<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
address: u64,
size: u64,
) -> Result<Option<&'data [u8]>, ()> {
Ok(read::util::data_range(
self.data(endian, data)?,
self.p_vaddr(endian).into(),
address,
size,
))
}
/// Return entries in a dynamic segment.
///
/// Returns `Ok(None)` if the segment is not `PT_DYNAMIC`.
/// Returns `Err` for invalid values.
fn dynamic<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<Option<&'data [<Self::Elf as FileHeader>::Dyn]>> {
if self.p_type(endian) != elf::PT_DYNAMIC {
return Ok(None);
}
let dynamic = self
.data_as_array(endian, data)
.read_error("Invalid ELF dynamic segment offset or size")?;
Ok(Some(dynamic))
}
/// Return a note iterator for the segment data.
///
/// Returns `Ok(None)` if the segment does not contain notes.
/// Returns `Err` for invalid values.
fn notes<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> read::Result<Option<NoteIterator<'data, Self::Elf>>> {
if self.p_type(endian) != elf::PT_NOTE {
return Ok(None);
}
let data = self
.data(endian, data)
.read_error("Invalid ELF note segment offset or size")?;
let notes = NoteIterator::new(endian, self.p_align(endian), data)?;
Ok(Some(notes))
}
}
impl<Endian: endian::Endian> ProgramHeader for elf::ProgramHeader32<Endian> {
type Word = u32;
type Endian = Endian;
type Elf = elf::FileHeader32<Endian>;
#[inline]
fn p_type(&self, endian: Self::Endian) -> u32 {
self.p_type.get(endian)
}
#[inline]
fn p_flags(&self, endian: Self::Endian) -> u32 {
self.p_flags.get(endian)
}
#[inline]
fn p_offset(&self, endian: Self::Endian) -> Self::Word {
self.p_offset.get(endian)
}
#[inline]
fn p_vaddr(&self, endian: Self::Endian) -> Self::Word {
self.p_vaddr.get(endian)
}
#[inline]
fn p_paddr(&self, endian: Self::Endian) -> Self::Word {
self.p_paddr.get(endian)
}
#[inline]
fn p_filesz(&self, endian: Self::Endian) -> Self::Word {
self.p_filesz.get(endian)
}
#[inline]
fn p_memsz(&self, endian: Self::Endian) -> Self::Word {
self.p_memsz.get(endian)
}
#[inline]
fn p_align(&self, endian: Self::Endian) -> Self::Word {
self.p_align.get(endian)
}
}
impl<Endian: endian::Endian> ProgramHeader for elf::ProgramHeader64<Endian> {
type Word = u64;
type Endian = Endian;
type Elf = elf::FileHeader64<Endian>;
#[inline]
fn p_type(&self, endian: Self::Endian) -> u32 {
self.p_type.get(endian)
}
#[inline]
fn p_flags(&self, endian: Self::Endian) -> u32 {
self.p_flags.get(endian)
}
#[inline]
fn p_offset(&self, endian: Self::Endian) -> Self::Word {
self.p_offset.get(endian)
}
#[inline]
fn p_vaddr(&self, endian: Self::Endian) -> Self::Word {
self.p_vaddr.get(endian)
}
#[inline]
fn p_paddr(&self, endian: Self::Endian) -> Self::Word {
self.p_paddr.get(endian)
}
#[inline]
fn p_filesz(&self, endian: Self::Endian) -> Self::Word {
self.p_filesz.get(endian)
}
#[inline]
fn p_memsz(&self, endian: Self::Endian) -> Self::Word {
self.p_memsz.get(endian)
}
#[inline]
fn p_align(&self, endian: Self::Endian) -> Self::Word {
self.p_align.get(endian)
}
}

595
vendor/object/src/read/elf/symbol.rs vendored Normal file
View File

@ -0,0 +1,595 @@
use alloc::fmt;
use alloc::vec::Vec;
use core::fmt::Debug;
use core::slice;
use core::str;
use crate::endian::{self, Endianness};
use crate::pod::Pod;
use crate::read::util::StringTable;
use crate::read::{
self, ObjectSymbol, ObjectSymbolTable, ReadError, ReadRef, SectionIndex, SymbolFlags,
SymbolIndex, SymbolKind, SymbolMap, SymbolMapEntry, SymbolScope, SymbolSection,
};
use crate::{elf, U32};
use super::{FileHeader, SectionHeader, SectionTable};
/// A table of symbol entries in an ELF file.
///
/// Also includes the string table used for the symbol names.
///
/// Returned by [`SectionTable::symbols`].
#[derive(Debug, Clone, Copy)]
pub struct SymbolTable<'data, Elf: FileHeader, R = &'data [u8]>
where
R: ReadRef<'data>,
{
section: SectionIndex,
string_section: SectionIndex,
shndx_section: SectionIndex,
symbols: &'data [Elf::Sym],
strings: StringTable<'data, R>,
shndx: &'data [U32<Elf::Endian>],
}
impl<'data, Elf: FileHeader, R: ReadRef<'data>> Default for SymbolTable<'data, Elf, R> {
fn default() -> Self {
SymbolTable {
section: SectionIndex(0),
string_section: SectionIndex(0),
shndx_section: SectionIndex(0),
symbols: &[],
strings: Default::default(),
shndx: &[],
}
}
}
impl<'data, Elf: FileHeader, R: ReadRef<'data>> SymbolTable<'data, Elf, R> {
/// Parse the given symbol table section.
pub fn parse(
endian: Elf::Endian,
data: R,
sections: &SectionTable<'data, Elf, R>,
section_index: SectionIndex,
section: &Elf::SectionHeader,
) -> read::Result<SymbolTable<'data, Elf, R>> {
debug_assert!(
section.sh_type(endian) == elf::SHT_DYNSYM
|| section.sh_type(endian) == elf::SHT_SYMTAB
);
let symbols = section
.data_as_array(endian, data)
.read_error("Invalid ELF symbol table data")?;
let link = SectionIndex(section.sh_link(endian) as usize);
let strings = sections.strings(endian, data, link)?;
let mut shndx_section = SectionIndex(0);
let mut shndx = &[][..];
for (i, s) in sections.iter().enumerate() {
if s.sh_type(endian) == elf::SHT_SYMTAB_SHNDX
&& s.sh_link(endian) as usize == section_index.0
{
shndx_section = SectionIndex(i);
shndx = s
.data_as_array(endian, data)
.read_error("Invalid ELF symtab_shndx data")?;
}
}
Ok(SymbolTable {
section: section_index,
string_section: link,
symbols,
strings,
shndx,
shndx_section,
})
}
/// Return the section index of this symbol table.
#[inline]
pub fn section(&self) -> SectionIndex {
self.section
}
/// Return the section index of the shndx table.
#[inline]
pub fn shndx_section(&self) -> SectionIndex {
self.shndx_section
}
/// Return the section index of the linked string table.
#[inline]
pub fn string_section(&self) -> SectionIndex {
self.string_section
}
/// Return the string table used for the symbol names.
#[inline]
pub fn strings(&self) -> StringTable<'data, R> {
self.strings
}
/// Return the symbol table.
#[inline]
pub fn symbols(&self) -> &'data [Elf::Sym] {
self.symbols
}
/// Iterate over the symbols.
#[inline]
pub fn iter(&self) -> slice::Iter<'data, Elf::Sym> {
self.symbols.iter()
}
/// Return true if the symbol table is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.symbols.is_empty()
}
/// The number of symbols.
#[inline]
pub fn len(&self) -> usize {
self.symbols.len()
}
/// Return the symbol at the given index.
pub fn symbol(&self, index: usize) -> read::Result<&'data Elf::Sym> {
self.symbols
.get(index)
.read_error("Invalid ELF symbol index")
}
/// Return the extended section index for the given symbol if present.
#[inline]
pub fn shndx(&self, endian: Elf::Endian, index: usize) -> Option<u32> {
self.shndx.get(index).map(|x| x.get(endian))
}
/// Return the section index for the given symbol.
///
/// This uses the extended section index if present.
pub fn symbol_section(
&self,
endian: Elf::Endian,
symbol: &'data Elf::Sym,
index: usize,
) -> read::Result<Option<SectionIndex>> {
match symbol.st_shndx(endian) {
elf::SHN_UNDEF => Ok(None),
elf::SHN_XINDEX => self
.shndx(endian, index)
.read_error("Missing ELF symbol extended index")
.map(|index| Some(SectionIndex(index as usize))),
shndx if shndx < elf::SHN_LORESERVE => Ok(Some(SectionIndex(shndx.into()))),
_ => Ok(None),
}
}
/// Return the symbol name for the given symbol.
pub fn symbol_name(
&self,
endian: Elf::Endian,
symbol: &'data Elf::Sym,
) -> read::Result<&'data [u8]> {
symbol.name(endian, self.strings)
}
/// Construct a map from addresses to a user-defined map entry.
pub fn map<Entry: SymbolMapEntry, F: Fn(&'data Elf::Sym) -> Option<Entry>>(
&self,
endian: Elf::Endian,
f: F,
) -> SymbolMap<Entry> {
let mut symbols = Vec::with_capacity(self.symbols.len());
for symbol in self.symbols {
if !symbol.is_definition(endian) {
continue;
}
if let Some(entry) = f(symbol) {
symbols.push(entry);
}
}
SymbolMap::new(symbols)
}
}
/// A symbol table in an [`ElfFile32`](super::ElfFile32).
pub type ElfSymbolTable32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSymbolTable<'data, 'file, elf::FileHeader32<Endian>, R>;
/// A symbol table in an [`ElfFile32`](super::ElfFile32).
pub type ElfSymbolTable64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSymbolTable<'data, 'file, elf::FileHeader64<Endian>, R>;
/// A symbol table in an [`ElfFile`](super::ElfFile).
#[derive(Debug, Clone, Copy)]
pub struct ElfSymbolTable<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
pub(super) endian: Elf::Endian,
pub(super) symbols: &'file SymbolTable<'data, Elf, R>,
}
impl<'data, 'file, Elf: FileHeader, R: ReadRef<'data>> read::private::Sealed
for ElfSymbolTable<'data, 'file, Elf, R>
{
}
impl<'data, 'file, Elf: FileHeader, R: ReadRef<'data>> ObjectSymbolTable<'data>
for ElfSymbolTable<'data, 'file, Elf, R>
{
type Symbol = ElfSymbol<'data, 'file, Elf, R>;
type SymbolIterator = ElfSymbolIterator<'data, 'file, Elf, R>;
fn symbols(&self) -> Self::SymbolIterator {
ElfSymbolIterator {
endian: self.endian,
symbols: self.symbols,
index: 0,
}
}
fn symbol_by_index(&self, index: SymbolIndex) -> read::Result<Self::Symbol> {
let symbol = self.symbols.symbol(index.0)?;
Ok(ElfSymbol {
endian: self.endian,
symbols: self.symbols,
index,
symbol,
})
}
}
/// An iterator for the symbols in an [`ElfFile32`](super::ElfFile32).
pub type ElfSymbolIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSymbolIterator<'data, 'file, elf::FileHeader32<Endian>, R>;
/// An iterator for the symbols in an [`ElfFile64`](super::ElfFile64).
pub type ElfSymbolIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSymbolIterator<'data, 'file, elf::FileHeader64<Endian>, R>;
/// An iterator for the symbols in an [`ElfFile`](super::ElfFile).
pub struct ElfSymbolIterator<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
pub(super) endian: Elf::Endian,
pub(super) symbols: &'file SymbolTable<'data, Elf, R>,
pub(super) index: usize,
}
impl<'data, 'file, Elf: FileHeader, R: ReadRef<'data>> fmt::Debug
for ElfSymbolIterator<'data, 'file, Elf, R>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ElfSymbolIterator").finish()
}
}
impl<'data, 'file, Elf: FileHeader, R: ReadRef<'data>> Iterator
for ElfSymbolIterator<'data, 'file, Elf, R>
{
type Item = ElfSymbol<'data, 'file, Elf, R>;
fn next(&mut self) -> Option<Self::Item> {
let index = self.index;
let symbol = self.symbols.symbols.get(index)?;
self.index += 1;
Some(ElfSymbol {
endian: self.endian,
symbols: self.symbols,
index: SymbolIndex(index),
symbol,
})
}
}
/// A symbol in an [`ElfFile32`](super::ElfFile32).
pub type ElfSymbol32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSymbol<'data, 'file, elf::FileHeader32<Endian>, R>;
/// A symbol in an [`ElfFile64`](super::ElfFile64).
pub type ElfSymbol64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
ElfSymbol<'data, 'file, elf::FileHeader64<Endian>, R>;
/// A symbol in an [`ElfFile`](super::ElfFile).
///
/// Most functionality is provided by the [`ObjectSymbol`] trait implementation.
#[derive(Debug, Clone, Copy)]
pub struct ElfSymbol<'data, 'file, Elf, R = &'data [u8]>
where
Elf: FileHeader,
R: ReadRef<'data>,
{
pub(super) endian: Elf::Endian,
pub(super) symbols: &'file SymbolTable<'data, Elf, R>,
pub(super) index: SymbolIndex,
pub(super) symbol: &'data Elf::Sym,
}
impl<'data, 'file, Elf: FileHeader, R: ReadRef<'data>> ElfSymbol<'data, 'file, Elf, R> {
/// Return a reference to the raw symbol structure.
#[inline]
pub fn raw_symbol(&self) -> &'data Elf::Sym {
self.symbol
}
}
impl<'data, 'file, Elf: FileHeader, R: ReadRef<'data>> read::private::Sealed
for ElfSymbol<'data, 'file, Elf, R>
{
}
impl<'data, 'file, Elf: FileHeader, R: ReadRef<'data>> ObjectSymbol<'data>
for ElfSymbol<'data, 'file, Elf, R>
{
#[inline]
fn index(&self) -> SymbolIndex {
self.index
}
fn name_bytes(&self) -> read::Result<&'data [u8]> {
self.symbol.name(self.endian, self.symbols.strings())
}
fn name(&self) -> read::Result<&'data str> {
let name = self.name_bytes()?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 ELF symbol name")
}
#[inline]
fn address(&self) -> u64 {
self.symbol.st_value(self.endian).into()
}
#[inline]
fn size(&self) -> u64 {
self.symbol.st_size(self.endian).into()
}
fn kind(&self) -> SymbolKind {
match self.symbol.st_type() {
elf::STT_NOTYPE if self.index.0 == 0 => SymbolKind::Null,
elf::STT_NOTYPE => SymbolKind::Unknown,
elf::STT_OBJECT | elf::STT_COMMON => SymbolKind::Data,
elf::STT_FUNC | elf::STT_GNU_IFUNC => SymbolKind::Text,
elf::STT_SECTION => SymbolKind::Section,
elf::STT_FILE => SymbolKind::File,
elf::STT_TLS => SymbolKind::Tls,
_ => SymbolKind::Unknown,
}
}
fn section(&self) -> SymbolSection {
match self.symbol.st_shndx(self.endian) {
elf::SHN_UNDEF => SymbolSection::Undefined,
elf::SHN_ABS => {
if self.symbol.st_type() == elf::STT_FILE {
SymbolSection::None
} else {
SymbolSection::Absolute
}
}
elf::SHN_COMMON => SymbolSection::Common,
elf::SHN_XINDEX => match self.symbols.shndx(self.endian, self.index.0) {
Some(index) => SymbolSection::Section(SectionIndex(index as usize)),
None => SymbolSection::Unknown,
},
index if index < elf::SHN_LORESERVE => {
SymbolSection::Section(SectionIndex(index as usize))
}
_ => SymbolSection::Unknown,
}
}
#[inline]
fn is_undefined(&self) -> bool {
self.symbol.st_shndx(self.endian) == elf::SHN_UNDEF
}
#[inline]
fn is_definition(&self) -> bool {
self.symbol.is_definition(self.endian)
}
#[inline]
fn is_common(&self) -> bool {
self.symbol.st_shndx(self.endian) == elf::SHN_COMMON
}
#[inline]
fn is_weak(&self) -> bool {
self.symbol.st_bind() == elf::STB_WEAK
}
fn scope(&self) -> SymbolScope {
if self.symbol.st_shndx(self.endian) == elf::SHN_UNDEF {
SymbolScope::Unknown
} else {
match self.symbol.st_bind() {
elf::STB_LOCAL => SymbolScope::Compilation,
elf::STB_GLOBAL | elf::STB_WEAK => {
if self.symbol.st_visibility() == elf::STV_HIDDEN {
SymbolScope::Linkage
} else {
SymbolScope::Dynamic
}
}
_ => SymbolScope::Unknown,
}
}
}
#[inline]
fn is_global(&self) -> bool {
self.symbol.st_bind() != elf::STB_LOCAL
}
#[inline]
fn is_local(&self) -> bool {
self.symbol.st_bind() == elf::STB_LOCAL
}
#[inline]
fn flags(&self) -> SymbolFlags<SectionIndex, SymbolIndex> {
SymbolFlags::Elf {
st_info: self.symbol.st_info(),
st_other: self.symbol.st_other(),
}
}
}
/// A trait for generic access to [`elf::Sym32`] and [`elf::Sym64`].
#[allow(missing_docs)]
pub trait Sym: Debug + Pod {
type Word: Into<u64>;
type Endian: endian::Endian;
fn st_name(&self, endian: Self::Endian) -> u32;
fn st_info(&self) -> u8;
fn st_bind(&self) -> u8;
fn st_type(&self) -> u8;
fn st_other(&self) -> u8;
fn st_visibility(&self) -> u8;
fn st_shndx(&self, endian: Self::Endian) -> u16;
fn st_value(&self, endian: Self::Endian) -> Self::Word;
fn st_size(&self, endian: Self::Endian) -> Self::Word;
/// Parse the symbol name from the string table.
fn name<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
strings: StringTable<'data, R>,
) -> read::Result<&'data [u8]> {
strings
.get(self.st_name(endian))
.read_error("Invalid ELF symbol name offset")
}
/// Return true if the symbol is undefined.
#[inline]
fn is_undefined(&self, endian: Self::Endian) -> bool {
self.st_shndx(endian) == elf::SHN_UNDEF
}
/// Return true if the symbol is a definition of a function or data object.
fn is_definition(&self, endian: Self::Endian) -> bool {
let shndx = self.st_shndx(endian);
if shndx == elf::SHN_UNDEF || (shndx >= elf::SHN_LORESERVE && shndx != elf::SHN_XINDEX) {
return false;
}
match self.st_type() {
elf::STT_NOTYPE => self.st_size(endian).into() != 0,
elf::STT_FUNC | elf::STT_OBJECT => true,
_ => false,
}
}
}
impl<Endian: endian::Endian> Sym for elf::Sym32<Endian> {
type Word = u32;
type Endian = Endian;
#[inline]
fn st_name(&self, endian: Self::Endian) -> u32 {
self.st_name.get(endian)
}
#[inline]
fn st_info(&self) -> u8 {
self.st_info
}
#[inline]
fn st_bind(&self) -> u8 {
self.st_bind()
}
#[inline]
fn st_type(&self) -> u8 {
self.st_type()
}
#[inline]
fn st_other(&self) -> u8 {
self.st_other
}
#[inline]
fn st_visibility(&self) -> u8 {
self.st_visibility()
}
#[inline]
fn st_shndx(&self, endian: Self::Endian) -> u16 {
self.st_shndx.get(endian)
}
#[inline]
fn st_value(&self, endian: Self::Endian) -> Self::Word {
self.st_value.get(endian)
}
#[inline]
fn st_size(&self, endian: Self::Endian) -> Self::Word {
self.st_size.get(endian)
}
}
impl<Endian: endian::Endian> Sym for elf::Sym64<Endian> {
type Word = u64;
type Endian = Endian;
#[inline]
fn st_name(&self, endian: Self::Endian) -> u32 {
self.st_name.get(endian)
}
#[inline]
fn st_info(&self) -> u8 {
self.st_info
}
#[inline]
fn st_bind(&self) -> u8 {
self.st_bind()
}
#[inline]
fn st_type(&self) -> u8 {
self.st_type()
}
#[inline]
fn st_other(&self) -> u8 {
self.st_other
}
#[inline]
fn st_visibility(&self) -> u8 {
self.st_visibility()
}
#[inline]
fn st_shndx(&self, endian: Self::Endian) -> u16 {
self.st_shndx.get(endian)
}
#[inline]
fn st_value(&self, endian: Self::Endian) -> Self::Word {
self.st_value.get(endian)
}
#[inline]
fn st_size(&self, endian: Self::Endian) -> Self::Word {
self.st_size.get(endian)
}
}

424
vendor/object/src/read/elf/version.rs vendored Normal file
View File

@ -0,0 +1,424 @@
use alloc::vec::Vec;
use crate::read::{Bytes, ReadError, ReadRef, Result, StringTable};
use crate::{elf, endian};
use super::FileHeader;
/// A version index.
#[derive(Debug, Default, Clone, Copy)]
pub struct VersionIndex(pub u16);
impl VersionIndex {
/// Return the version index.
pub fn index(&self) -> u16 {
self.0 & elf::VERSYM_VERSION
}
/// Return true if it is the local index.
pub fn is_local(&self) -> bool {
self.index() == elf::VER_NDX_LOCAL
}
/// Return true if it is the global index.
pub fn is_global(&self) -> bool {
self.index() == elf::VER_NDX_GLOBAL
}
/// Return the hidden flag.
pub fn is_hidden(&self) -> bool {
self.0 & elf::VERSYM_HIDDEN != 0
}
}
/// A version definition or requirement.
///
/// This is derived from entries in the [`elf::SHT_GNU_VERDEF`] and [`elf::SHT_GNU_VERNEED`] sections.
#[derive(Debug, Default, Clone, Copy)]
pub struct Version<'data> {
name: &'data [u8],
hash: u32,
// Used to keep track of valid indices in `VersionTable`.
valid: bool,
}
impl<'data> Version<'data> {
/// Return the version name.
pub fn name(&self) -> &'data [u8] {
self.name
}
/// Return hash of the version name.
pub fn hash(&self) -> u32 {
self.hash
}
}
/// A table of version definitions and requirements.
///
/// It allows looking up the version information for a given symbol index.
///
/// This is derived from entries in the [`elf::SHT_GNU_VERSYM`], [`elf::SHT_GNU_VERDEF`]
/// and [`elf::SHT_GNU_VERNEED`] sections.
///
/// Returned by [`SectionTable::versions`](super::SectionTable::versions).
#[derive(Debug, Clone)]
pub struct VersionTable<'data, Elf: FileHeader> {
symbols: &'data [elf::Versym<Elf::Endian>],
versions: Vec<Version<'data>>,
}
impl<'data, Elf: FileHeader> Default for VersionTable<'data, Elf> {
fn default() -> Self {
VersionTable {
symbols: &[],
versions: Vec::new(),
}
}
}
impl<'data, Elf: FileHeader> VersionTable<'data, Elf> {
/// Parse the version sections.
pub fn parse<R: ReadRef<'data>>(
endian: Elf::Endian,
versyms: &'data [elf::Versym<Elf::Endian>],
verdefs: Option<VerdefIterator<'data, Elf>>,
verneeds: Option<VerneedIterator<'data, Elf>>,
strings: StringTable<'data, R>,
) -> Result<Self> {
let mut max_index = 0;
if let Some(mut verdefs) = verdefs.clone() {
while let Some((verdef, _)) = verdefs.next()? {
if verdef.vd_flags.get(endian) & elf::VER_FLG_BASE != 0 {
continue;
}
let index = verdef.vd_ndx.get(endian) & elf::VERSYM_VERSION;
if max_index < index {
max_index = index;
}
}
}
if let Some(mut verneeds) = verneeds.clone() {
while let Some((_, mut vernauxs)) = verneeds.next()? {
while let Some(vernaux) = vernauxs.next()? {
let index = vernaux.vna_other.get(endian) & elf::VERSYM_VERSION;
if max_index < index {
max_index = index;
}
}
}
}
// Indices should be sequential, but this could be up to
// 32k * size_of::<Version>() if max_index is bad.
let mut versions = vec![Version::default(); max_index as usize + 1];
if let Some(mut verdefs) = verdefs {
while let Some((verdef, mut verdauxs)) = verdefs.next()? {
if verdef.vd_flags.get(endian) & elf::VER_FLG_BASE != 0 {
continue;
}
let index = verdef.vd_ndx.get(endian) & elf::VERSYM_VERSION;
if index <= elf::VER_NDX_GLOBAL {
// TODO: return error?
continue;
}
if let Some(verdaux) = verdauxs.next()? {
versions[usize::from(index)] = Version {
name: verdaux.name(endian, strings)?,
hash: verdef.vd_hash.get(endian),
valid: true,
};
}
}
}
if let Some(mut verneeds) = verneeds {
while let Some((_, mut vernauxs)) = verneeds.next()? {
while let Some(vernaux) = vernauxs.next()? {
let index = vernaux.vna_other.get(endian) & elf::VERSYM_VERSION;
if index <= elf::VER_NDX_GLOBAL {
// TODO: return error?
continue;
}
versions[usize::from(index)] = Version {
name: vernaux.name(endian, strings)?,
hash: vernaux.vna_hash.get(endian),
valid: true,
};
}
}
}
Ok(VersionTable {
symbols: versyms,
versions,
})
}
/// Return true if the version table is empty.
pub fn is_empty(&self) -> bool {
self.symbols.is_empty()
}
/// Return version index for a given symbol index.
pub fn version_index(&self, endian: Elf::Endian, index: usize) -> VersionIndex {
let version_index = match self.symbols.get(index) {
Some(x) => x.0.get(endian),
// Ideally this would be VER_NDX_LOCAL for undefined symbols,
// but currently there are no checks that need this distinction.
None => elf::VER_NDX_GLOBAL,
};
VersionIndex(version_index)
}
/// Return version information for a given symbol version index.
///
/// Returns `Ok(None)` for local and global versions.
/// Returns `Err(_)` if index is invalid.
pub fn version(&self, index: VersionIndex) -> Result<Option<&Version<'data>>> {
if index.index() <= elf::VER_NDX_GLOBAL {
return Ok(None);
}
self.versions
.get(usize::from(index.index()))
.filter(|version| version.valid)
.read_error("Invalid ELF symbol version index")
.map(Some)
}
/// Return true if the given symbol index satisfies the requirements of `need`.
///
/// Returns false for any error.
///
/// Note: this function hasn't been fully tested and is likely to be incomplete.
pub fn matches(&self, endian: Elf::Endian, index: usize, need: Option<&Version<'_>>) -> bool {
let version_index = self.version_index(endian, index);
let def = match self.version(version_index) {
Ok(def) => def,
Err(_) => return false,
};
match (def, need) {
(Some(def), Some(need)) => need.hash == def.hash && need.name == def.name,
(None, Some(_need)) => {
// Version must be present if needed.
false
}
(Some(_def), None) => {
// For a dlsym call, use the newest version.
// TODO: if not a dlsym call, then use the oldest version.
!version_index.is_hidden()
}
(None, None) => true,
}
}
}
/// An iterator for the entries in an ELF [`elf::SHT_GNU_VERDEF`] section.
#[derive(Debug, Clone)]
pub struct VerdefIterator<'data, Elf: FileHeader> {
endian: Elf::Endian,
data: Bytes<'data>,
}
impl<'data, Elf: FileHeader> VerdefIterator<'data, Elf> {
pub(super) fn new(endian: Elf::Endian, data: &'data [u8]) -> Self {
VerdefIterator {
endian,
data: Bytes(data),
}
}
/// Return the next `Verdef` entry.
pub fn next(
&mut self,
) -> Result<Option<(&'data elf::Verdef<Elf::Endian>, VerdauxIterator<'data, Elf>)>> {
if self.data.is_empty() {
return Ok(None);
}
let verdef = self
.data
.read_at::<elf::Verdef<_>>(0)
.read_error("ELF verdef is too short")?;
let mut verdaux_data = self.data;
verdaux_data
.skip(verdef.vd_aux.get(self.endian) as usize)
.read_error("Invalid ELF vd_aux")?;
let verdaux =
VerdauxIterator::new(self.endian, verdaux_data.0, verdef.vd_cnt.get(self.endian));
let next = verdef.vd_next.get(self.endian);
if next != 0 {
self.data
.skip(next as usize)
.read_error("Invalid ELF vd_next")?;
} else {
self.data = Bytes(&[]);
}
Ok(Some((verdef, verdaux)))
}
}
/// An iterator for the auxiliary records for an entry in an ELF [`elf::SHT_GNU_VERDEF`] section.
#[derive(Debug, Clone)]
pub struct VerdauxIterator<'data, Elf: FileHeader> {
endian: Elf::Endian,
data: Bytes<'data>,
count: u16,
}
impl<'data, Elf: FileHeader> VerdauxIterator<'data, Elf> {
pub(super) fn new(endian: Elf::Endian, data: &'data [u8], count: u16) -> Self {
VerdauxIterator {
endian,
data: Bytes(data),
count,
}
}
/// Return the next `Verdaux` entry.
pub fn next(&mut self) -> Result<Option<&'data elf::Verdaux<Elf::Endian>>> {
if self.count == 0 {
return Ok(None);
}
let verdaux = self
.data
.read_at::<elf::Verdaux<_>>(0)
.read_error("ELF verdaux is too short")?;
self.data
.skip(verdaux.vda_next.get(self.endian) as usize)
.read_error("Invalid ELF vda_next")?;
self.count -= 1;
Ok(Some(verdaux))
}
}
/// An iterator for the entries in an ELF [`elf::SHT_GNU_VERNEED`] section.
#[derive(Debug, Clone)]
pub struct VerneedIterator<'data, Elf: FileHeader> {
endian: Elf::Endian,
data: Bytes<'data>,
}
impl<'data, Elf: FileHeader> VerneedIterator<'data, Elf> {
pub(super) fn new(endian: Elf::Endian, data: &'data [u8]) -> Self {
VerneedIterator {
endian,
data: Bytes(data),
}
}
/// Return the next `Verneed` entry.
pub fn next(
&mut self,
) -> Result<
Option<(
&'data elf::Verneed<Elf::Endian>,
VernauxIterator<'data, Elf>,
)>,
> {
if self.data.is_empty() {
return Ok(None);
}
let verneed = self
.data
.read_at::<elf::Verneed<_>>(0)
.read_error("ELF verneed is too short")?;
let mut vernaux_data = self.data;
vernaux_data
.skip(verneed.vn_aux.get(self.endian) as usize)
.read_error("Invalid ELF vn_aux")?;
let vernaux =
VernauxIterator::new(self.endian, vernaux_data.0, verneed.vn_cnt.get(self.endian));
let next = verneed.vn_next.get(self.endian);
if next != 0 {
self.data
.skip(next as usize)
.read_error("Invalid ELF vn_next")?;
} else {
self.data = Bytes(&[]);
}
Ok(Some((verneed, vernaux)))
}
}
/// An iterator for the auxiliary records for an entry in an ELF [`elf::SHT_GNU_VERNEED`] section.
#[derive(Debug, Clone)]
pub struct VernauxIterator<'data, Elf: FileHeader> {
endian: Elf::Endian,
data: Bytes<'data>,
count: u16,
}
impl<'data, Elf: FileHeader> VernauxIterator<'data, Elf> {
pub(super) fn new(endian: Elf::Endian, data: &'data [u8], count: u16) -> Self {
VernauxIterator {
endian,
data: Bytes(data),
count,
}
}
/// Return the next `Vernaux` entry.
pub fn next(&mut self) -> Result<Option<&'data elf::Vernaux<Elf::Endian>>> {
if self.count == 0 {
return Ok(None);
}
let vernaux = self
.data
.read_at::<elf::Vernaux<_>>(0)
.read_error("ELF vernaux is too short")?;
self.data
.skip(vernaux.vna_next.get(self.endian) as usize)
.read_error("Invalid ELF vna_next")?;
self.count -= 1;
Ok(Some(vernaux))
}
}
impl<Endian: endian::Endian> elf::Verdaux<Endian> {
/// Parse the version name from the string table.
pub fn name<'data, R: ReadRef<'data>>(
&self,
endian: Endian,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
strings
.get(self.vda_name.get(endian))
.read_error("Invalid ELF vda_name")
}
}
impl<Endian: endian::Endian> elf::Verneed<Endian> {
/// Parse the file from the string table.
pub fn file<'data, R: ReadRef<'data>>(
&self,
endian: Endian,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
strings
.get(self.vn_file.get(endian))
.read_error("Invalid ELF vn_file")
}
}
impl<Endian: endian::Endian> elf::Vernaux<Endian> {
/// Parse the version name from the string table.
pub fn name<'data, R: ReadRef<'data>>(
&self,
endian: Endian,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
strings
.get(self.vna_name.get(endian))
.read_error("Invalid ELF vna_name")
}
}

View File

@ -0,0 +1,344 @@
use alloc::vec::Vec;
use core::slice;
use crate::read::{Error, File, ReadError, ReadRef, Result};
use crate::{macho, Architecture, Endian, Endianness};
/// A parsed representation of the dyld shared cache.
#[derive(Debug)]
pub struct DyldCache<'data, E = Endianness, R = &'data [u8]>
where
E: Endian,
R: ReadRef<'data>,
{
endian: E,
data: R,
subcaches: Vec<DyldSubCache<'data, E, R>>,
mappings: &'data [macho::DyldCacheMappingInfo<E>],
images: &'data [macho::DyldCacheImageInfo<E>],
arch: Architecture,
}
/// Information about a subcache.
#[derive(Debug)]
pub struct DyldSubCache<'data, E = Endianness, R = &'data [u8]>
where
E: Endian,
R: ReadRef<'data>,
{
data: R,
mappings: &'data [macho::DyldCacheMappingInfo<E>],
}
// This is the offset of the images_across_all_subcaches_count field.
const MIN_HEADER_SIZE_SUBCACHES: u32 = 0x1c4;
impl<'data, E, R> DyldCache<'data, E, R>
where
E: Endian,
R: ReadRef<'data>,
{
/// Parse the raw dyld shared cache data.
///
/// For shared caches from macOS 12 / iOS 15 and above, the subcache files need to be
/// supplied as well, in the correct order, with the `.symbols` subcache last (if present).
/// For example, `data` would be the data for `dyld_shared_cache_x86_64`,
/// and `subcache_data` would be the data for `[dyld_shared_cache_x86_64.1, dyld_shared_cache_x86_64.2, ...]`.
pub fn parse(data: R, subcache_data: &[R]) -> Result<Self> {
let header = macho::DyldCacheHeader::parse(data)?;
let (arch, endian) = header.parse_magic()?;
let mappings = header.mappings(endian, data)?;
let symbols_subcache_uuid = header.symbols_subcache_uuid(endian);
let subcaches_info = header.subcaches(endian, data)?.unwrap_or(&[]);
if subcache_data.len() != subcaches_info.len() + symbols_subcache_uuid.is_some() as usize {
return Err(Error("Incorrect number of SubCaches"));
}
// Split out the .symbols subcache data from the other subcaches.
let (symbols_subcache_data_and_uuid, subcache_data) =
if let Some(symbols_uuid) = symbols_subcache_uuid {
let (sym_data, rest_data) = subcache_data.split_last().unwrap();
(Some((*sym_data, symbols_uuid)), rest_data)
} else {
(None, subcache_data)
};
// Read the regular SubCaches (.1, .2, ...), if present.
let mut subcaches = Vec::new();
for (&data, info) in subcache_data.iter().zip(subcaches_info.iter()) {
let sc_header = macho::DyldCacheHeader::<E>::parse(data)?;
if sc_header.uuid != info.uuid {
return Err(Error("Unexpected SubCache UUID"));
}
let mappings = sc_header.mappings(endian, data)?;
subcaches.push(DyldSubCache { data, mappings });
}
// Read the .symbols SubCache, if present.
// Other than the UUID verification, the symbols SubCache is currently unused.
let _symbols_subcache = match symbols_subcache_data_and_uuid {
Some((data, uuid)) => {
let sc_header = macho::DyldCacheHeader::<E>::parse(data)?;
if sc_header.uuid != uuid {
return Err(Error("Unexpected .symbols SubCache UUID"));
}
let mappings = sc_header.mappings(endian, data)?;
Some(DyldSubCache { data, mappings })
}
None => None,
};
let images = header.images(endian, data)?;
Ok(DyldCache {
endian,
data,
subcaches,
mappings,
images,
arch,
})
}
/// Get the architecture type of the file.
pub fn architecture(&self) -> Architecture {
self.arch
}
/// Get the endianness of the file.
#[inline]
pub fn endianness(&self) -> Endianness {
if self.is_little_endian() {
Endianness::Little
} else {
Endianness::Big
}
}
/// Return true if the file is little endian, false if it is big endian.
pub fn is_little_endian(&self) -> bool {
self.endian.is_little_endian()
}
/// Iterate over the images in this cache.
pub fn images<'cache>(&'cache self) -> DyldCacheImageIterator<'data, 'cache, E, R> {
DyldCacheImageIterator {
cache: self,
iter: self.images.iter(),
}
}
/// Find the address in a mapping and return the cache or subcache data it was found in,
/// together with the translated file offset.
pub fn data_and_offset_for_address(&self, address: u64) -> Option<(R, u64)> {
if let Some(file_offset) = address_to_file_offset(address, self.endian, self.mappings) {
return Some((self.data, file_offset));
}
for subcache in &self.subcaches {
if let Some(file_offset) =
address_to_file_offset(address, self.endian, subcache.mappings)
{
return Some((subcache.data, file_offset));
}
}
None
}
}
/// An iterator over all the images (dylibs) in the dyld shared cache.
#[derive(Debug)]
pub struct DyldCacheImageIterator<'data, 'cache, E = Endianness, R = &'data [u8]>
where
E: Endian,
R: ReadRef<'data>,
{
cache: &'cache DyldCache<'data, E, R>,
iter: slice::Iter<'data, macho::DyldCacheImageInfo<E>>,
}
impl<'data, 'cache, E, R> Iterator for DyldCacheImageIterator<'data, 'cache, E, R>
where
E: Endian,
R: ReadRef<'data>,
{
type Item = DyldCacheImage<'data, 'cache, E, R>;
fn next(&mut self) -> Option<DyldCacheImage<'data, 'cache, E, R>> {
let image_info = self.iter.next()?;
Some(DyldCacheImage {
cache: self.cache,
image_info,
})
}
}
/// One image (dylib) from inside the dyld shared cache.
#[derive(Debug)]
pub struct DyldCacheImage<'data, 'cache, E = Endianness, R = &'data [u8]>
where
E: Endian,
R: ReadRef<'data>,
{
pub(crate) cache: &'cache DyldCache<'data, E, R>,
image_info: &'data macho::DyldCacheImageInfo<E>,
}
impl<'data, 'cache, E, R> DyldCacheImage<'data, 'cache, E, R>
where
E: Endian,
R: ReadRef<'data>,
{
/// The file system path of this image.
pub fn path(&self) -> Result<&'data str> {
let path = self.image_info.path(self.cache.endian, self.cache.data)?;
// The path should always be ascii, so from_utf8 should always succeed.
let path = core::str::from_utf8(path).map_err(|_| Error("Path string not valid utf-8"))?;
Ok(path)
}
/// The subcache data which contains the Mach-O header for this image,
/// together with the file offset at which this image starts.
pub fn image_data_and_offset(&self) -> Result<(R, u64)> {
let address = self.image_info.address.get(self.cache.endian);
self.cache
.data_and_offset_for_address(address)
.ok_or(Error("Address not found in any mapping"))
}
/// Parse this image into an Object.
pub fn parse_object(&self) -> Result<File<'data, R>> {
File::parse_dyld_cache_image(self)
}
}
impl<E: Endian> macho::DyldCacheHeader<E> {
/// Read the dyld cache header.
pub fn parse<'data, R: ReadRef<'data>>(data: R) -> Result<&'data Self> {
data.read_at::<macho::DyldCacheHeader<E>>(0)
.read_error("Invalid dyld cache header size or alignment")
}
/// Returns (arch, endian) based on the magic string.
pub fn parse_magic(&self) -> Result<(Architecture, E)> {
let (arch, is_big_endian) = match &self.magic {
b"dyld_v1 i386\0" => (Architecture::I386, false),
b"dyld_v1 x86_64\0" => (Architecture::X86_64, false),
b"dyld_v1 x86_64h\0" => (Architecture::X86_64, false),
b"dyld_v1 ppc\0" => (Architecture::PowerPc, true),
b"dyld_v1 armv6\0" => (Architecture::Arm, false),
b"dyld_v1 armv7\0" => (Architecture::Arm, false),
b"dyld_v1 armv7f\0" => (Architecture::Arm, false),
b"dyld_v1 armv7s\0" => (Architecture::Arm, false),
b"dyld_v1 armv7k\0" => (Architecture::Arm, false),
b"dyld_v1 arm64\0" => (Architecture::Aarch64, false),
b"dyld_v1 arm64e\0" => (Architecture::Aarch64, false),
_ => return Err(Error("Unrecognized dyld cache magic")),
};
let endian =
E::from_big_endian(is_big_endian).read_error("Unsupported dyld cache endian")?;
Ok((arch, endian))
}
/// Return the mapping information table.
pub fn mappings<'data, R: ReadRef<'data>>(
&self,
endian: E,
data: R,
) -> Result<&'data [macho::DyldCacheMappingInfo<E>]> {
data.read_slice_at::<macho::DyldCacheMappingInfo<E>>(
self.mapping_offset.get(endian).into(),
self.mapping_count.get(endian) as usize,
)
.read_error("Invalid dyld cache mapping size or alignment")
}
/// Return the information about subcaches, if present.
pub fn subcaches<'data, R: ReadRef<'data>>(
&self,
endian: E,
data: R,
) -> Result<Option<&'data [macho::DyldSubCacheInfo<E>]>> {
if self.mapping_offset.get(endian) >= MIN_HEADER_SIZE_SUBCACHES {
let subcaches = data
.read_slice_at::<macho::DyldSubCacheInfo<E>>(
self.subcaches_offset.get(endian).into(),
self.subcaches_count.get(endian) as usize,
)
.read_error("Invalid dyld subcaches size or alignment")?;
Ok(Some(subcaches))
} else {
Ok(None)
}
}
/// Return the UUID for the .symbols subcache, if present.
pub fn symbols_subcache_uuid(&self, endian: E) -> Option<[u8; 16]> {
if self.mapping_offset.get(endian) >= MIN_HEADER_SIZE_SUBCACHES {
let uuid = self.symbols_subcache_uuid;
if uuid != [0; 16] {
return Some(uuid);
}
}
None
}
/// Return the image information table.
pub fn images<'data, R: ReadRef<'data>>(
&self,
endian: E,
data: R,
) -> Result<&'data [macho::DyldCacheImageInfo<E>]> {
if self.mapping_offset.get(endian) >= MIN_HEADER_SIZE_SUBCACHES {
data.read_slice_at::<macho::DyldCacheImageInfo<E>>(
self.images_across_all_subcaches_offset.get(endian).into(),
self.images_across_all_subcaches_count.get(endian) as usize,
)
.read_error("Invalid dyld cache image size or alignment")
} else {
data.read_slice_at::<macho::DyldCacheImageInfo<E>>(
self.images_offset.get(endian).into(),
self.images_count.get(endian) as usize,
)
.read_error("Invalid dyld cache image size or alignment")
}
}
}
impl<E: Endian> macho::DyldCacheImageInfo<E> {
/// The file system path of this image.
pub fn path<'data, R: ReadRef<'data>>(&self, endian: E, data: R) -> Result<&'data [u8]> {
let r_start = self.path_file_offset.get(endian).into();
let r_end = data.len().read_error("Couldn't get data len()")?;
data.read_bytes_at_until(r_start..r_end, 0)
.read_error("Couldn't read dyld cache image path")
}
/// Find the file offset of the image by looking up its address in the mappings.
pub fn file_offset(
&self,
endian: E,
mappings: &[macho::DyldCacheMappingInfo<E>],
) -> Result<u64> {
let address = self.address.get(endian);
address_to_file_offset(address, endian, mappings)
.read_error("Invalid dyld cache image address")
}
}
/// Find the file offset of the image by looking up its address in the mappings.
pub fn address_to_file_offset<E: Endian>(
address: u64,
endian: E,
mappings: &[macho::DyldCacheMappingInfo<E>],
) -> Option<u64> {
for mapping in mappings {
let mapping_address = mapping.address.get(endian);
if address >= mapping_address
&& address < mapping_address.wrapping_add(mapping.size.get(endian))
{
return Some(address - mapping_address + mapping.file_offset.get(endian));
}
}
None
}

122
vendor/object/src/read/macho/fat.rs vendored Normal file
View File

@ -0,0 +1,122 @@
use crate::read::{Architecture, Error, ReadError, ReadRef, Result};
use crate::{macho, BigEndian, Pod};
pub use macho::{FatArch32, FatArch64, FatHeader};
impl FatHeader {
/// Attempt to parse a fat header.
///
/// Does not validate the magic value.
pub fn parse<'data, R: ReadRef<'data>>(file: R) -> Result<&'data FatHeader> {
file.read_at::<FatHeader>(0)
.read_error("Invalid fat header size or alignment")
}
/// Attempt to parse a fat header and 32-bit fat arches.
pub fn parse_arch32<'data, R: ReadRef<'data>>(file: R) -> Result<&'data [FatArch32]> {
let mut offset = 0;
let header = file
.read::<FatHeader>(&mut offset)
.read_error("Invalid fat header size or alignment")?;
if header.magic.get(BigEndian) != macho::FAT_MAGIC {
return Err(Error("Invalid 32-bit fat magic"));
}
file.read_slice::<FatArch32>(&mut offset, header.nfat_arch.get(BigEndian) as usize)
.read_error("Invalid nfat_arch")
}
/// Attempt to parse a fat header and 64-bit fat arches.
pub fn parse_arch64<'data, R: ReadRef<'data>>(file: R) -> Result<&'data [FatArch64]> {
let mut offset = 0;
let header = file
.read::<FatHeader>(&mut offset)
.read_error("Invalid fat header size or alignment")?;
if header.magic.get(BigEndian) != macho::FAT_MAGIC_64 {
return Err(Error("Invalid 64-bit fat magic"));
}
file.read_slice::<FatArch64>(&mut offset, header.nfat_arch.get(BigEndian) as usize)
.read_error("Invalid nfat_arch")
}
}
/// A trait for generic access to [`macho::FatArch32`] and [`macho::FatArch64`].
#[allow(missing_docs)]
pub trait FatArch: Pod {
type Word: Into<u64>;
fn cputype(&self) -> u32;
fn cpusubtype(&self) -> u32;
fn offset(&self) -> Self::Word;
fn size(&self) -> Self::Word;
fn align(&self) -> u32;
fn architecture(&self) -> Architecture {
match self.cputype() {
macho::CPU_TYPE_ARM => Architecture::Arm,
macho::CPU_TYPE_ARM64 => Architecture::Aarch64,
macho::CPU_TYPE_X86 => Architecture::I386,
macho::CPU_TYPE_X86_64 => Architecture::X86_64,
macho::CPU_TYPE_MIPS => Architecture::Mips,
macho::CPU_TYPE_POWERPC => Architecture::PowerPc,
macho::CPU_TYPE_POWERPC64 => Architecture::PowerPc64,
_ => Architecture::Unknown,
}
}
fn file_range(&self) -> (u64, u64) {
(self.offset().into(), self.size().into())
}
fn data<'data, R: ReadRef<'data>>(&self, file: R) -> Result<&'data [u8]> {
file.read_bytes_at(self.offset().into(), self.size().into())
.read_error("Invalid fat arch offset or size")
}
}
impl FatArch for FatArch32 {
type Word = u32;
fn cputype(&self) -> u32 {
self.cputype.get(BigEndian)
}
fn cpusubtype(&self) -> u32 {
self.cpusubtype.get(BigEndian)
}
fn offset(&self) -> Self::Word {
self.offset.get(BigEndian)
}
fn size(&self) -> Self::Word {
self.size.get(BigEndian)
}
fn align(&self) -> u32 {
self.align.get(BigEndian)
}
}
impl FatArch for FatArch64 {
type Word = u64;
fn cputype(&self) -> u32 {
self.cputype.get(BigEndian)
}
fn cpusubtype(&self) -> u32 {
self.cpusubtype.get(BigEndian)
}
fn offset(&self) -> Self::Word {
self.offset.get(BigEndian)
}
fn size(&self) -> Self::Word {
self.size.get(BigEndian)
}
fn align(&self) -> u32 {
self.align.get(BigEndian)
}
}

781
vendor/object/src/read/macho/file.rs vendored Normal file
View File

@ -0,0 +1,781 @@
use alloc::vec::Vec;
use core::fmt::Debug;
use core::{mem, str};
use crate::read::{
self, Architecture, ComdatKind, Error, Export, FileFlags, Import, NoDynamicRelocationIterator,
Object, ObjectComdat, ObjectKind, ObjectMap, ObjectSection, ReadError, ReadRef, Result,
SectionIndex, SubArchitecture, SymbolIndex,
};
use crate::{endian, macho, BigEndian, ByteString, Endian, Endianness, Pod};
use super::{
DyldCacheImage, LoadCommandIterator, MachOSection, MachOSectionInternal, MachOSectionIterator,
MachOSegment, MachOSegmentInternal, MachOSegmentIterator, MachOSymbol, MachOSymbolIterator,
MachOSymbolTable, Nlist, Section, Segment, SymbolTable,
};
/// A 32-bit Mach-O object file.
///
/// This is a file that starts with [`macho::MachHeader32`], and corresponds
/// to [`crate::FileKind::MachO32`].
pub type MachOFile32<'data, Endian = Endianness, R = &'data [u8]> =
MachOFile<'data, macho::MachHeader32<Endian>, R>;
/// A 64-bit Mach-O object file.
///
/// This is a file that starts with [`macho::MachHeader64`], and corresponds
/// to [`crate::FileKind::MachO64`].
pub type MachOFile64<'data, Endian = Endianness, R = &'data [u8]> =
MachOFile<'data, macho::MachHeader64<Endian>, R>;
/// A partially parsed Mach-O file.
///
/// Most of the functionality of this type is provided by the [`Object`] trait implementation.
#[derive(Debug)]
pub struct MachOFile<'data, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
pub(super) endian: Mach::Endian,
pub(super) data: R,
pub(super) header_offset: u64,
pub(super) header: &'data Mach,
pub(super) segments: Vec<MachOSegmentInternal<'data, Mach, R>>,
pub(super) sections: Vec<MachOSectionInternal<'data, Mach>>,
pub(super) symbols: SymbolTable<'data, Mach, R>,
}
impl<'data, Mach, R> MachOFile<'data, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
/// Parse the raw Mach-O file data.
pub fn parse(data: R) -> Result<Self> {
let header = Mach::parse(data, 0)?;
let endian = header.endian()?;
// Build a list of segments and sections to make some operations more efficient.
let mut segments = Vec::new();
let mut sections = Vec::new();
let mut symbols = SymbolTable::default();
if let Ok(mut commands) = header.load_commands(endian, data, 0) {
while let Ok(Some(command)) = commands.next() {
if let Some((segment, section_data)) = Mach::Segment::from_command(command)? {
let segment_index = segments.len();
segments.push(MachOSegmentInternal { segment, data });
for section in segment.sections(endian, section_data)? {
let index = SectionIndex(sections.len() + 1);
sections.push(MachOSectionInternal::parse(index, segment_index, section));
}
} else if let Some(symtab) = command.symtab()? {
symbols = symtab.symbols(endian, data)?;
}
}
}
Ok(MachOFile {
endian,
data,
header_offset: 0,
header,
segments,
sections,
symbols,
})
}
/// Parse the Mach-O file for the given image from the dyld shared cache.
/// This will read different sections from different subcaches, if necessary.
pub fn parse_dyld_cache_image<'cache, E: Endian>(
image: &DyldCacheImage<'data, 'cache, E, R>,
) -> Result<Self> {
let (data, header_offset) = image.image_data_and_offset()?;
let header = Mach::parse(data, header_offset)?;
let endian = header.endian()?;
// Build a list of sections to make some operations more efficient.
// Also build a list of segments, because we need to remember which ReadRef
// to read each section's data from. Only the DyldCache knows this information,
// and we won't have access to it once we've exited this function.
let mut segments = Vec::new();
let mut sections = Vec::new();
let mut linkedit_data: Option<R> = None;
let mut symtab = None;
if let Ok(mut commands) = header.load_commands(endian, data, header_offset) {
while let Ok(Some(command)) = commands.next() {
if let Some((segment, section_data)) = Mach::Segment::from_command(command)? {
// Each segment can be stored in a different subcache. Get the segment's
// address and look it up in the cache mappings, to find the correct cache data.
let addr = segment.vmaddr(endian).into();
let (data, _offset) = image
.cache
.data_and_offset_for_address(addr)
.read_error("Could not find segment data in dyld shared cache")?;
if segment.name() == macho::SEG_LINKEDIT.as_bytes() {
linkedit_data = Some(data);
}
let segment_index = segments.len();
segments.push(MachOSegmentInternal { segment, data });
for section in segment.sections(endian, section_data)? {
let index = SectionIndex(sections.len() + 1);
sections.push(MachOSectionInternal::parse(index, segment_index, section));
}
} else if let Some(st) = command.symtab()? {
symtab = Some(st);
}
}
}
// The symbols are found in the __LINKEDIT segment, so make sure to read them from the
// correct subcache.
let symbols = match (symtab, linkedit_data) {
(Some(symtab), Some(linkedit_data)) => symtab.symbols(endian, linkedit_data)?,
_ => SymbolTable::default(),
};
Ok(MachOFile {
endian,
data,
header_offset,
header,
segments,
sections,
symbols,
})
}
/// Return the section at the given index.
#[inline]
pub(super) fn section_internal(
&self,
index: SectionIndex,
) -> Result<&MachOSectionInternal<'data, Mach>> {
index
.0
.checked_sub(1)
.and_then(|index| self.sections.get(index))
.read_error("Invalid Mach-O section index")
}
pub(super) fn segment_internal(
&self,
index: usize,
) -> Result<&MachOSegmentInternal<'data, Mach, R>> {
self.segments
.get(index)
.read_error("Invalid Mach-O segment index")
}
/// Returns the endianness.
pub fn endian(&self) -> Mach::Endian {
self.endian
}
/// Returns the raw data.
pub fn data(&self) -> R {
self.data
}
/// Returns the raw Mach-O file header.
pub fn raw_header(&self) -> &'data Mach {
self.header
}
/// Return the `LC_BUILD_VERSION` load command if present.
pub fn build_version(&self) -> Result<Option<&'data macho::BuildVersionCommand<Mach::Endian>>> {
let mut commands = self
.header
.load_commands(self.endian, self.data, self.header_offset)?;
while let Some(command) = commands.next()? {
if let Some(build_version) = command.build_version()? {
return Ok(Some(build_version));
}
}
Ok(None)
}
}
impl<'data, Mach, R> read::private::Sealed for MachOFile<'data, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Mach, R> Object<'data, 'file> for MachOFile<'data, Mach, R>
where
'data: 'file,
Mach: MachHeader,
R: 'file + ReadRef<'data>,
{
type Segment = MachOSegment<'data, 'file, Mach, R>;
type SegmentIterator = MachOSegmentIterator<'data, 'file, Mach, R>;
type Section = MachOSection<'data, 'file, Mach, R>;
type SectionIterator = MachOSectionIterator<'data, 'file, Mach, R>;
type Comdat = MachOComdat<'data, 'file, Mach, R>;
type ComdatIterator = MachOComdatIterator<'data, 'file, Mach, R>;
type Symbol = MachOSymbol<'data, 'file, Mach, R>;
type SymbolIterator = MachOSymbolIterator<'data, 'file, Mach, R>;
type SymbolTable = MachOSymbolTable<'data, 'file, Mach, R>;
type DynamicRelocationIterator = NoDynamicRelocationIterator;
fn architecture(&self) -> Architecture {
match self.header.cputype(self.endian) {
macho::CPU_TYPE_ARM => Architecture::Arm,
macho::CPU_TYPE_ARM64 => Architecture::Aarch64,
macho::CPU_TYPE_ARM64_32 => Architecture::Aarch64_Ilp32,
macho::CPU_TYPE_X86 => Architecture::I386,
macho::CPU_TYPE_X86_64 => Architecture::X86_64,
macho::CPU_TYPE_MIPS => Architecture::Mips,
macho::CPU_TYPE_POWERPC => Architecture::PowerPc,
macho::CPU_TYPE_POWERPC64 => Architecture::PowerPc64,
_ => Architecture::Unknown,
}
}
fn sub_architecture(&self) -> Option<SubArchitecture> {
match (
self.header.cputype(self.endian),
self.header.cpusubtype(self.endian),
) {
(macho::CPU_TYPE_ARM64, macho::CPU_SUBTYPE_ARM64E) => Some(SubArchitecture::Arm64E),
_ => None,
}
}
#[inline]
fn is_little_endian(&self) -> bool {
self.header.is_little_endian()
}
#[inline]
fn is_64(&self) -> bool {
self.header.is_type_64()
}
fn kind(&self) -> ObjectKind {
match self.header.filetype(self.endian) {
macho::MH_OBJECT => ObjectKind::Relocatable,
macho::MH_EXECUTE => ObjectKind::Executable,
macho::MH_CORE => ObjectKind::Core,
macho::MH_DYLIB => ObjectKind::Dynamic,
_ => ObjectKind::Unknown,
}
}
fn segments(&'file self) -> MachOSegmentIterator<'data, 'file, Mach, R> {
MachOSegmentIterator {
file: self,
iter: self.segments.iter(),
}
}
fn section_by_name_bytes(
&'file self,
section_name: &[u8],
) -> Option<MachOSection<'data, 'file, Mach, R>> {
// Translate the "." prefix to the "__" prefix used by OSX/Mach-O, eg
// ".debug_info" to "__debug_info", and limit to 16 bytes total.
let system_name = if section_name.starts_with(b".") {
if section_name.len() > 15 {
Some(&section_name[1..15])
} else {
Some(&section_name[1..])
}
} else {
None
};
let cmp_section_name = |section: &MachOSection<'data, 'file, Mach, R>| {
section
.name_bytes()
.map(|name| {
section_name == name
|| system_name
.filter(|system_name| {
name.starts_with(b"__") && name[2..] == **system_name
})
.is_some()
})
.unwrap_or(false)
};
self.sections().find(cmp_section_name)
}
fn section_by_index(
&'file self,
index: SectionIndex,
) -> Result<MachOSection<'data, 'file, Mach, R>> {
let internal = *self.section_internal(index)?;
Ok(MachOSection {
file: self,
internal,
})
}
fn sections(&'file self) -> MachOSectionIterator<'data, 'file, Mach, R> {
MachOSectionIterator {
file: self,
iter: self.sections.iter(),
}
}
fn comdats(&'file self) -> MachOComdatIterator<'data, 'file, Mach, R> {
MachOComdatIterator { file: self }
}
fn symbol_by_index(
&'file self,
index: SymbolIndex,
) -> Result<MachOSymbol<'data, 'file, Mach, R>> {
let nlist = self.symbols.symbol(index.0)?;
MachOSymbol::new(self, index, nlist).read_error("Unsupported Mach-O symbol index")
}
fn symbols(&'file self) -> MachOSymbolIterator<'data, 'file, Mach, R> {
MachOSymbolIterator {
file: self,
index: 0,
}
}
#[inline]
fn symbol_table(&'file self) -> Option<MachOSymbolTable<'data, 'file, Mach, R>> {
Some(MachOSymbolTable { file: self })
}
fn dynamic_symbols(&'file self) -> MachOSymbolIterator<'data, 'file, Mach, R> {
MachOSymbolIterator {
file: self,
index: self.symbols.len(),
}
}
#[inline]
fn dynamic_symbol_table(&'file self) -> Option<MachOSymbolTable<'data, 'file, Mach, R>> {
None
}
fn object_map(&'file self) -> ObjectMap<'data> {
self.symbols.object_map(self.endian)
}
fn imports(&self) -> Result<Vec<Import<'data>>> {
let mut dysymtab = None;
let mut libraries = Vec::new();
let twolevel = self.header.flags(self.endian) & macho::MH_TWOLEVEL != 0;
if twolevel {
libraries.push(&[][..]);
}
let mut commands = self
.header
.load_commands(self.endian, self.data, self.header_offset)?;
while let Some(command) = commands.next()? {
if let Some(command) = command.dysymtab()? {
dysymtab = Some(command);
}
if twolevel {
if let Some(dylib) = command.dylib()? {
libraries.push(command.string(self.endian, dylib.dylib.name)?);
}
}
}
let mut imports = Vec::new();
if let Some(dysymtab) = dysymtab {
let index = dysymtab.iundefsym.get(self.endian) as usize;
let number = dysymtab.nundefsym.get(self.endian) as usize;
for i in index..(index.wrapping_add(number)) {
let symbol = self.symbols.symbol(i)?;
let name = symbol.name(self.endian, self.symbols.strings())?;
let library = if twolevel {
libraries
.get(symbol.library_ordinal(self.endian) as usize)
.copied()
.read_error("Invalid Mach-O symbol library ordinal")?
} else {
&[]
};
imports.push(Import {
name: ByteString(name),
library: ByteString(library),
});
}
}
Ok(imports)
}
fn exports(&self) -> Result<Vec<Export<'data>>> {
let mut dysymtab = None;
let mut commands = self
.header
.load_commands(self.endian, self.data, self.header_offset)?;
while let Some(command) = commands.next()? {
if let Some(command) = command.dysymtab()? {
dysymtab = Some(command);
break;
}
}
let mut exports = Vec::new();
if let Some(dysymtab) = dysymtab {
let index = dysymtab.iextdefsym.get(self.endian) as usize;
let number = dysymtab.nextdefsym.get(self.endian) as usize;
for i in index..(index.wrapping_add(number)) {
let symbol = self.symbols.symbol(i)?;
let name = symbol.name(self.endian, self.symbols.strings())?;
let address = symbol.n_value(self.endian).into();
exports.push(Export {
name: ByteString(name),
address,
});
}
}
Ok(exports)
}
#[inline]
fn dynamic_relocations(&'file self) -> Option<NoDynamicRelocationIterator> {
None
}
fn has_debug_symbols(&self) -> bool {
self.section_by_name(".debug_info").is_some()
}
fn mach_uuid(&self) -> Result<Option<[u8; 16]>> {
self.header.uuid(self.endian, self.data, self.header_offset)
}
fn relative_address_base(&self) -> u64 {
0
}
fn entry(&self) -> u64 {
if let Ok(mut commands) =
self.header
.load_commands(self.endian, self.data, self.header_offset)
{
while let Ok(Some(command)) = commands.next() {
if let Ok(Some(command)) = command.entry_point() {
return command.entryoff.get(self.endian);
}
}
}
0
}
fn flags(&self) -> FileFlags {
FileFlags::MachO {
flags: self.header.flags(self.endian),
}
}
}
/// An iterator for the COMDAT section groups in a [`MachOFile64`].
pub type MachOComdatIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOComdatIterator<'data, 'file, macho::MachHeader32<Endian>, R>;
/// An iterator for the COMDAT section groups in a [`MachOFile64`].
pub type MachOComdatIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOComdatIterator<'data, 'file, macho::MachHeader64<Endian>, R>;
/// An iterator for the COMDAT section groups in a [`MachOFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct MachOComdatIterator<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
file: &'file MachOFile<'data, Mach, R>,
}
impl<'data, 'file, Mach, R> Iterator for MachOComdatIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type Item = MachOComdat<'data, 'file, Mach, R>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
None
}
}
/// A COMDAT section group in a [`MachOFile32`].
pub type MachOComdat32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOComdat<'data, 'file, macho::MachHeader32<Endian>, R>;
/// A COMDAT section group in a [`MachOFile64`].
pub type MachOComdat64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOComdat<'data, 'file, macho::MachHeader64<Endian>, R>;
/// A COMDAT section group in a [`MachOFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct MachOComdat<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
file: &'file MachOFile<'data, Mach, R>,
}
impl<'data, 'file, Mach, R> read::private::Sealed for MachOComdat<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Mach, R> ObjectComdat<'data> for MachOComdat<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type SectionIterator = MachOComdatSectionIterator<'data, 'file, Mach, R>;
#[inline]
fn kind(&self) -> ComdatKind {
unreachable!();
}
#[inline]
fn symbol(&self) -> SymbolIndex {
unreachable!();
}
#[inline]
fn name_bytes(&self) -> Result<&[u8]> {
unreachable!();
}
#[inline]
fn name(&self) -> Result<&str> {
unreachable!();
}
#[inline]
fn sections(&self) -> Self::SectionIterator {
unreachable!();
}
}
/// An iterator for the sections in a COMDAT section group in a [`MachOFile32`].
pub type MachOComdatSectionIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOComdatSectionIterator<'data, 'file, macho::MachHeader32<Endian>, R>;
/// An iterator for the sections in a COMDAT section group in a [`MachOFile64`].
pub type MachOComdatSectionIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOComdatSectionIterator<'data, 'file, macho::MachHeader64<Endian>, R>;
/// An iterator for the sections in a COMDAT section group in a [`MachOFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct MachOComdatSectionIterator<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
file: &'file MachOFile<'data, Mach, R>,
}
impl<'data, 'file, Mach, R> Iterator for MachOComdatSectionIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type Item = SectionIndex;
fn next(&mut self) -> Option<Self::Item> {
None
}
}
/// A trait for generic access to [`macho::MachHeader32`] and [`macho::MachHeader64`].
#[allow(missing_docs)]
pub trait MachHeader: Debug + Pod {
type Word: Into<u64>;
type Endian: endian::Endian;
type Segment: Segment<Endian = Self::Endian, Section = Self::Section>;
type Section: Section<Endian = Self::Endian>;
type Nlist: Nlist<Endian = Self::Endian>;
/// Return true if this type is a 64-bit header.
///
/// This is a property of the type, not a value in the header data.
fn is_type_64(&self) -> bool;
/// Return true if the `magic` field signifies big-endian.
fn is_big_endian(&self) -> bool;
/// Return true if the `magic` field signifies little-endian.
fn is_little_endian(&self) -> bool;
fn magic(&self) -> u32;
fn cputype(&self, endian: Self::Endian) -> u32;
fn cpusubtype(&self, endian: Self::Endian) -> u32;
fn filetype(&self, endian: Self::Endian) -> u32;
fn ncmds(&self, endian: Self::Endian) -> u32;
fn sizeofcmds(&self, endian: Self::Endian) -> u32;
fn flags(&self, endian: Self::Endian) -> u32;
// Provided methods.
/// Read the file header.
///
/// Also checks that the magic field in the file header is a supported format.
fn parse<'data, R: ReadRef<'data>>(data: R, offset: u64) -> read::Result<&'data Self> {
let header = data
.read_at::<Self>(offset)
.read_error("Invalid Mach-O header size or alignment")?;
if !header.is_supported() {
return Err(Error("Unsupported Mach-O header"));
}
Ok(header)
}
fn is_supported(&self) -> bool {
self.is_little_endian() || self.is_big_endian()
}
fn endian(&self) -> Result<Self::Endian> {
Self::Endian::from_big_endian(self.is_big_endian()).read_error("Unsupported Mach-O endian")
}
fn load_commands<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
header_offset: u64,
) -> Result<LoadCommandIterator<'data, Self::Endian>> {
let data = data
.read_bytes_at(
header_offset + mem::size_of::<Self>() as u64,
self.sizeofcmds(endian).into(),
)
.read_error("Invalid Mach-O load command table size")?;
Ok(LoadCommandIterator::new(endian, data, self.ncmds(endian)))
}
/// Return the UUID from the `LC_UUID` load command, if one is present.
fn uuid<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
header_offset: u64,
) -> Result<Option<[u8; 16]>> {
let mut commands = self.load_commands(endian, data, header_offset)?;
while let Some(command) = commands.next()? {
if let Ok(Some(uuid)) = command.uuid() {
return Ok(Some(uuid.uuid));
}
}
Ok(None)
}
}
impl<Endian: endian::Endian> MachHeader for macho::MachHeader32<Endian> {
type Word = u32;
type Endian = Endian;
type Segment = macho::SegmentCommand32<Endian>;
type Section = macho::Section32<Endian>;
type Nlist = macho::Nlist32<Endian>;
fn is_type_64(&self) -> bool {
false
}
fn is_big_endian(&self) -> bool {
self.magic() == macho::MH_MAGIC
}
fn is_little_endian(&self) -> bool {
self.magic() == macho::MH_CIGAM
}
fn magic(&self) -> u32 {
self.magic.get(BigEndian)
}
fn cputype(&self, endian: Self::Endian) -> u32 {
self.cputype.get(endian)
}
fn cpusubtype(&self, endian: Self::Endian) -> u32 {
self.cpusubtype.get(endian)
}
fn filetype(&self, endian: Self::Endian) -> u32 {
self.filetype.get(endian)
}
fn ncmds(&self, endian: Self::Endian) -> u32 {
self.ncmds.get(endian)
}
fn sizeofcmds(&self, endian: Self::Endian) -> u32 {
self.sizeofcmds.get(endian)
}
fn flags(&self, endian: Self::Endian) -> u32 {
self.flags.get(endian)
}
}
impl<Endian: endian::Endian> MachHeader for macho::MachHeader64<Endian> {
type Word = u64;
type Endian = Endian;
type Segment = macho::SegmentCommand64<Endian>;
type Section = macho::Section64<Endian>;
type Nlist = macho::Nlist64<Endian>;
fn is_type_64(&self) -> bool {
true
}
fn is_big_endian(&self) -> bool {
self.magic() == macho::MH_MAGIC_64
}
fn is_little_endian(&self) -> bool {
self.magic() == macho::MH_CIGAM_64
}
fn magic(&self) -> u32 {
self.magic.get(BigEndian)
}
fn cputype(&self, endian: Self::Endian) -> u32 {
self.cputype.get(endian)
}
fn cpusubtype(&self, endian: Self::Endian) -> u32 {
self.cpusubtype.get(endian)
}
fn filetype(&self, endian: Self::Endian) -> u32 {
self.filetype.get(endian)
}
fn ncmds(&self, endian: Self::Endian) -> u32 {
self.ncmds.get(endian)
}
fn sizeofcmds(&self, endian: Self::Endian) -> u32 {
self.sizeofcmds.get(endian)
}
fn flags(&self, endian: Self::Endian) -> u32 {
self.flags.get(endian)
}
}

View File

@ -0,0 +1,382 @@
use core::marker::PhantomData;
use core::mem;
use crate::endian::Endian;
use crate::macho;
use crate::pod::Pod;
use crate::read::macho::{MachHeader, SymbolTable};
use crate::read::{Bytes, Error, ReadError, ReadRef, Result, StringTable};
/// An iterator for the load commands from a [`MachHeader`].
#[derive(Debug, Default, Clone, Copy)]
pub struct LoadCommandIterator<'data, E: Endian> {
endian: E,
data: Bytes<'data>,
ncmds: u32,
}
impl<'data, E: Endian> LoadCommandIterator<'data, E> {
pub(super) fn new(endian: E, data: &'data [u8], ncmds: u32) -> Self {
LoadCommandIterator {
endian,
data: Bytes(data),
ncmds,
}
}
/// Return the next load command.
pub fn next(&mut self) -> Result<Option<LoadCommandData<'data, E>>> {
if self.ncmds == 0 {
return Ok(None);
}
let header = self
.data
.read_at::<macho::LoadCommand<E>>(0)
.read_error("Invalid Mach-O load command header")?;
let cmd = header.cmd.get(self.endian);
let cmdsize = header.cmdsize.get(self.endian) as usize;
if cmdsize < mem::size_of::<macho::LoadCommand<E>>() {
return Err(Error("Invalid Mach-O load command size"));
}
let data = self
.data
.read_bytes(cmdsize)
.read_error("Invalid Mach-O load command size")?;
self.ncmds -= 1;
Ok(Some(LoadCommandData {
cmd,
data,
marker: Default::default(),
}))
}
}
/// The data for a [`macho::LoadCommand`].
#[derive(Debug, Clone, Copy)]
pub struct LoadCommandData<'data, E: Endian> {
cmd: u32,
// Includes the header.
data: Bytes<'data>,
marker: PhantomData<E>,
}
impl<'data, E: Endian> LoadCommandData<'data, E> {
/// Return the `cmd` field of the [`macho::LoadCommand`].
///
/// This is one of the `LC_` constants.
pub fn cmd(&self) -> u32 {
self.cmd
}
/// Return the `cmdsize` field of the [`macho::LoadCommand`].
pub fn cmdsize(&self) -> u32 {
self.data.len() as u32
}
/// Parse the data as the given type.
#[inline]
pub fn data<T: Pod>(&self) -> Result<&'data T> {
self.data
.read_at(0)
.read_error("Invalid Mach-O command size")
}
/// Raw bytes of this [`macho::LoadCommand`] structure.
pub fn raw_data(&self) -> &'data [u8] {
self.data.0
}
/// Parse a load command string value.
///
/// Strings used by load commands are specified by offsets that are
/// relative to the load command header.
pub fn string(&self, endian: E, s: macho::LcStr<E>) -> Result<&'data [u8]> {
self.data
.read_string_at(s.offset.get(endian) as usize)
.read_error("Invalid load command string offset")
}
/// Parse the command data according to the `cmd` field.
pub fn variant(&self) -> Result<LoadCommandVariant<'data, E>> {
Ok(match self.cmd {
macho::LC_SEGMENT => {
let mut data = self.data;
let segment = data.read().read_error("Invalid Mach-O command size")?;
LoadCommandVariant::Segment32(segment, data.0)
}
macho::LC_SYMTAB => LoadCommandVariant::Symtab(self.data()?),
macho::LC_THREAD | macho::LC_UNIXTHREAD => {
let mut data = self.data;
let thread = data.read().read_error("Invalid Mach-O command size")?;
LoadCommandVariant::Thread(thread, data.0)
}
macho::LC_DYSYMTAB => LoadCommandVariant::Dysymtab(self.data()?),
macho::LC_LOAD_DYLIB
| macho::LC_LOAD_WEAK_DYLIB
| macho::LC_REEXPORT_DYLIB
| macho::LC_LAZY_LOAD_DYLIB
| macho::LC_LOAD_UPWARD_DYLIB => LoadCommandVariant::Dylib(self.data()?),
macho::LC_ID_DYLIB => LoadCommandVariant::IdDylib(self.data()?),
macho::LC_LOAD_DYLINKER => LoadCommandVariant::LoadDylinker(self.data()?),
macho::LC_ID_DYLINKER => LoadCommandVariant::IdDylinker(self.data()?),
macho::LC_PREBOUND_DYLIB => LoadCommandVariant::PreboundDylib(self.data()?),
macho::LC_ROUTINES => LoadCommandVariant::Routines32(self.data()?),
macho::LC_SUB_FRAMEWORK => LoadCommandVariant::SubFramework(self.data()?),
macho::LC_SUB_UMBRELLA => LoadCommandVariant::SubUmbrella(self.data()?),
macho::LC_SUB_CLIENT => LoadCommandVariant::SubClient(self.data()?),
macho::LC_SUB_LIBRARY => LoadCommandVariant::SubLibrary(self.data()?),
macho::LC_TWOLEVEL_HINTS => LoadCommandVariant::TwolevelHints(self.data()?),
macho::LC_PREBIND_CKSUM => LoadCommandVariant::PrebindCksum(self.data()?),
macho::LC_SEGMENT_64 => {
let mut data = self.data;
let segment = data.read().read_error("Invalid Mach-O command size")?;
LoadCommandVariant::Segment64(segment, data.0)
}
macho::LC_ROUTINES_64 => LoadCommandVariant::Routines64(self.data()?),
macho::LC_UUID => LoadCommandVariant::Uuid(self.data()?),
macho::LC_RPATH => LoadCommandVariant::Rpath(self.data()?),
macho::LC_CODE_SIGNATURE
| macho::LC_SEGMENT_SPLIT_INFO
| macho::LC_FUNCTION_STARTS
| macho::LC_DATA_IN_CODE
| macho::LC_DYLIB_CODE_SIGN_DRS
| macho::LC_LINKER_OPTIMIZATION_HINT
| macho::LC_DYLD_EXPORTS_TRIE
| macho::LC_DYLD_CHAINED_FIXUPS => LoadCommandVariant::LinkeditData(self.data()?),
macho::LC_ENCRYPTION_INFO => LoadCommandVariant::EncryptionInfo32(self.data()?),
macho::LC_DYLD_INFO | macho::LC_DYLD_INFO_ONLY => {
LoadCommandVariant::DyldInfo(self.data()?)
}
macho::LC_VERSION_MIN_MACOSX
| macho::LC_VERSION_MIN_IPHONEOS
| macho::LC_VERSION_MIN_TVOS
| macho::LC_VERSION_MIN_WATCHOS => LoadCommandVariant::VersionMin(self.data()?),
macho::LC_DYLD_ENVIRONMENT => LoadCommandVariant::DyldEnvironment(self.data()?),
macho::LC_MAIN => LoadCommandVariant::EntryPoint(self.data()?),
macho::LC_SOURCE_VERSION => LoadCommandVariant::SourceVersion(self.data()?),
macho::LC_ENCRYPTION_INFO_64 => LoadCommandVariant::EncryptionInfo64(self.data()?),
macho::LC_LINKER_OPTION => LoadCommandVariant::LinkerOption(self.data()?),
macho::LC_NOTE => LoadCommandVariant::Note(self.data()?),
macho::LC_BUILD_VERSION => LoadCommandVariant::BuildVersion(self.data()?),
macho::LC_FILESET_ENTRY => LoadCommandVariant::FilesetEntry(self.data()?),
_ => LoadCommandVariant::Other,
})
}
/// Try to parse this command as a [`macho::SegmentCommand32`].
///
/// Returns the segment command and the data containing the sections.
pub fn segment_32(self) -> Result<Option<(&'data macho::SegmentCommand32<E>, &'data [u8])>> {
if self.cmd == macho::LC_SEGMENT {
let mut data = self.data;
let segment = data.read().read_error("Invalid Mach-O command size")?;
Ok(Some((segment, data.0)))
} else {
Ok(None)
}
}
/// Try to parse this command as a [`macho::SymtabCommand`].
///
/// Returns the segment command and the data containing the sections.
pub fn symtab(self) -> Result<Option<&'data macho::SymtabCommand<E>>> {
if self.cmd == macho::LC_SYMTAB {
Some(self.data()).transpose()
} else {
Ok(None)
}
}
/// Try to parse this command as a [`macho::DysymtabCommand`].
pub fn dysymtab(self) -> Result<Option<&'data macho::DysymtabCommand<E>>> {
if self.cmd == macho::LC_DYSYMTAB {
Some(self.data()).transpose()
} else {
Ok(None)
}
}
/// Try to parse this command as a [`macho::DylibCommand`].
pub fn dylib(self) -> Result<Option<&'data macho::DylibCommand<E>>> {
if self.cmd == macho::LC_LOAD_DYLIB
|| self.cmd == macho::LC_LOAD_WEAK_DYLIB
|| self.cmd == macho::LC_REEXPORT_DYLIB
|| self.cmd == macho::LC_LAZY_LOAD_DYLIB
|| self.cmd == macho::LC_LOAD_UPWARD_DYLIB
{
Some(self.data()).transpose()
} else {
Ok(None)
}
}
/// Try to parse this command as a [`macho::UuidCommand`].
pub fn uuid(self) -> Result<Option<&'data macho::UuidCommand<E>>> {
if self.cmd == macho::LC_UUID {
Some(self.data()).transpose()
} else {
Ok(None)
}
}
/// Try to parse this command as a [`macho::SegmentCommand64`].
pub fn segment_64(self) -> Result<Option<(&'data macho::SegmentCommand64<E>, &'data [u8])>> {
if self.cmd == macho::LC_SEGMENT_64 {
let mut data = self.data;
let command = data.read().read_error("Invalid Mach-O command size")?;
Ok(Some((command, data.0)))
} else {
Ok(None)
}
}
/// Try to parse this command as a [`macho::DyldInfoCommand`].
pub fn dyld_info(self) -> Result<Option<&'data macho::DyldInfoCommand<E>>> {
if self.cmd == macho::LC_DYLD_INFO || self.cmd == macho::LC_DYLD_INFO_ONLY {
Some(self.data()).transpose()
} else {
Ok(None)
}
}
/// Try to parse this command as an [`macho::EntryPointCommand`].
pub fn entry_point(self) -> Result<Option<&'data macho::EntryPointCommand<E>>> {
if self.cmd == macho::LC_MAIN {
Some(self.data()).transpose()
} else {
Ok(None)
}
}
/// Try to parse this command as a [`macho::BuildVersionCommand`].
pub fn build_version(self) -> Result<Option<&'data macho::BuildVersionCommand<E>>> {
if self.cmd == macho::LC_BUILD_VERSION {
Some(self.data()).transpose()
} else {
Ok(None)
}
}
}
/// A [`macho::LoadCommand`] that has been interpreted according to its `cmd` field.
#[derive(Debug, Clone, Copy)]
#[non_exhaustive]
pub enum LoadCommandVariant<'data, E: Endian> {
/// `LC_SEGMENT`
Segment32(&'data macho::SegmentCommand32<E>, &'data [u8]),
/// `LC_SYMTAB`
Symtab(&'data macho::SymtabCommand<E>),
// obsolete: `LC_SYMSEG`
//Symseg(&'data macho::SymsegCommand<E>),
/// `LC_THREAD` or `LC_UNIXTHREAD`
Thread(&'data macho::ThreadCommand<E>, &'data [u8]),
// obsolete: `LC_IDFVMLIB` or `LC_LOADFVMLIB`
//Fvmlib(&'data macho::FvmlibCommand<E>),
// obsolete: `LC_IDENT`
//Ident(&'data macho::IdentCommand<E>),
// internal: `LC_FVMFILE`
//Fvmfile(&'data macho::FvmfileCommand<E>),
// internal: `LC_PREPAGE`
/// `LC_DYSYMTAB`
Dysymtab(&'data macho::DysymtabCommand<E>),
/// `LC_LOAD_DYLIB`, `LC_LOAD_WEAK_DYLIB`, `LC_REEXPORT_DYLIB`,
/// `LC_LAZY_LOAD_DYLIB`, or `LC_LOAD_UPWARD_DYLIB`
Dylib(&'data macho::DylibCommand<E>),
/// `LC_ID_DYLIB`
IdDylib(&'data macho::DylibCommand<E>),
/// `LC_LOAD_DYLINKER`
LoadDylinker(&'data macho::DylinkerCommand<E>),
/// `LC_ID_DYLINKER`
IdDylinker(&'data macho::DylinkerCommand<E>),
/// `LC_PREBOUND_DYLIB`
PreboundDylib(&'data macho::PreboundDylibCommand<E>),
/// `LC_ROUTINES`
Routines32(&'data macho::RoutinesCommand32<E>),
/// `LC_SUB_FRAMEWORK`
SubFramework(&'data macho::SubFrameworkCommand<E>),
/// `LC_SUB_UMBRELLA`
SubUmbrella(&'data macho::SubUmbrellaCommand<E>),
/// `LC_SUB_CLIENT`
SubClient(&'data macho::SubClientCommand<E>),
/// `LC_SUB_LIBRARY`
SubLibrary(&'data macho::SubLibraryCommand<E>),
/// `LC_TWOLEVEL_HINTS`
TwolevelHints(&'data macho::TwolevelHintsCommand<E>),
/// `LC_PREBIND_CKSUM`
PrebindCksum(&'data macho::PrebindCksumCommand<E>),
/// `LC_SEGMENT_64`
Segment64(&'data macho::SegmentCommand64<E>, &'data [u8]),
/// `LC_ROUTINES_64`
Routines64(&'data macho::RoutinesCommand64<E>),
/// `LC_UUID`
Uuid(&'data macho::UuidCommand<E>),
/// `LC_RPATH`
Rpath(&'data macho::RpathCommand<E>),
/// `LC_CODE_SIGNATURE`, `LC_SEGMENT_SPLIT_INFO`, `LC_FUNCTION_STARTS`,
/// `LC_DATA_IN_CODE`, `LC_DYLIB_CODE_SIGN_DRS`, `LC_LINKER_OPTIMIZATION_HINT`,
/// `LC_DYLD_EXPORTS_TRIE`, or `LC_DYLD_CHAINED_FIXUPS`.
LinkeditData(&'data macho::LinkeditDataCommand<E>),
/// `LC_ENCRYPTION_INFO`
EncryptionInfo32(&'data macho::EncryptionInfoCommand32<E>),
/// `LC_DYLD_INFO` or `LC_DYLD_INFO_ONLY`
DyldInfo(&'data macho::DyldInfoCommand<E>),
/// `LC_VERSION_MIN_MACOSX`, `LC_VERSION_MIN_IPHONEOS`, `LC_VERSION_MIN_WATCHOS`,
/// or `LC_VERSION_MIN_TVOS`
VersionMin(&'data macho::VersionMinCommand<E>),
/// `LC_DYLD_ENVIRONMENT`
DyldEnvironment(&'data macho::DylinkerCommand<E>),
/// `LC_MAIN`
EntryPoint(&'data macho::EntryPointCommand<E>),
/// `LC_SOURCE_VERSION`
SourceVersion(&'data macho::SourceVersionCommand<E>),
/// `LC_ENCRYPTION_INFO_64`
EncryptionInfo64(&'data macho::EncryptionInfoCommand64<E>),
/// `LC_LINKER_OPTION`
LinkerOption(&'data macho::LinkerOptionCommand<E>),
/// `LC_NOTE`
Note(&'data macho::NoteCommand<E>),
/// `LC_BUILD_VERSION`
BuildVersion(&'data macho::BuildVersionCommand<E>),
/// `LC_FILESET_ENTRY`
FilesetEntry(&'data macho::FilesetEntryCommand<E>),
/// An unrecognized or obsolete load command.
Other,
}
impl<E: Endian> macho::SymtabCommand<E> {
/// Return the symbol table that this command references.
pub fn symbols<'data, Mach: MachHeader<Endian = E>, R: ReadRef<'data>>(
&self,
endian: E,
data: R,
) -> Result<SymbolTable<'data, Mach, R>> {
let symbols = data
.read_slice_at(
self.symoff.get(endian).into(),
self.nsyms.get(endian) as usize,
)
.read_error("Invalid Mach-O symbol table offset or size")?;
let str_start: u64 = self.stroff.get(endian).into();
let str_end = str_start
.checked_add(self.strsize.get(endian).into())
.read_error("Invalid Mach-O string table length")?;
let strings = StringTable::new(data, str_start, str_end);
Ok(SymbolTable::new(symbols, strings))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::LittleEndian;
#[test]
fn cmd_size_invalid() {
let mut commands = LoadCommandIterator::new(LittleEndian, &[0; 8], 10);
assert!(commands.next().is_err());
let mut commands = LoadCommandIterator::new(LittleEndian, &[0, 0, 0, 0, 7, 0, 0, 0, 0], 10);
assert!(commands.next().is_err());
let mut commands = LoadCommandIterator::new(LittleEndian, &[0, 0, 0, 0, 8, 0, 0, 0, 0], 10);
assert!(commands.next().is_ok());
}
}

72
vendor/object/src/read/macho/mod.rs vendored Normal file
View File

@ -0,0 +1,72 @@
//! Support for reading Mach-O files.
//!
//! Traits are used to abstract over the difference between 32-bit and 64-bit Mach-O
//! files. The primary trait for this is [`MachHeader`].
//!
//! ## High level API
//!
//! [`MachOFile`] implements the [`Object`](crate::read::Object) trait for Mach-O files.
//! [`MachOFile`] is parameterised by [`MachHeader`] to allow reading both 32-bit and
//! 64-bit Mach-O files. There are type aliases for these parameters ([`MachOFile32`] and
//! [`MachOFile64`]).
//!
//! ## Low level API
//!
//! The [`MachHeader`] trait can be directly used to parse both [`macho::MachHeader32`]
//! and [`macho::MachHeader64`]. Additionally, [`FatHeader`] and the [`FatArch`] trait
//! can be used to iterate images in multi-architecture binaries, and [`DyldCache`] can
//! be used to locate images in a dyld shared cache.
//!
//! ### Example for low level API
//! ```no_run
//! use object::macho;
//! use object::read::macho::{MachHeader, Nlist};
//! use std::error::Error;
//! use std::fs;
//!
//! /// Reads a file and displays the name of each symbol.
//! fn main() -> Result<(), Box<dyn Error>> {
//! # #[cfg(feature = "std")] {
//! let data = fs::read("path/to/binary")?;
//! let header = macho::MachHeader64::<object::Endianness>::parse(&*data, 0)?;
//! let endian = header.endian()?;
//! let mut commands = header.load_commands(endian, &*data, 0)?;
//! while let Some(command) = commands.next()? {
//! if let Some(symtab_command) = command.symtab()? {
//! let symbols = symtab_command.symbols::<macho::MachHeader64<_>, _>(endian, &*data)?;
//! for symbol in symbols.iter() {
//! let name = symbol.name(endian, symbols.strings())?;
//! println!("{}", String::from_utf8_lossy(name));
//! }
//! }
//! }
//! # }
//! Ok(())
//! }
//! ```
#[cfg(doc)]
use crate::macho;
mod dyld_cache;
pub use dyld_cache::*;
mod fat;
pub use fat::*;
mod file;
pub use file::*;
mod load_command;
pub use load_command::*;
mod segment;
pub use segment::*;
mod section;
pub use section::*;
mod symbol;
pub use symbol::*;
mod relocation;
pub use relocation::*;

View File

@ -0,0 +1,158 @@
use core::{fmt, slice};
use crate::endian::Endianness;
use crate::macho;
use crate::read::{
ReadRef, Relocation, RelocationEncoding, RelocationKind, RelocationTarget, SectionIndex,
SymbolIndex,
};
use super::{MachHeader, MachOFile};
/// An iterator for the relocations in a [`MachOSection32`](super::MachOSection32).
pub type MachORelocationIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachORelocationIterator<'data, 'file, macho::MachHeader32<Endian>, R>;
/// An iterator for the relocations in a [`MachOSection64`](super::MachOSection64).
pub type MachORelocationIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachORelocationIterator<'data, 'file, macho::MachHeader64<Endian>, R>;
/// An iterator for the relocations in a [`MachOSection`](super::MachOSection).
pub struct MachORelocationIterator<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file MachOFile<'data, Mach, R>,
pub(super) relocations: slice::Iter<'data, macho::Relocation<Mach::Endian>>,
}
impl<'data, 'file, Mach, R> Iterator for MachORelocationIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type Item = (u64, Relocation);
fn next(&mut self) -> Option<Self::Item> {
let mut paired_addend = 0;
loop {
let reloc = self.relocations.next()?;
let endian = self.file.endian;
let cputype = self.file.header.cputype(endian);
if reloc.r_scattered(endian, cputype) {
// FIXME: handle scattered relocations
// We need to add `RelocationTarget::Address` for this.
continue;
}
let reloc = reloc.info(self.file.endian);
let mut encoding = RelocationEncoding::Generic;
let kind = match cputype {
macho::CPU_TYPE_ARM => match (reloc.r_type, reloc.r_pcrel) {
(macho::ARM_RELOC_VANILLA, false) => RelocationKind::Absolute,
_ => RelocationKind::MachO {
value: reloc.r_type,
relative: reloc.r_pcrel,
},
},
macho::CPU_TYPE_ARM64 | macho::CPU_TYPE_ARM64_32 => {
match (reloc.r_type, reloc.r_pcrel) {
(macho::ARM64_RELOC_UNSIGNED, false) => RelocationKind::Absolute,
(macho::ARM64_RELOC_ADDEND, _) => {
paired_addend = i64::from(reloc.r_symbolnum)
.wrapping_shl(64 - 24)
.wrapping_shr(64 - 24);
continue;
}
_ => RelocationKind::MachO {
value: reloc.r_type,
relative: reloc.r_pcrel,
},
}
}
macho::CPU_TYPE_X86 => match (reloc.r_type, reloc.r_pcrel) {
(macho::GENERIC_RELOC_VANILLA, false) => RelocationKind::Absolute,
_ => RelocationKind::MachO {
value: reloc.r_type,
relative: reloc.r_pcrel,
},
},
macho::CPU_TYPE_X86_64 => match (reloc.r_type, reloc.r_pcrel) {
(macho::X86_64_RELOC_UNSIGNED, false) => RelocationKind::Absolute,
(macho::X86_64_RELOC_SIGNED, true) => {
encoding = RelocationEncoding::X86RipRelative;
RelocationKind::Relative
}
(macho::X86_64_RELOC_BRANCH, true) => {
encoding = RelocationEncoding::X86Branch;
RelocationKind::Relative
}
(macho::X86_64_RELOC_GOT, true) => RelocationKind::GotRelative,
(macho::X86_64_RELOC_GOT_LOAD, true) => {
encoding = RelocationEncoding::X86RipRelativeMovq;
RelocationKind::GotRelative
}
_ => RelocationKind::MachO {
value: reloc.r_type,
relative: reloc.r_pcrel,
},
},
_ => RelocationKind::MachO {
value: reloc.r_type,
relative: reloc.r_pcrel,
},
};
let size = 8 << reloc.r_length;
let target = if reloc.r_extern {
RelocationTarget::Symbol(SymbolIndex(reloc.r_symbolnum as usize))
} else {
RelocationTarget::Section(SectionIndex(reloc.r_symbolnum as usize))
};
let implicit_addend = paired_addend == 0;
let mut addend = paired_addend;
if reloc.r_pcrel {
// For PC relative relocations on some architectures, the
// addend does not include the offset required due to the
// PC being different from the place of the relocation.
// This differs from other file formats, so adjust the
// addend here to account for this.
match cputype {
macho::CPU_TYPE_X86 => {
addend -= 1 << reloc.r_length;
}
macho::CPU_TYPE_X86_64 => {
addend -= 1 << reloc.r_length;
match reloc.r_type {
macho::X86_64_RELOC_SIGNED_1 => addend -= 1,
macho::X86_64_RELOC_SIGNED_2 => addend -= 2,
macho::X86_64_RELOC_SIGNED_4 => addend -= 4,
_ => {}
}
}
// TODO: maybe missing support for some architectures and relocations
_ => {}
}
}
return Some((
reloc.r_address as u64,
Relocation {
kind,
encoding,
size,
target,
addend,
implicit_addend,
},
));
}
}
}
impl<'data, 'file, Mach, R> fmt::Debug for MachORelocationIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("MachORelocationIterator").finish()
}
}

389
vendor/object/src/read/macho/section.rs vendored Normal file
View File

@ -0,0 +1,389 @@
use core::fmt::Debug;
use core::{fmt, result, slice, str};
use crate::endian::{self, Endianness};
use crate::macho;
use crate::pod::Pod;
use crate::read::{
self, CompressedData, CompressedFileRange, ObjectSection, ReadError, ReadRef, Result,
SectionFlags, SectionIndex, SectionKind,
};
use super::{MachHeader, MachOFile, MachORelocationIterator};
/// An iterator for the sections in a [`MachOFile32`](super::MachOFile32).
pub type MachOSectionIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSectionIterator<'data, 'file, macho::MachHeader32<Endian>, R>;
/// An iterator for the sections in a [`MachOFile64`](super::MachOFile64).
pub type MachOSectionIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSectionIterator<'data, 'file, macho::MachHeader64<Endian>, R>;
/// An iterator for the sections in a [`MachOFile`].
pub struct MachOSectionIterator<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file MachOFile<'data, Mach, R>,
pub(super) iter: slice::Iter<'file, MachOSectionInternal<'data, Mach>>,
}
impl<'data, 'file, Mach, R> fmt::Debug for MachOSectionIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// It's painful to do much better than this
f.debug_struct("MachOSectionIterator").finish()
}
}
impl<'data, 'file, Mach, R> Iterator for MachOSectionIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type Item = MachOSection<'data, 'file, Mach, R>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|&internal| MachOSection {
file: self.file,
internal,
})
}
}
/// A section in a [`MachOFile32`](super::MachOFile32).
pub type MachOSection32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSection<'data, 'file, macho::MachHeader32<Endian>, R>;
/// A section in a [`MachOFile64`](super::MachOFile64).
pub type MachOSection64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSection<'data, 'file, macho::MachHeader64<Endian>, R>;
/// A section in a [`MachOFile`].
///
/// Most functionality is provided by the [`ObjectSection`] trait implementation.
#[derive(Debug)]
pub struct MachOSection<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file MachOFile<'data, Mach, R>,
pub(super) internal: MachOSectionInternal<'data, Mach>,
}
impl<'data, 'file, Mach, R> MachOSection<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
fn bytes(&self) -> Result<&'data [u8]> {
let segment_index = self.internal.segment_index;
let segment = self.file.segment_internal(segment_index)?;
self.internal
.section
.data(self.file.endian, segment.data)
.read_error("Invalid Mach-O section size or offset")
}
}
impl<'data, 'file, Mach, R> read::private::Sealed for MachOSection<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Mach, R> ObjectSection<'data> for MachOSection<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type RelocationIterator = MachORelocationIterator<'data, 'file, Mach, R>;
#[inline]
fn index(&self) -> SectionIndex {
self.internal.index
}
#[inline]
fn address(&self) -> u64 {
self.internal.section.addr(self.file.endian).into()
}
#[inline]
fn size(&self) -> u64 {
self.internal.section.size(self.file.endian).into()
}
#[inline]
fn align(&self) -> u64 {
let align = self.internal.section.align(self.file.endian);
if align < 64 {
1 << align
} else {
0
}
}
#[inline]
fn file_range(&self) -> Option<(u64, u64)> {
self.internal.section.file_range(self.file.endian)
}
#[inline]
fn data(&self) -> Result<&'data [u8]> {
self.bytes()
}
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>> {
Ok(read::util::data_range(
self.bytes()?,
self.address(),
address,
size,
))
}
#[inline]
fn compressed_file_range(&self) -> Result<CompressedFileRange> {
Ok(CompressedFileRange::none(self.file_range()))
}
#[inline]
fn compressed_data(&self) -> Result<CompressedData<'data>> {
self.data().map(CompressedData::none)
}
#[inline]
fn name_bytes(&self) -> Result<&[u8]> {
Ok(self.internal.section.name())
}
#[inline]
fn name(&self) -> Result<&str> {
str::from_utf8(self.internal.section.name())
.ok()
.read_error("Non UTF-8 Mach-O section name")
}
#[inline]
fn segment_name_bytes(&self) -> Result<Option<&[u8]>> {
Ok(Some(self.internal.section.segment_name()))
}
#[inline]
fn segment_name(&self) -> Result<Option<&str>> {
Ok(Some(
str::from_utf8(self.internal.section.segment_name())
.ok()
.read_error("Non UTF-8 Mach-O segment name")?,
))
}
fn kind(&self) -> SectionKind {
self.internal.kind
}
fn relocations(&self) -> MachORelocationIterator<'data, 'file, Mach, R> {
MachORelocationIterator {
file: self.file,
relocations: self
.internal
.section
.relocations(self.file.endian, self.file.data)
.unwrap_or(&[])
.iter(),
}
}
fn flags(&self) -> SectionFlags {
SectionFlags::MachO {
flags: self.internal.section.flags(self.file.endian),
}
}
}
#[derive(Debug, Clone, Copy)]
pub(super) struct MachOSectionInternal<'data, Mach: MachHeader> {
pub index: SectionIndex,
pub segment_index: usize,
pub kind: SectionKind,
pub section: &'data Mach::Section,
}
impl<'data, Mach: MachHeader> MachOSectionInternal<'data, Mach> {
pub(super) fn parse(
index: SectionIndex,
segment_index: usize,
section: &'data Mach::Section,
) -> Self {
// TODO: we don't validate flags, should we?
let kind = match (section.segment_name(), section.name()) {
(b"__TEXT", b"__text") => SectionKind::Text,
(b"__TEXT", b"__const") => SectionKind::ReadOnlyData,
(b"__TEXT", b"__cstring") => SectionKind::ReadOnlyString,
(b"__TEXT", b"__literal4") => SectionKind::ReadOnlyData,
(b"__TEXT", b"__literal8") => SectionKind::ReadOnlyData,
(b"__TEXT", b"__literal16") => SectionKind::ReadOnlyData,
(b"__TEXT", b"__eh_frame") => SectionKind::ReadOnlyData,
(b"__TEXT", b"__gcc_except_tab") => SectionKind::ReadOnlyData,
(b"__DATA", b"__data") => SectionKind::Data,
(b"__DATA", b"__const") => SectionKind::ReadOnlyData,
(b"__DATA", b"__bss") => SectionKind::UninitializedData,
(b"__DATA", b"__common") => SectionKind::Common,
(b"__DATA", b"__thread_data") => SectionKind::Tls,
(b"__DATA", b"__thread_bss") => SectionKind::UninitializedTls,
(b"__DATA", b"__thread_vars") => SectionKind::TlsVariables,
(b"__DWARF", _) => SectionKind::Debug,
_ => SectionKind::Unknown,
};
MachOSectionInternal {
index,
segment_index,
kind,
section,
}
}
}
/// A trait for generic access to [`macho::Section32`] and [`macho::Section64`].
#[allow(missing_docs)]
pub trait Section: Debug + Pod {
type Word: Into<u64>;
type Endian: endian::Endian;
fn sectname(&self) -> &[u8; 16];
fn segname(&self) -> &[u8; 16];
fn addr(&self, endian: Self::Endian) -> Self::Word;
fn size(&self, endian: Self::Endian) -> Self::Word;
fn offset(&self, endian: Self::Endian) -> u32;
fn align(&self, endian: Self::Endian) -> u32;
fn reloff(&self, endian: Self::Endian) -> u32;
fn nreloc(&self, endian: Self::Endian) -> u32;
fn flags(&self, endian: Self::Endian) -> u32;
/// Return the `sectname` bytes up until the null terminator.
fn name(&self) -> &[u8] {
let sectname = &self.sectname()[..];
match memchr::memchr(b'\0', sectname) {
Some(end) => &sectname[..end],
None => sectname,
}
}
/// Return the `segname` bytes up until the null terminator.
fn segment_name(&self) -> &[u8] {
let segname = &self.segname()[..];
match memchr::memchr(b'\0', segname) {
Some(end) => &segname[..end],
None => segname,
}
}
/// Return the offset and size of the section in the file.
///
/// Returns `None` for sections that have no data in the file.
fn file_range(&self, endian: Self::Endian) -> Option<(u64, u64)> {
match self.flags(endian) & macho::SECTION_TYPE {
macho::S_ZEROFILL | macho::S_GB_ZEROFILL | macho::S_THREAD_LOCAL_ZEROFILL => None,
_ => Some((self.offset(endian).into(), self.size(endian).into())),
}
}
/// Return the section data.
///
/// Returns `Ok(&[])` if the section has no data.
/// Returns `Err` for invalid values.
fn data<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> result::Result<&'data [u8], ()> {
if let Some((offset, size)) = self.file_range(endian) {
data.read_bytes_at(offset, size)
} else {
Ok(&[])
}
}
/// Return the relocation array.
///
/// Returns `Err` for invalid values.
fn relocations<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> Result<&'data [macho::Relocation<Self::Endian>]> {
data.read_slice_at(self.reloff(endian).into(), self.nreloc(endian) as usize)
.read_error("Invalid Mach-O relocations offset or number")
}
}
impl<Endian: endian::Endian> Section for macho::Section32<Endian> {
type Word = u32;
type Endian = Endian;
fn sectname(&self) -> &[u8; 16] {
&self.sectname
}
fn segname(&self) -> &[u8; 16] {
&self.segname
}
fn addr(&self, endian: Self::Endian) -> Self::Word {
self.addr.get(endian)
}
fn size(&self, endian: Self::Endian) -> Self::Word {
self.size.get(endian)
}
fn offset(&self, endian: Self::Endian) -> u32 {
self.offset.get(endian)
}
fn align(&self, endian: Self::Endian) -> u32 {
self.align.get(endian)
}
fn reloff(&self, endian: Self::Endian) -> u32 {
self.reloff.get(endian)
}
fn nreloc(&self, endian: Self::Endian) -> u32 {
self.nreloc.get(endian)
}
fn flags(&self, endian: Self::Endian) -> u32 {
self.flags.get(endian)
}
}
impl<Endian: endian::Endian> Section for macho::Section64<Endian> {
type Word = u64;
type Endian = Endian;
fn sectname(&self) -> &[u8; 16] {
&self.sectname
}
fn segname(&self) -> &[u8; 16] {
&self.segname
}
fn addr(&self, endian: Self::Endian) -> Self::Word {
self.addr.get(endian)
}
fn size(&self, endian: Self::Endian) -> Self::Word {
self.size.get(endian)
}
fn offset(&self, endian: Self::Endian) -> u32 {
self.offset.get(endian)
}
fn align(&self, endian: Self::Endian) -> u32 {
self.align.get(endian)
}
fn reloff(&self, endian: Self::Endian) -> u32 {
self.reloff.get(endian)
}
fn nreloc(&self, endian: Self::Endian) -> u32 {
self.nreloc.get(endian)
}
fn flags(&self, endian: Self::Endian) -> u32 {
self.flags.get(endian)
}
}

303
vendor/object/src/read/macho/segment.rs vendored Normal file
View File

@ -0,0 +1,303 @@
use core::fmt::Debug;
use core::{result, slice, str};
use crate::endian::{self, Endianness};
use crate::macho;
use crate::pod::Pod;
use crate::read::{self, ObjectSegment, ReadError, ReadRef, Result, SegmentFlags};
use super::{LoadCommandData, MachHeader, MachOFile, Section};
/// An iterator for the segments in a [`MachOFile32`](super::MachOFile32).
pub type MachOSegmentIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSegmentIterator<'data, 'file, macho::MachHeader32<Endian>, R>;
/// An iterator for the segments in a [`MachOFile64`](super::MachOFile64).
pub type MachOSegmentIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSegmentIterator<'data, 'file, macho::MachHeader64<Endian>, R>;
/// An iterator for the segments in a [`MachOFile`].
#[derive(Debug)]
pub struct MachOSegmentIterator<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file MachOFile<'data, Mach, R>,
pub(super) iter: slice::Iter<'file, MachOSegmentInternal<'data, Mach, R>>,
}
impl<'data, 'file, Mach, R> Iterator for MachOSegmentIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type Item = MachOSegment<'data, 'file, Mach, R>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|internal| MachOSegment {
file: self.file,
internal,
})
}
}
/// A segment in a [`MachOFile32`](super::MachOFile32).
pub type MachOSegment32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSegment<'data, 'file, macho::MachHeader32<Endian>, R>;
/// A segment in a [`MachOFile64`](super::MachOFile64).
pub type MachOSegment64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSegment<'data, 'file, macho::MachHeader64<Endian>, R>;
/// A segment in a [`MachOFile`].
///
/// Most functionality is provided by the [`ObjectSegment`] trait implementation.
#[derive(Debug)]
pub struct MachOSegment<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
file: &'file MachOFile<'data, Mach, R>,
internal: &'file MachOSegmentInternal<'data, Mach, R>,
}
impl<'data, 'file, Mach, R> MachOSegment<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
fn bytes(&self) -> Result<&'data [u8]> {
self.internal
.segment
.data(self.file.endian, self.file.data)
.read_error("Invalid Mach-O segment size or offset")
}
}
impl<'data, 'file, Mach, R> read::private::Sealed for MachOSegment<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Mach, R> ObjectSegment<'data> for MachOSegment<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
#[inline]
fn address(&self) -> u64 {
self.internal.segment.vmaddr(self.file.endian).into()
}
#[inline]
fn size(&self) -> u64 {
self.internal.segment.vmsize(self.file.endian).into()
}
#[inline]
fn align(&self) -> u64 {
// Page size.
0x1000
}
#[inline]
fn file_range(&self) -> (u64, u64) {
self.internal.segment.file_range(self.file.endian)
}
fn data(&self) -> Result<&'data [u8]> {
self.bytes()
}
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>> {
Ok(read::util::data_range(
self.bytes()?,
self.address(),
address,
size,
))
}
#[inline]
fn name_bytes(&self) -> Result<Option<&[u8]>> {
Ok(Some(self.internal.segment.name()))
}
#[inline]
fn name(&self) -> Result<Option<&str>> {
Ok(Some(
str::from_utf8(self.internal.segment.name())
.ok()
.read_error("Non UTF-8 Mach-O segment name")?,
))
}
#[inline]
fn flags(&self) -> SegmentFlags {
let flags = self.internal.segment.flags(self.file.endian);
let maxprot = self.internal.segment.maxprot(self.file.endian);
let initprot = self.internal.segment.initprot(self.file.endian);
SegmentFlags::MachO {
flags,
maxprot,
initprot,
}
}
}
#[derive(Debug, Clone, Copy)]
pub(super) struct MachOSegmentInternal<'data, Mach: MachHeader, R: ReadRef<'data>> {
pub data: R,
pub segment: &'data Mach::Segment,
}
/// A trait for generic access to [`macho::SegmentCommand32`] and [`macho::SegmentCommand64`].
#[allow(missing_docs)]
pub trait Segment: Debug + Pod {
type Word: Into<u64>;
type Endian: endian::Endian;
type Section: Section<Endian = Self::Endian>;
fn from_command(command: LoadCommandData<'_, Self::Endian>) -> Result<Option<(&Self, &[u8])>>;
fn cmd(&self, endian: Self::Endian) -> u32;
fn cmdsize(&self, endian: Self::Endian) -> u32;
fn segname(&self) -> &[u8; 16];
fn vmaddr(&self, endian: Self::Endian) -> Self::Word;
fn vmsize(&self, endian: Self::Endian) -> Self::Word;
fn fileoff(&self, endian: Self::Endian) -> Self::Word;
fn filesize(&self, endian: Self::Endian) -> Self::Word;
fn maxprot(&self, endian: Self::Endian) -> u32;
fn initprot(&self, endian: Self::Endian) -> u32;
fn nsects(&self, endian: Self::Endian) -> u32;
fn flags(&self, endian: Self::Endian) -> u32;
/// Return the `segname` bytes up until the null terminator.
fn name(&self) -> &[u8] {
let segname = &self.segname()[..];
match memchr::memchr(b'\0', segname) {
Some(end) => &segname[..end],
None => segname,
}
}
/// Return the offset and size of the segment in the file.
fn file_range(&self, endian: Self::Endian) -> (u64, u64) {
(self.fileoff(endian).into(), self.filesize(endian).into())
}
/// Get the segment data from the file data.
///
/// Returns `Err` for invalid values.
fn data<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
data: R,
) -> result::Result<&'data [u8], ()> {
let (offset, size) = self.file_range(endian);
data.read_bytes_at(offset, size)
}
/// Get the array of sections from the data following the segment command.
///
/// Returns `Err` for invalid values.
fn sections<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
section_data: R,
) -> Result<&'data [Self::Section]> {
section_data
.read_slice_at(0, self.nsects(endian) as usize)
.read_error("Invalid Mach-O number of sections")
}
}
impl<Endian: endian::Endian> Segment for macho::SegmentCommand32<Endian> {
type Word = u32;
type Endian = Endian;
type Section = macho::Section32<Self::Endian>;
fn from_command(command: LoadCommandData<'_, Self::Endian>) -> Result<Option<(&Self, &[u8])>> {
command.segment_32()
}
fn cmd(&self, endian: Self::Endian) -> u32 {
self.cmd.get(endian)
}
fn cmdsize(&self, endian: Self::Endian) -> u32 {
self.cmdsize.get(endian)
}
fn segname(&self) -> &[u8; 16] {
&self.segname
}
fn vmaddr(&self, endian: Self::Endian) -> Self::Word {
self.vmaddr.get(endian)
}
fn vmsize(&self, endian: Self::Endian) -> Self::Word {
self.vmsize.get(endian)
}
fn fileoff(&self, endian: Self::Endian) -> Self::Word {
self.fileoff.get(endian)
}
fn filesize(&self, endian: Self::Endian) -> Self::Word {
self.filesize.get(endian)
}
fn maxprot(&self, endian: Self::Endian) -> u32 {
self.maxprot.get(endian)
}
fn initprot(&self, endian: Self::Endian) -> u32 {
self.initprot.get(endian)
}
fn nsects(&self, endian: Self::Endian) -> u32 {
self.nsects.get(endian)
}
fn flags(&self, endian: Self::Endian) -> u32 {
self.flags.get(endian)
}
}
impl<Endian: endian::Endian> Segment for macho::SegmentCommand64<Endian> {
type Word = u64;
type Endian = Endian;
type Section = macho::Section64<Self::Endian>;
fn from_command(command: LoadCommandData<'_, Self::Endian>) -> Result<Option<(&Self, &[u8])>> {
command.segment_64()
}
fn cmd(&self, endian: Self::Endian) -> u32 {
self.cmd.get(endian)
}
fn cmdsize(&self, endian: Self::Endian) -> u32 {
self.cmdsize.get(endian)
}
fn segname(&self) -> &[u8; 16] {
&self.segname
}
fn vmaddr(&self, endian: Self::Endian) -> Self::Word {
self.vmaddr.get(endian)
}
fn vmsize(&self, endian: Self::Endian) -> Self::Word {
self.vmsize.get(endian)
}
fn fileoff(&self, endian: Self::Endian) -> Self::Word {
self.fileoff.get(endian)
}
fn filesize(&self, endian: Self::Endian) -> Self::Word {
self.filesize.get(endian)
}
fn maxprot(&self, endian: Self::Endian) -> u32 {
self.maxprot.get(endian)
}
fn initprot(&self, endian: Self::Endian) -> u32 {
self.initprot.get(endian)
}
fn nsects(&self, endian: Self::Endian) -> u32 {
self.nsects.get(endian)
}
fn flags(&self, endian: Self::Endian) -> u32 {
self.flags.get(endian)
}
}

492
vendor/object/src/read/macho/symbol.rs vendored Normal file
View File

@ -0,0 +1,492 @@
use alloc::vec::Vec;
use core::fmt::Debug;
use core::{fmt, slice, str};
use crate::endian::{self, Endianness};
use crate::macho;
use crate::pod::Pod;
use crate::read::util::StringTable;
use crate::read::{
self, ObjectMap, ObjectMapEntry, ObjectSymbol, ObjectSymbolTable, ReadError, ReadRef, Result,
SectionIndex, SectionKind, SymbolFlags, SymbolIndex, SymbolKind, SymbolMap, SymbolMapEntry,
SymbolScope, SymbolSection,
};
use super::{MachHeader, MachOFile};
/// A table of symbol entries in a Mach-O file.
///
/// Also includes the string table used for the symbol names.
///
/// Returned by [`macho::SymtabCommand::symbols`].
#[derive(Debug, Clone, Copy)]
pub struct SymbolTable<'data, Mach: MachHeader, R = &'data [u8]>
where
R: ReadRef<'data>,
{
symbols: &'data [Mach::Nlist],
strings: StringTable<'data, R>,
}
impl<'data, Mach: MachHeader, R: ReadRef<'data>> Default for SymbolTable<'data, Mach, R> {
fn default() -> Self {
SymbolTable {
symbols: &[],
strings: Default::default(),
}
}
}
impl<'data, Mach: MachHeader, R: ReadRef<'data>> SymbolTable<'data, Mach, R> {
#[inline]
pub(super) fn new(symbols: &'data [Mach::Nlist], strings: StringTable<'data, R>) -> Self {
SymbolTable { symbols, strings }
}
/// Return the string table used for the symbol names.
#[inline]
pub fn strings(&self) -> StringTable<'data, R> {
self.strings
}
/// Iterate over the symbols.
#[inline]
pub fn iter(&self) -> slice::Iter<'data, Mach::Nlist> {
self.symbols.iter()
}
/// Return true if the symbol table is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.symbols.is_empty()
}
/// The number of symbols.
#[inline]
pub fn len(&self) -> usize {
self.symbols.len()
}
/// Return the symbol at the given index.
pub fn symbol(&self, index: usize) -> Result<&'data Mach::Nlist> {
self.symbols
.get(index)
.read_error("Invalid Mach-O symbol index")
}
/// Construct a map from addresses to a user-defined map entry.
pub fn map<Entry: SymbolMapEntry, F: Fn(&'data Mach::Nlist) -> Option<Entry>>(
&self,
f: F,
) -> SymbolMap<Entry> {
let mut symbols = Vec::new();
for nlist in self.symbols {
if !nlist.is_definition() {
continue;
}
if let Some(entry) = f(nlist) {
symbols.push(entry);
}
}
SymbolMap::new(symbols)
}
/// Construct a map from addresses to symbol names and object file names.
pub fn object_map(&self, endian: Mach::Endian) -> ObjectMap<'data> {
let mut symbols = Vec::new();
let mut objects = Vec::new();
let mut object = None;
let mut current_function = None;
// Each module starts with one or two N_SO symbols (path, or directory + filename)
// and one N_OSO symbol. The module is terminated by an empty N_SO symbol.
for nlist in self.symbols {
let n_type = nlist.n_type();
if n_type & macho::N_STAB == 0 {
continue;
}
// TODO: includes variables too (N_GSYM, N_STSYM). These may need to get their
// address from regular symbols though.
match n_type {
macho::N_SO => {
object = None;
}
macho::N_OSO => {
object = None;
if let Ok(name) = nlist.name(endian, self.strings) {
if !name.is_empty() {
object = Some(objects.len());
objects.push(name);
}
}
}
macho::N_FUN => {
if let Ok(name) = nlist.name(endian, self.strings) {
if !name.is_empty() {
current_function = Some((name, nlist.n_value(endian).into()))
} else if let Some((name, address)) = current_function.take() {
if let Some(object) = object {
symbols.push(ObjectMapEntry {
address,
size: nlist.n_value(endian).into(),
name,
object,
});
}
}
}
}
_ => {}
}
}
ObjectMap {
symbols: SymbolMap::new(symbols),
objects,
}
}
}
/// A symbol table in a [`MachOFile32`](super::MachOFile32).
pub type MachOSymbolTable32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSymbolTable<'data, 'file, macho::MachHeader32<Endian>, R>;
/// A symbol table in a [`MachOFile64`](super::MachOFile64).
pub type MachOSymbolTable64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSymbolTable<'data, 'file, macho::MachHeader64<Endian>, R>;
/// A symbol table in a [`MachOFile`].
#[derive(Debug, Clone, Copy)]
pub struct MachOSymbolTable<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file MachOFile<'data, Mach, R>,
}
impl<'data, 'file, Mach, R> read::private::Sealed for MachOSymbolTable<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Mach, R> ObjectSymbolTable<'data> for MachOSymbolTable<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type Symbol = MachOSymbol<'data, 'file, Mach, R>;
type SymbolIterator = MachOSymbolIterator<'data, 'file, Mach, R>;
fn symbols(&self) -> Self::SymbolIterator {
MachOSymbolIterator {
file: self.file,
index: 0,
}
}
fn symbol_by_index(&self, index: SymbolIndex) -> Result<Self::Symbol> {
let nlist = self.file.symbols.symbol(index.0)?;
MachOSymbol::new(self.file, index, nlist).read_error("Unsupported Mach-O symbol index")
}
}
/// An iterator for the symbols in a [`MachOFile32`](super::MachOFile32).
pub type MachOSymbolIterator32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSymbolIterator<'data, 'file, macho::MachHeader32<Endian>, R>;
/// An iterator for the symbols in a [`MachOFile64`](super::MachOFile64).
pub type MachOSymbolIterator64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSymbolIterator<'data, 'file, macho::MachHeader64<Endian>, R>;
/// An iterator for the symbols in a [`MachOFile`].
pub struct MachOSymbolIterator<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file MachOFile<'data, Mach, R>,
pub(super) index: usize,
}
impl<'data, 'file, Mach, R> fmt::Debug for MachOSymbolIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("MachOSymbolIterator").finish()
}
}
impl<'data, 'file, Mach, R> Iterator for MachOSymbolIterator<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
type Item = MachOSymbol<'data, 'file, Mach, R>;
fn next(&mut self) -> Option<Self::Item> {
loop {
let index = self.index;
let nlist = self.file.symbols.symbols.get(index)?;
self.index += 1;
if let Some(symbol) = MachOSymbol::new(self.file, SymbolIndex(index), nlist) {
return Some(symbol);
}
}
}
}
/// A symbol in a [`MachOFile32`](super::MachOFile32).
pub type MachOSymbol32<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSymbol<'data, 'file, macho::MachHeader32<Endian>, R>;
/// A symbol in a [`MachOFile64`](super::MachOFile64).
pub type MachOSymbol64<'data, 'file, Endian = Endianness, R = &'data [u8]> =
MachOSymbol<'data, 'file, macho::MachHeader64<Endian>, R>;
/// A symbol in a [`MachOFile`].
///
/// Most functionality is provided by the [`ObjectSymbol`] trait implementation.
#[derive(Debug, Clone, Copy)]
pub struct MachOSymbol<'data, 'file, Mach, R = &'data [u8]>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
file: &'file MachOFile<'data, Mach, R>,
index: SymbolIndex,
nlist: &'data Mach::Nlist,
}
impl<'data, 'file, Mach, R> MachOSymbol<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
pub(super) fn new(
file: &'file MachOFile<'data, Mach, R>,
index: SymbolIndex,
nlist: &'data Mach::Nlist,
) -> Option<Self> {
if nlist.n_type() & macho::N_STAB != 0 {
return None;
}
Some(MachOSymbol { file, index, nlist })
}
}
impl<'data, 'file, Mach, R> read::private::Sealed for MachOSymbol<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Mach, R> ObjectSymbol<'data> for MachOSymbol<'data, 'file, Mach, R>
where
Mach: MachHeader,
R: ReadRef<'data>,
{
#[inline]
fn index(&self) -> SymbolIndex {
self.index
}
fn name_bytes(&self) -> Result<&'data [u8]> {
self.nlist.name(self.file.endian, self.file.symbols.strings)
}
fn name(&self) -> Result<&'data str> {
let name = self.name_bytes()?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 Mach-O symbol name")
}
#[inline]
fn address(&self) -> u64 {
self.nlist.n_value(self.file.endian).into()
}
#[inline]
fn size(&self) -> u64 {
0
}
fn kind(&self) -> SymbolKind {
self.section()
.index()
.and_then(|index| self.file.section_internal(index).ok())
.map(|section| match section.kind {
SectionKind::Text => SymbolKind::Text,
SectionKind::Data
| SectionKind::ReadOnlyData
| SectionKind::ReadOnlyString
| SectionKind::UninitializedData
| SectionKind::Common => SymbolKind::Data,
SectionKind::Tls | SectionKind::UninitializedTls | SectionKind::TlsVariables => {
SymbolKind::Tls
}
_ => SymbolKind::Unknown,
})
.unwrap_or(SymbolKind::Unknown)
}
fn section(&self) -> SymbolSection {
match self.nlist.n_type() & macho::N_TYPE {
macho::N_UNDF => SymbolSection::Undefined,
macho::N_ABS => SymbolSection::Absolute,
macho::N_SECT => {
let n_sect = self.nlist.n_sect();
if n_sect != 0 {
SymbolSection::Section(SectionIndex(n_sect as usize))
} else {
SymbolSection::Unknown
}
}
_ => SymbolSection::Unknown,
}
}
#[inline]
fn is_undefined(&self) -> bool {
self.nlist.n_type() & macho::N_TYPE == macho::N_UNDF
}
#[inline]
fn is_definition(&self) -> bool {
self.nlist.is_definition()
}
#[inline]
fn is_common(&self) -> bool {
// Mach-O common symbols are based on section, not symbol
false
}
#[inline]
fn is_weak(&self) -> bool {
self.nlist.n_desc(self.file.endian) & (macho::N_WEAK_REF | macho::N_WEAK_DEF) != 0
}
fn scope(&self) -> SymbolScope {
let n_type = self.nlist.n_type();
if n_type & macho::N_TYPE == macho::N_UNDF {
SymbolScope::Unknown
} else if n_type & macho::N_EXT == 0 {
SymbolScope::Compilation
} else if n_type & macho::N_PEXT != 0 {
SymbolScope::Linkage
} else {
SymbolScope::Dynamic
}
}
#[inline]
fn is_global(&self) -> bool {
self.scope() != SymbolScope::Compilation
}
#[inline]
fn is_local(&self) -> bool {
self.scope() == SymbolScope::Compilation
}
#[inline]
fn flags(&self) -> SymbolFlags<SectionIndex, SymbolIndex> {
let n_desc = self.nlist.n_desc(self.file.endian);
SymbolFlags::MachO { n_desc }
}
}
/// A trait for generic access to [`macho::Nlist32`] and [`macho::Nlist64`].
#[allow(missing_docs)]
pub trait Nlist: Debug + Pod {
type Word: Into<u64>;
type Endian: endian::Endian;
fn n_strx(&self, endian: Self::Endian) -> u32;
fn n_type(&self) -> u8;
fn n_sect(&self) -> u8;
fn n_desc(&self, endian: Self::Endian) -> u16;
fn n_value(&self, endian: Self::Endian) -> Self::Word;
fn name<'data, R: ReadRef<'data>>(
&self,
endian: Self::Endian,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
strings
.get(self.n_strx(endian))
.read_error("Invalid Mach-O symbol name offset")
}
/// Return true if this is a STAB symbol.
///
/// This determines the meaning of the `n_type` field.
fn is_stab(&self) -> bool {
self.n_type() & macho::N_STAB != 0
}
/// Return true if this is an undefined symbol.
fn is_undefined(&self) -> bool {
let n_type = self.n_type();
n_type & macho::N_STAB == 0 && n_type & macho::N_TYPE == macho::N_UNDF
}
/// Return true if the symbol is a definition of a function or data object.
fn is_definition(&self) -> bool {
let n_type = self.n_type();
n_type & macho::N_STAB == 0 && n_type & macho::N_TYPE == macho::N_SECT
}
/// Return the library ordinal.
///
/// This is either a 1-based index into the dylib load commands,
/// or a special ordinal.
#[inline]
fn library_ordinal(&self, endian: Self::Endian) -> u8 {
(self.n_desc(endian) >> 8) as u8
}
}
impl<Endian: endian::Endian> Nlist for macho::Nlist32<Endian> {
type Word = u32;
type Endian = Endian;
fn n_strx(&self, endian: Self::Endian) -> u32 {
self.n_strx.get(endian)
}
fn n_type(&self) -> u8 {
self.n_type
}
fn n_sect(&self) -> u8 {
self.n_sect
}
fn n_desc(&self, endian: Self::Endian) -> u16 {
self.n_desc.get(endian)
}
fn n_value(&self, endian: Self::Endian) -> Self::Word {
self.n_value.get(endian)
}
}
impl<Endian: endian::Endian> Nlist for macho::Nlist64<Endian> {
type Word = u64;
type Endian = Endian;
fn n_strx(&self, endian: Self::Endian) -> u32 {
self.n_strx.get(endian)
}
fn n_type(&self) -> u8 {
self.n_type
}
fn n_sect(&self) -> u8 {
self.n_sect
}
fn n_desc(&self, endian: Self::Endian) -> u16 {
self.n_desc.get(endian)
}
fn n_value(&self, endian: Self::Endian) -> Self::Word {
self.n_value.get(endian)
}
}

860
vendor/object/src/read/mod.rs vendored Normal file
View File

@ -0,0 +1,860 @@
//! Interface for reading object files.
//!
//! ## Unified read API
//!
//! The [`Object`] trait provides a unified read API for accessing common features of
//! object files, such as sections and symbols. There is an implementation of this
//! trait for [`File`], which allows reading any file format, as well as implementations
//! for each file format:
//! [`ElfFile`](elf::ElfFile), [`MachOFile`](macho::MachOFile), [`CoffFile`](coff::CoffFile),
//! [`PeFile`](pe::PeFile), [`WasmFile`](wasm::WasmFile), [`XcoffFile`](xcoff::XcoffFile).
//!
//! ## Low level read API
//!
//! The submodules for each file format define helpers that operate on the raw structs.
//! These can be used instead of the unified API, or in conjunction with it to access
//! details that are not available via the unified API.
//!
//! See the [submodules](#modules) for examples of the low level read API.
//!
//! ## Naming Convention
//!
//! Types that form part of the unified API for a file format are prefixed with the
//! name of the file format.
//!
//! ## Example for unified read API
//! ```no_run
//! use object::{Object, ObjectSection};
//! use std::error::Error;
//! use std::fs;
//!
//! /// Reads a file and displays the name of each section.
//! fn main() -> Result<(), Box<dyn Error>> {
//! # #[cfg(feature = "std")] {
//! let data = fs::read("path/to/binary")?;
//! let file = object::File::parse(&*data)?;
//! for section in file.sections() {
//! println!("{}", section.name()?);
//! }
//! # }
//! Ok(())
//! }
//! ```
use alloc::borrow::Cow;
use alloc::vec::Vec;
use core::{fmt, result};
use crate::common::*;
mod read_ref;
pub use read_ref::*;
#[cfg(feature = "std")]
mod read_cache;
#[cfg(feature = "std")]
pub use read_cache::*;
mod util;
pub use util::*;
#[cfg(any(
feature = "coff",
feature = "elf",
feature = "macho",
feature = "pe",
feature = "wasm",
feature = "xcoff"
))]
mod any;
#[cfg(any(
feature = "coff",
feature = "elf",
feature = "macho",
feature = "pe",
feature = "wasm",
feature = "xcoff"
))]
pub use any::*;
#[cfg(feature = "archive")]
pub mod archive;
#[cfg(feature = "coff")]
pub mod coff;
#[cfg(feature = "elf")]
pub mod elf;
#[cfg(feature = "macho")]
pub mod macho;
#[cfg(feature = "pe")]
pub mod pe;
#[cfg(feature = "wasm")]
pub mod wasm;
#[cfg(feature = "xcoff")]
pub mod xcoff;
mod traits;
pub use traits::*;
mod private {
pub trait Sealed {}
}
/// The error type used within the read module.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Error(&'static str);
impl fmt::Display for Error {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(self.0)
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
/// The result type used within the read module.
pub type Result<T> = result::Result<T, Error>;
trait ReadError<T> {
fn read_error(self, error: &'static str) -> Result<T>;
}
impl<T> ReadError<T> for result::Result<T, ()> {
fn read_error(self, error: &'static str) -> Result<T> {
self.map_err(|()| Error(error))
}
}
impl<T> ReadError<T> for result::Result<T, Error> {
fn read_error(self, error: &'static str) -> Result<T> {
self.map_err(|_| Error(error))
}
}
impl<T> ReadError<T> for Option<T> {
fn read_error(self, error: &'static str) -> Result<T> {
self.ok_or(Error(error))
}
}
/// The native executable file for the target platform.
#[cfg(all(
unix,
not(target_os = "macos"),
target_pointer_width = "32",
feature = "elf"
))]
pub type NativeFile<'data, R = &'data [u8]> = elf::ElfFile32<'data, crate::Endianness, R>;
/// The native executable file for the target platform.
#[cfg(all(
unix,
not(target_os = "macos"),
target_pointer_width = "64",
feature = "elf"
))]
pub type NativeFile<'data, R = &'data [u8]> = elf::ElfFile64<'data, crate::Endianness, R>;
/// The native executable file for the target platform.
#[cfg(all(target_os = "macos", target_pointer_width = "32", feature = "macho"))]
pub type NativeFile<'data, R = &'data [u8]> = macho::MachOFile32<'data, crate::Endianness, R>;
/// The native executable file for the target platform.
#[cfg(all(target_os = "macos", target_pointer_width = "64", feature = "macho"))]
pub type NativeFile<'data, R = &'data [u8]> = macho::MachOFile64<'data, crate::Endianness, R>;
/// The native executable file for the target platform.
#[cfg(all(target_os = "windows", target_pointer_width = "32", feature = "pe"))]
pub type NativeFile<'data, R = &'data [u8]> = pe::PeFile32<'data, R>;
/// The native executable file for the target platform.
#[cfg(all(target_os = "windows", target_pointer_width = "64", feature = "pe"))]
pub type NativeFile<'data, R = &'data [u8]> = pe::PeFile64<'data, R>;
/// The native executable file for the target platform.
#[cfg(all(feature = "wasm", target_arch = "wasm32", feature = "wasm"))]
pub type NativeFile<'data, R = &'data [u8]> = wasm::WasmFile<'data, R>;
/// A file format kind.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum FileKind {
/// A Unix archive.
///
/// See [`archive::ArchiveFile`].
#[cfg(feature = "archive")]
Archive,
/// A COFF object file.
///
/// See [`coff::CoffFile`].
#[cfg(feature = "coff")]
Coff,
/// A COFF bigobj object file.
///
/// This supports a larger number of sections.
///
/// See [`coff::CoffBigFile`].
#[cfg(feature = "coff")]
CoffBig,
/// A Windows short import file.
///
/// See [`coff::ImportFile`].
#[cfg(feature = "coff")]
CoffImport,
/// A dyld cache file containing Mach-O images.
///
/// See [`macho::DyldCache`]
#[cfg(feature = "macho")]
DyldCache,
/// A 32-bit ELF file.
///
/// See [`elf::ElfFile32`].
#[cfg(feature = "elf")]
Elf32,
/// A 64-bit ELF file.
///
/// See [`elf::ElfFile64`].
#[cfg(feature = "elf")]
Elf64,
/// A 32-bit Mach-O file.
///
/// See [`macho::MachOFile32`].
#[cfg(feature = "macho")]
MachO32,
/// A 64-bit Mach-O file.
///
/// See [`macho::MachOFile64`].
#[cfg(feature = "macho")]
MachO64,
/// A 32-bit Mach-O fat binary.
///
/// See [`macho::FatHeader::parse_arch32`].
#[cfg(feature = "macho")]
MachOFat32,
/// A 64-bit Mach-O fat binary.
///
/// See [`macho::FatHeader::parse_arch64`].
#[cfg(feature = "macho")]
MachOFat64,
/// A 32-bit PE file.
///
/// See [`pe::PeFile32`].
#[cfg(feature = "pe")]
Pe32,
/// A 64-bit PE file.
///
/// See [`pe::PeFile64`].
#[cfg(feature = "pe")]
Pe64,
/// A Wasm file.
///
/// See [`wasm::WasmFile`].
#[cfg(feature = "wasm")]
Wasm,
/// A 32-bit XCOFF file.
///
/// See [`xcoff::XcoffFile32`].
#[cfg(feature = "xcoff")]
Xcoff32,
/// A 64-bit XCOFF file.
///
/// See [`xcoff::XcoffFile64`].
#[cfg(feature = "xcoff")]
Xcoff64,
}
impl FileKind {
/// Determine a file kind by parsing the start of the file.
pub fn parse<'data, R: ReadRef<'data>>(data: R) -> Result<FileKind> {
Self::parse_at(data, 0)
}
/// Determine a file kind by parsing at the given offset.
pub fn parse_at<'data, R: ReadRef<'data>>(data: R, offset: u64) -> Result<FileKind> {
let magic = data
.read_bytes_at(offset, 16)
.read_error("Could not read file magic")?;
if magic.len() < 16 {
return Err(Error("File too short"));
}
let kind = match [magic[0], magic[1], magic[2], magic[3], magic[4], magic[5], magic[6], magic[7]] {
#[cfg(feature = "archive")]
[b'!', b'<', b'a', b'r', b'c', b'h', b'>', b'\n'] => FileKind::Archive,
#[cfg(feature = "macho")]
[b'd', b'y', b'l', b'd', b'_', b'v', b'1', b' '] => FileKind::DyldCache,
#[cfg(feature = "elf")]
[0x7f, b'E', b'L', b'F', 1, ..] => FileKind::Elf32,
#[cfg(feature = "elf")]
[0x7f, b'E', b'L', b'F', 2, ..] => FileKind::Elf64,
#[cfg(feature = "macho")]
[0xfe, 0xed, 0xfa, 0xce, ..]
| [0xce, 0xfa, 0xed, 0xfe, ..] => FileKind::MachO32,
#[cfg(feature = "macho")]
| [0xfe, 0xed, 0xfa, 0xcf, ..]
| [0xcf, 0xfa, 0xed, 0xfe, ..] => FileKind::MachO64,
#[cfg(feature = "macho")]
[0xca, 0xfe, 0xba, 0xbe, ..] => FileKind::MachOFat32,
#[cfg(feature = "macho")]
[0xca, 0xfe, 0xba, 0xbf, ..] => FileKind::MachOFat64,
#[cfg(feature = "wasm")]
[0x00, b'a', b's', b'm', ..] => FileKind::Wasm,
#[cfg(feature = "pe")]
[b'M', b'Z', ..] if offset == 0 => {
// offset == 0 restriction is because optional_header_magic only looks at offset 0
match pe::optional_header_magic(data) {
Ok(crate::pe::IMAGE_NT_OPTIONAL_HDR32_MAGIC) => {
FileKind::Pe32
}
Ok(crate::pe::IMAGE_NT_OPTIONAL_HDR64_MAGIC) => {
FileKind::Pe64
}
_ => return Err(Error("Unknown MS-DOS file")),
}
}
// TODO: more COFF machines
#[cfg(feature = "coff")]
// COFF arm
[0xc4, 0x01, ..]
// COFF arm64
| [0x64, 0xaa, ..]
// COFF arm64ec
| [0x41, 0xa6, ..]
// COFF x86
| [0x4c, 0x01, ..]
// COFF x86-64
| [0x64, 0x86, ..] => FileKind::Coff,
#[cfg(feature = "coff")]
[0x00, 0x00, 0xff, 0xff, 0x00, 0x00, ..] => FileKind::CoffImport,
#[cfg(feature = "coff")]
[0x00, 0x00, 0xff, 0xff, 0x02, 0x00, ..] if offset == 0 => {
// offset == 0 restriction is because anon_object_class_id only looks at offset 0
match coff::anon_object_class_id(data) {
Ok(crate::pe::ANON_OBJECT_HEADER_BIGOBJ_CLASS_ID) => FileKind::CoffBig,
_ => return Err(Error("Unknown anon object file")),
}
}
#[cfg(feature = "xcoff")]
[0x01, 0xdf, ..] => FileKind::Xcoff32,
#[cfg(feature = "xcoff")]
[0x01, 0xf7, ..] => FileKind::Xcoff64,
_ => return Err(Error("Unknown file magic")),
};
Ok(kind)
}
}
/// An object kind.
///
/// Returned by [`Object::kind`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum ObjectKind {
/// The object kind is unknown.
Unknown,
/// Relocatable object.
Relocatable,
/// Executable.
Executable,
/// Dynamic shared object.
Dynamic,
/// Core.
Core,
}
/// The index used to identify a section in a file.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct SectionIndex(pub usize);
/// The index used to identify a symbol in a symbol table.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct SymbolIndex(pub usize);
/// The section where an [`ObjectSymbol`] is defined.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SymbolSection {
/// The section is unknown.
Unknown,
/// The section is not applicable for this symbol (such as file symbols).
None,
/// The symbol is undefined.
Undefined,
/// The symbol has an absolute value.
Absolute,
/// The symbol is a zero-initialized symbol that will be combined with duplicate definitions.
Common,
/// The symbol is defined in the given section.
Section(SectionIndex),
}
impl SymbolSection {
/// Returns the section index for the section where the symbol is defined.
///
/// May return `None` if the symbol is not defined in a section.
#[inline]
pub fn index(self) -> Option<SectionIndex> {
if let SymbolSection::Section(index) = self {
Some(index)
} else {
None
}
}
}
/// An entry in a [`SymbolMap`].
pub trait SymbolMapEntry {
/// The symbol address.
fn address(&self) -> u64;
}
/// A map from addresses to symbol information.
///
/// The symbol information depends on the chosen entry type, such as [`SymbolMapName`].
///
/// Returned by [`Object::symbol_map`].
#[derive(Debug, Default, Clone)]
pub struct SymbolMap<T: SymbolMapEntry> {
symbols: Vec<T>,
}
impl<T: SymbolMapEntry> SymbolMap<T> {
/// Construct a new symbol map.
///
/// This function will sort the symbols by address.
pub fn new(mut symbols: Vec<T>) -> Self {
symbols.sort_by_key(|s| s.address());
SymbolMap { symbols }
}
/// Get the symbol before the given address.
pub fn get(&self, address: u64) -> Option<&T> {
let index = match self
.symbols
.binary_search_by_key(&address, |symbol| symbol.address())
{
Ok(index) => index,
Err(index) => index.checked_sub(1)?,
};
self.symbols.get(index)
}
/// Get all symbols in the map.
#[inline]
pub fn symbols(&self) -> &[T] {
&self.symbols
}
}
/// The type used for entries in a [`SymbolMap`] that maps from addresses to names.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct SymbolMapName<'data> {
address: u64,
name: &'data str,
}
impl<'data> SymbolMapName<'data> {
/// Construct a `SymbolMapName`.
pub fn new(address: u64, name: &'data str) -> Self {
SymbolMapName { address, name }
}
/// The symbol address.
#[inline]
pub fn address(&self) -> u64 {
self.address
}
/// The symbol name.
#[inline]
pub fn name(&self) -> &'data str {
self.name
}
}
impl<'data> SymbolMapEntry for SymbolMapName<'data> {
#[inline]
fn address(&self) -> u64 {
self.address
}
}
/// A map from addresses to symbol names and object files.
///
/// This is derived from STAB entries in Mach-O files.
///
/// Returned by [`Object::object_map`].
#[derive(Debug, Default, Clone)]
pub struct ObjectMap<'data> {
symbols: SymbolMap<ObjectMapEntry<'data>>,
objects: Vec<&'data [u8]>,
}
impl<'data> ObjectMap<'data> {
/// Get the entry containing the given address.
pub fn get(&self, address: u64) -> Option<&ObjectMapEntry<'data>> {
self.symbols
.get(address)
.filter(|entry| entry.size == 0 || address.wrapping_sub(entry.address) < entry.size)
}
/// Get all symbols in the map.
#[inline]
pub fn symbols(&self) -> &[ObjectMapEntry<'data>] {
self.symbols.symbols()
}
/// Get all objects in the map.
#[inline]
pub fn objects(&self) -> &[&'data [u8]] {
&self.objects
}
}
/// An [`ObjectMap`] entry.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, Hash)]
pub struct ObjectMapEntry<'data> {
address: u64,
size: u64,
name: &'data [u8],
object: usize,
}
impl<'data> ObjectMapEntry<'data> {
/// Get the symbol address.
#[inline]
pub fn address(&self) -> u64 {
self.address
}
/// Get the symbol size.
///
/// This may be 0 if the size is unknown.
#[inline]
pub fn size(&self) -> u64 {
self.size
}
/// Get the symbol name.
#[inline]
pub fn name(&self) -> &'data [u8] {
self.name
}
/// Get the index of the object file name.
#[inline]
pub fn object_index(&self) -> usize {
self.object
}
/// Get the object file name.
#[inline]
pub fn object(&self, map: &ObjectMap<'data>) -> &'data [u8] {
map.objects[self.object]
}
}
impl<'data> SymbolMapEntry for ObjectMapEntry<'data> {
#[inline]
fn address(&self) -> u64 {
self.address
}
}
/// An imported symbol.
///
/// Returned by [`Object::imports`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Import<'data> {
library: ByteString<'data>,
// TODO: or ordinal
name: ByteString<'data>,
}
impl<'data> Import<'data> {
/// The symbol name.
#[inline]
pub fn name(&self) -> &'data [u8] {
self.name.0
}
/// The name of the library to import the symbol from.
#[inline]
pub fn library(&self) -> &'data [u8] {
self.library.0
}
}
/// An exported symbol.
///
/// Returned by [`Object::exports`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Export<'data> {
// TODO: and ordinal?
name: ByteString<'data>,
address: u64,
}
impl<'data> Export<'data> {
/// The symbol name.
#[inline]
pub fn name(&self) -> &'data [u8] {
self.name.0
}
/// The virtual address of the symbol.
#[inline]
pub fn address(&self) -> u64 {
self.address
}
}
/// PDB information from the debug directory in a PE file.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct CodeView<'data> {
guid: [u8; 16],
path: ByteString<'data>,
age: u32,
}
impl<'data> CodeView<'data> {
/// The path to the PDB as stored in CodeView.
#[inline]
pub fn path(&self) -> &'data [u8] {
self.path.0
}
/// The age of the PDB.
#[inline]
pub fn age(&self) -> u32 {
self.age
}
/// The GUID of the PDB.
#[inline]
pub fn guid(&self) -> [u8; 16] {
self.guid
}
}
/// The target referenced by a [`Relocation`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum RelocationTarget {
/// The target is a symbol.
Symbol(SymbolIndex),
/// The target is a section.
Section(SectionIndex),
/// The offset is an absolute address.
Absolute,
}
/// A relocation entry.
///
/// Returned by [`Object::dynamic_relocations`] or [`ObjectSection::relocations`].
#[derive(Debug)]
pub struct Relocation {
kind: RelocationKind,
encoding: RelocationEncoding,
size: u8,
target: RelocationTarget,
addend: i64,
implicit_addend: bool,
}
impl Relocation {
/// The operation used to calculate the result of the relocation.
#[inline]
pub fn kind(&self) -> RelocationKind {
self.kind
}
/// Information about how the result of the relocation operation is encoded in the place.
#[inline]
pub fn encoding(&self) -> RelocationEncoding {
self.encoding
}
/// The size in bits of the place of the relocation.
///
/// If 0, then the size is determined by the relocation kind.
#[inline]
pub fn size(&self) -> u8 {
self.size
}
/// The target of the relocation.
#[inline]
pub fn target(&self) -> RelocationTarget {
self.target
}
/// The addend to use in the relocation calculation.
#[inline]
pub fn addend(&self) -> i64 {
self.addend
}
/// Set the addend to use in the relocation calculation.
#[inline]
pub fn set_addend(&mut self, addend: i64) {
self.addend = addend
}
/// Returns true if there is an implicit addend stored in the data at the offset
/// to be relocated.
#[inline]
pub fn has_implicit_addend(&self) -> bool {
self.implicit_addend
}
}
/// A data compression format.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum CompressionFormat {
/// The data is uncompressed.
None,
/// The data is compressed, but the compression format is unknown.
Unknown,
/// ZLIB/DEFLATE.
///
/// Used for ELF compression and GNU compressed debug information.
Zlib,
/// Zstandard.
///
/// Used for ELF compression.
Zstandard,
}
/// A range in a file that may be compressed.
///
/// Returned by [`ObjectSection::compressed_file_range`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct CompressedFileRange {
/// The data compression format.
pub format: CompressionFormat,
/// The file offset of the compressed data.
pub offset: u64,
/// The compressed data size.
pub compressed_size: u64,
/// The uncompressed data size.
pub uncompressed_size: u64,
}
impl CompressedFileRange {
/// Data that is uncompressed.
#[inline]
pub fn none(range: Option<(u64, u64)>) -> Self {
if let Some((offset, size)) = range {
CompressedFileRange {
format: CompressionFormat::None,
offset,
compressed_size: size,
uncompressed_size: size,
}
} else {
CompressedFileRange {
format: CompressionFormat::None,
offset: 0,
compressed_size: 0,
uncompressed_size: 0,
}
}
}
/// Convert to [`CompressedData`] by reading from the file.
pub fn data<'data, R: ReadRef<'data>>(self, file: R) -> Result<CompressedData<'data>> {
let data = file
.read_bytes_at(self.offset, self.compressed_size)
.read_error("Invalid compressed data size or offset")?;
Ok(CompressedData {
format: self.format,
data,
uncompressed_size: self.uncompressed_size,
})
}
}
/// Data that may be compressed.
///
/// Returned by [`ObjectSection::compressed_data`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct CompressedData<'data> {
/// The data compression format.
pub format: CompressionFormat,
/// The compressed data.
pub data: &'data [u8],
/// The uncompressed data size.
pub uncompressed_size: u64,
}
impl<'data> CompressedData<'data> {
/// Data that is uncompressed.
#[inline]
pub fn none(data: &'data [u8]) -> Self {
CompressedData {
format: CompressionFormat::None,
data,
uncompressed_size: data.len() as u64,
}
}
/// Return the uncompressed data.
///
/// Returns an error for invalid data or unsupported compression.
/// This includes if the data is compressed but the `compression` feature
/// for this crate is disabled.
pub fn decompress(self) -> Result<Cow<'data, [u8]>> {
match self.format {
CompressionFormat::None => Ok(Cow::Borrowed(self.data)),
#[cfg(feature = "compression")]
CompressionFormat::Zlib => {
use core::convert::TryInto;
let size = self
.uncompressed_size
.try_into()
.ok()
.read_error("Uncompressed data size is too large.")?;
let mut decompressed = Vec::with_capacity(size);
let mut decompress = flate2::Decompress::new(true);
decompress
.decompress_vec(
self.data,
&mut decompressed,
flate2::FlushDecompress::Finish,
)
.ok()
.read_error("Invalid zlib compressed data")?;
Ok(Cow::Owned(decompressed))
}
#[cfg(feature = "compression")]
CompressionFormat::Zstandard => {
use core::convert::TryInto;
use std::io::Read;
let size = self
.uncompressed_size
.try_into()
.ok()
.read_error("Uncompressed data size is too large.")?;
let mut decompressed = Vec::with_capacity(size);
let mut decoder = ruzstd::StreamingDecoder::new(self.data)
.ok()
.read_error("Invalid zstd compressed data")?;
decoder
.read_to_end(&mut decompressed)
.ok()
.read_error("Invalid zstd compressed data")?;
Ok(Cow::Owned(decompressed))
}
_ => Err(Error("Unsupported compressed data.")),
}
}
}

View File

@ -0,0 +1,213 @@
use core::slice;
use crate::read::{Error, ReadError, ReadRef, Result};
use crate::{pe, LittleEndian as LE};
use super::{
DelayLoadImportTable, ExportTable, ImportTable, RelocationBlockIterator, ResourceDirectory,
SectionTable,
};
/// The table of data directories in a PE file.
///
/// Returned by [`ImageNtHeaders::parse`](super::ImageNtHeaders::parse).
#[derive(Debug, Clone, Copy)]
pub struct DataDirectories<'data> {
entries: &'data [pe::ImageDataDirectory],
}
impl<'data> DataDirectories<'data> {
/// Parse the data directory table.
///
/// `data` must be the remaining optional data following the
/// [optional header](pe::ImageOptionalHeader64). `number` must be from the
/// [`number_of_rva_and_sizes`](pe::ImageOptionalHeader64::number_of_rva_and_sizes)
/// field of the optional header.
pub fn parse(data: &'data [u8], number: u32) -> Result<Self> {
let entries = data
.read_slice_at(0, number as usize)
.read_error("Invalid PE number of RVA and sizes")?;
Ok(DataDirectories { entries })
}
/// The number of data directories.
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.entries.len()
}
/// Iterator over the data directories.
pub fn iter(&self) -> slice::Iter<'data, pe::ImageDataDirectory> {
self.entries.iter()
}
/// Iterator which gives the directories as well as their index (one of the IMAGE_DIRECTORY_ENTRY_* constants).
pub fn enumerate(&self) -> core::iter::Enumerate<slice::Iter<'data, pe::ImageDataDirectory>> {
self.entries.iter().enumerate()
}
/// Returns the data directory at the given index.
///
/// Index should be one of the `IMAGE_DIRECTORY_ENTRY_*` constants.
///
/// Returns `None` if the index is larger than the table size,
/// or if the entry at the index has a zero virtual address.
pub fn get(&self, index: usize) -> Option<&'data pe::ImageDataDirectory> {
self.entries
.get(index)
.filter(|d| d.virtual_address.get(LE) != 0)
}
/// Returns the unparsed export directory.
///
/// `data` must be the entire file data.
pub fn export_directory<R: ReadRef<'data>>(
&self,
data: R,
sections: &SectionTable<'data>,
) -> Result<Option<&'data pe::ImageExportDirectory>> {
let data_dir = match self.get(pe::IMAGE_DIRECTORY_ENTRY_EXPORT) {
Some(data_dir) => data_dir,
None => return Ok(None),
};
let export_data = data_dir.data(data, sections)?;
ExportTable::parse_directory(export_data).map(Some)
}
/// Returns the partially parsed export directory.
///
/// `data` must be the entire file data.
pub fn export_table<R: ReadRef<'data>>(
&self,
data: R,
sections: &SectionTable<'data>,
) -> Result<Option<ExportTable<'data>>> {
let data_dir = match self.get(pe::IMAGE_DIRECTORY_ENTRY_EXPORT) {
Some(data_dir) => data_dir,
None => return Ok(None),
};
let export_va = data_dir.virtual_address.get(LE);
let export_data = data_dir.data(data, sections)?;
ExportTable::parse(export_data, export_va).map(Some)
}
/// Returns the partially parsed import directory.
///
/// `data` must be the entire file data.
pub fn import_table<R: ReadRef<'data>>(
&self,
data: R,
sections: &SectionTable<'data>,
) -> Result<Option<ImportTable<'data>>> {
let data_dir = match self.get(pe::IMAGE_DIRECTORY_ENTRY_IMPORT) {
Some(data_dir) => data_dir,
None => return Ok(None),
};
let import_va = data_dir.virtual_address.get(LE);
let (section_data, section_va) = sections
.pe_data_containing(data, import_va)
.read_error("Invalid import data dir virtual address")?;
Ok(Some(ImportTable::new(section_data, section_va, import_va)))
}
/// Returns the partially parsed delay-load import directory.
///
/// `data` must be the entire file data.
pub fn delay_load_import_table<R: ReadRef<'data>>(
&self,
data: R,
sections: &SectionTable<'data>,
) -> Result<Option<DelayLoadImportTable<'data>>> {
let data_dir = match self.get(pe::IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT) {
Some(data_dir) => data_dir,
None => return Ok(None),
};
let import_va = data_dir.virtual_address.get(LE);
let (section_data, section_va) = sections
.pe_data_containing(data, import_va)
.read_error("Invalid import data dir virtual address")?;
Ok(Some(DelayLoadImportTable::new(
section_data,
section_va,
import_va,
)))
}
/// Returns the blocks in the base relocation directory.
///
/// `data` must be the entire file data.
pub fn relocation_blocks<R: ReadRef<'data>>(
&self,
data: R,
sections: &SectionTable<'data>,
) -> Result<Option<RelocationBlockIterator<'data>>> {
let data_dir = match self.get(pe::IMAGE_DIRECTORY_ENTRY_BASERELOC) {
Some(data_dir) => data_dir,
None => return Ok(None),
};
let reloc_data = data_dir.data(data, sections)?;
Ok(Some(RelocationBlockIterator::new(reloc_data)))
}
/// Returns the resource directory.
///
/// `data` must be the entire file data.
pub fn resource_directory<R: ReadRef<'data>>(
&self,
data: R,
sections: &SectionTable<'data>,
) -> Result<Option<ResourceDirectory<'data>>> {
let data_dir = match self.get(pe::IMAGE_DIRECTORY_ENTRY_RESOURCE) {
Some(data_dir) => data_dir,
None => return Ok(None),
};
let rsrc_data = data_dir.data(data, sections)?;
Ok(Some(ResourceDirectory::new(rsrc_data)))
}
}
impl pe::ImageDataDirectory {
/// Return the virtual address range of this directory entry.
pub fn address_range(&self) -> (u32, u32) {
(self.virtual_address.get(LE), self.size.get(LE))
}
/// Return the file offset and size of this directory entry.
///
/// This function has some limitations:
/// - It requires that the data is contained in a single section.
/// - It uses the size field of the directory entry, which is
/// not desirable for all data directories.
/// - It uses the `virtual_address` of the directory entry as an address,
/// which is not valid for `IMAGE_DIRECTORY_ENTRY_SECURITY`.
pub fn file_range(&self, sections: &SectionTable<'_>) -> Result<(u32, u32)> {
let (offset, section_size) = sections
.pe_file_range_at(self.virtual_address.get(LE))
.read_error("Invalid data dir virtual address")?;
let size = self.size.get(LE);
if size > section_size {
return Err(Error("Invalid data dir size"));
}
Ok((offset, size))
}
/// Get the data referenced by this directory entry.
///
/// This function has some limitations:
/// - It requires that the data is contained in a single section.
/// - It uses the size field of the directory entry, which is
/// not desirable for all data directories.
/// - It uses the `virtual_address` of the directory entry as an address,
/// which is not valid for `IMAGE_DIRECTORY_ENTRY_SECURITY`.
pub fn data<'data, R: ReadRef<'data>>(
&self,
data: R,
sections: &SectionTable<'data>,
) -> Result<&'data [u8]> {
sections
.pe_data_at(data, self.virtual_address.get(LE))
.read_error("Invalid data dir virtual address")?
.get(..self.size.get(LE) as usize)
.read_error("Invalid data dir size")
}
}

333
vendor/object/src/read/pe/export.rs vendored Normal file
View File

@ -0,0 +1,333 @@
use alloc::vec::Vec;
use core::fmt::Debug;
use crate::read::{ByteString, Bytes, Error, ReadError, ReadRef, Result};
use crate::{pe, LittleEndian as LE, U16Bytes, U32Bytes};
/// Where an export is pointing to.
#[derive(Clone, Copy)]
pub enum ExportTarget<'data> {
/// The address of the export, relative to the image base.
Address(u32),
/// Forwarded to an export ordinal in another DLL.
///
/// This gives the name of the DLL, and the ordinal.
ForwardByOrdinal(&'data [u8], u32),
/// Forwarded to an export name in another DLL.
///
/// This gives the name of the DLL, and the export name.
ForwardByName(&'data [u8], &'data [u8]),
}
impl<'data> ExportTarget<'data> {
/// Returns true if the target is an address.
pub fn is_address(&self) -> bool {
match self {
ExportTarget::Address(_) => true,
_ => false,
}
}
/// Returns true if the export is forwarded to another DLL.
pub fn is_forward(&self) -> bool {
!self.is_address()
}
}
/// An export from a PE file.
///
/// There are multiple kinds of PE exports (with or without a name, and local or forwarded).
#[derive(Clone, Copy)]
pub struct Export<'data> {
/// The ordinal of the export.
///
/// These are sequential, starting at a base specified in the DLL.
pub ordinal: u32,
/// The name of the export, if known.
pub name: Option<&'data [u8]>,
/// The target of this export.
pub target: ExportTarget<'data>,
}
impl<'a> Debug for Export<'a> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::result::Result<(), core::fmt::Error> {
f.debug_struct("Export")
.field("ordinal", &self.ordinal)
.field("name", &self.name.map(ByteString))
.field("target", &self.target)
.finish()
}
}
impl<'a> Debug for ExportTarget<'a> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::result::Result<(), core::fmt::Error> {
match self {
ExportTarget::Address(address) => write!(f, "Address({:#x})", address),
ExportTarget::ForwardByOrdinal(library, ordinal) => write!(
f,
"ForwardByOrdinal({:?}.#{})",
ByteString(library),
ordinal
),
ExportTarget::ForwardByName(library, name) => write!(
f,
"ForwardByName({:?}.{:?})",
ByteString(library),
ByteString(name)
),
}
}
}
/// A partially parsed PE export table.
///
/// Returned by [`DataDirectories::export_table`](super::DataDirectories::export_table).
#[derive(Debug, Clone)]
pub struct ExportTable<'data> {
data: Bytes<'data>,
virtual_address: u32,
directory: &'data pe::ImageExportDirectory,
addresses: &'data [U32Bytes<LE>],
names: &'data [U32Bytes<LE>],
name_ordinals: &'data [U16Bytes<LE>],
}
impl<'data> ExportTable<'data> {
/// Parse the export table given its section data and address.
pub fn parse(data: &'data [u8], virtual_address: u32) -> Result<Self> {
let directory = Self::parse_directory(data)?;
let data = Bytes(data);
let mut addresses = &[][..];
let address_of_functions = directory.address_of_functions.get(LE);
if address_of_functions != 0 {
addresses = data
.read_slice_at::<U32Bytes<_>>(
address_of_functions.wrapping_sub(virtual_address) as usize,
directory.number_of_functions.get(LE) as usize,
)
.read_error("Invalid PE export address table")?;
}
let mut names = &[][..];
let mut name_ordinals = &[][..];
let address_of_names = directory.address_of_names.get(LE);
let address_of_name_ordinals = directory.address_of_name_ordinals.get(LE);
if address_of_names != 0 {
if address_of_name_ordinals == 0 {
return Err(Error("Missing PE export ordinal table"));
}
let number = directory.number_of_names.get(LE) as usize;
names = data
.read_slice_at::<U32Bytes<_>>(
address_of_names.wrapping_sub(virtual_address) as usize,
number,
)
.read_error("Invalid PE export name pointer table")?;
name_ordinals = data
.read_slice_at::<U16Bytes<_>>(
address_of_name_ordinals.wrapping_sub(virtual_address) as usize,
number,
)
.read_error("Invalid PE export ordinal table")?;
}
Ok(ExportTable {
data,
virtual_address,
directory,
addresses,
names,
name_ordinals,
})
}
/// Parse the export directory given its section data.
pub fn parse_directory(data: &'data [u8]) -> Result<&'data pe::ImageExportDirectory> {
data.read_at::<pe::ImageExportDirectory>(0)
.read_error("Invalid PE export dir size")
}
/// Returns the header of the export table.
pub fn directory(&self) -> &'data pe::ImageExportDirectory {
self.directory
}
/// Returns the base value of ordinals.
///
/// Adding this to an address index will give an ordinal.
pub fn ordinal_base(&self) -> u32 {
self.directory.base.get(LE)
}
/// Returns the unparsed address table.
///
/// An address table entry may be a local address, or the address of a forwarded export entry.
/// See [`Self::is_forward`] and [`Self::target_from_address`].
pub fn addresses(&self) -> &'data [U32Bytes<LE>] {
self.addresses
}
/// Returns the unparsed name pointer table.
///
/// A name pointer table entry can be used with [`Self::name_from_pointer`].
pub fn name_pointers(&self) -> &'data [U32Bytes<LE>] {
self.names
}
/// Returns the unparsed ordinal table.
///
/// An ordinal table entry is a 0-based index into the address table.
/// See [`Self::address_by_index`] and [`Self::target_by_index`].
pub fn name_ordinals(&self) -> &'data [U16Bytes<LE>] {
self.name_ordinals
}
/// Returns an iterator for the entries in the name pointer table and ordinal table.
///
/// A name pointer table entry can be used with [`Self::name_from_pointer`].
///
/// An ordinal table entry is a 0-based index into the address table.
/// See [`Self::address_by_index`] and [`Self::target_by_index`].
pub fn name_iter(&self) -> impl Iterator<Item = (u32, u16)> + 'data {
self.names
.iter()
.map(|x| x.get(LE))
.zip(self.name_ordinals.iter().map(|x| x.get(LE)))
}
/// Returns the export address table entry at the given address index.
///
/// This may be a local address, or the address of a forwarded export entry.
/// See [`Self::is_forward`] and [`Self::target_from_address`].
///
/// `index` is a 0-based index into the export address table.
pub fn address_by_index(&self, index: u32) -> Result<u32> {
Ok(self
.addresses
.get(index as usize)
.read_error("Invalid PE export address index")?
.get(LE))
}
/// Returns the export address table entry at the given ordinal.
///
/// This may be a local address, or the address of a forwarded export entry.
/// See [`Self::is_forward`] and [`Self::target_from_address`].
pub fn address_by_ordinal(&self, ordinal: u32) -> Result<u32> {
self.address_by_index(ordinal.wrapping_sub(self.ordinal_base()))
}
/// Returns the target of the export at the given address index.
///
/// `index` is a 0-based index into the export address table.
pub fn target_by_index(&self, index: u32) -> Result<ExportTarget<'data>> {
self.target_from_address(self.address_by_index(index)?)
}
/// Returns the target of the export at the given ordinal.
pub fn target_by_ordinal(&self, ordinal: u32) -> Result<ExportTarget<'data>> {
self.target_from_address(self.address_by_ordinal(ordinal)?)
}
/// Convert an export address table entry into a target.
pub fn target_from_address(&self, address: u32) -> Result<ExportTarget<'data>> {
Ok(if let Some(forward) = self.forward_string(address)? {
let i = forward
.iter()
.position(|x| *x == b'.')
.read_error("Missing PE forwarded export separator")?;
let library = &forward[..i];
match &forward[i + 1..] {
[b'#', digits @ ..] => {
let ordinal =
parse_ordinal(digits).read_error("Invalid PE forwarded export ordinal")?;
ExportTarget::ForwardByOrdinal(library, ordinal)
}
[] => {
return Err(Error("Missing PE forwarded export name"));
}
name => ExportTarget::ForwardByName(library, name),
}
} else {
ExportTarget::Address(address)
})
}
fn forward_offset(&self, address: u32) -> Option<usize> {
let offset = address.wrapping_sub(self.virtual_address) as usize;
if offset < self.data.len() {
Some(offset)
} else {
None
}
}
/// Return true if the export address table entry is a forward.
pub fn is_forward(&self, address: u32) -> bool {
self.forward_offset(address).is_some()
}
/// Return the forward string if the export address table entry is a forward.
pub fn forward_string(&self, address: u32) -> Result<Option<&'data [u8]>> {
if let Some(offset) = self.forward_offset(address) {
self.data
.read_string_at(offset)
.read_error("Invalid PE forwarded export address")
.map(Some)
} else {
Ok(None)
}
}
/// Convert an export name pointer table entry into a name.
pub fn name_from_pointer(&self, name_pointer: u32) -> Result<&'data [u8]> {
let offset = name_pointer.wrapping_sub(self.virtual_address);
self.data
.read_string_at(offset as usize)
.read_error("Invalid PE export name pointer")
}
/// Returns the parsed exports in this table.
pub fn exports(&self) -> Result<Vec<Export<'data>>> {
// First, let's list all exports.
let mut exports = Vec::new();
let ordinal_base = self.ordinal_base();
for (i, address) in self.addresses.iter().enumerate() {
// Convert from an array index to an ordinal.
let ordinal = ordinal_base.wrapping_add(i as u32);
let target = self.target_from_address(address.get(LE))?;
exports.push(Export {
ordinal,
target,
// Might be populated later.
name: None,
});
}
// Now, check whether some (or all) of them have an associated name.
// `ordinal_index` is a 0-based index into `addresses`.
for (name_pointer, ordinal_index) in self.name_iter() {
let name = self.name_from_pointer(name_pointer)?;
exports
.get_mut(ordinal_index as usize)
.read_error("Invalid PE export ordinal")?
.name = Some(name);
}
Ok(exports)
}
}
fn parse_ordinal(digits: &[u8]) -> Option<u32> {
if digits.is_empty() {
return None;
}
let mut result: u32 = 0;
for &c in digits {
let x = (c as char).to_digit(10)?;
result = result.checked_mul(10)?.checked_add(x)?;
}
Some(result)
}

1050
vendor/object/src/read/pe/file.rs vendored Normal file

File diff suppressed because it is too large Load Diff

337
vendor/object/src/read/pe/import.rs vendored Normal file
View File

@ -0,0 +1,337 @@
use core::fmt::Debug;
use core::mem;
use crate::read::{Bytes, ReadError, Result};
use crate::{pe, LittleEndian as LE, Pod, U16Bytes};
use super::ImageNtHeaders;
/// Information for parsing a PE import table.
///
/// Returned by [`DataDirectories::import_table`](super::DataDirectories::import_table).
#[derive(Debug, Clone)]
pub struct ImportTable<'data> {
section_data: Bytes<'data>,
section_address: u32,
import_address: u32,
}
impl<'data> ImportTable<'data> {
/// Create a new import table parser.
///
/// The import descriptors start at `import_address`.
/// The size declared in the `IMAGE_DIRECTORY_ENTRY_IMPORT` data directory is
/// ignored by the Windows loader, and so descriptors will be parsed until a null entry.
///
/// `section_data` should be from the section containing `import_address`, and
/// `section_address` should be the address of that section. Pointers within the
/// descriptors and thunks may point to anywhere within the section data.
pub fn new(section_data: &'data [u8], section_address: u32, import_address: u32) -> Self {
ImportTable {
section_data: Bytes(section_data),
section_address,
import_address,
}
}
/// Return an iterator for the import descriptors.
pub fn descriptors(&self) -> Result<ImportDescriptorIterator<'data>> {
let offset = self.import_address.wrapping_sub(self.section_address);
let mut data = self.section_data;
data.skip(offset as usize)
.read_error("Invalid PE import descriptor address")?;
Ok(ImportDescriptorIterator { data })
}
/// Return a library name given its address.
///
/// This address may be from [`pe::ImageImportDescriptor::name`].
pub fn name(&self, address: u32) -> Result<&'data [u8]> {
self.section_data
.read_string_at(address.wrapping_sub(self.section_address) as usize)
.read_error("Invalid PE import descriptor name")
}
/// Return a list of thunks given its address.
///
/// This address may be from [`pe::ImageImportDescriptor::original_first_thunk`]
/// or [`pe::ImageImportDescriptor::first_thunk`].
pub fn thunks(&self, address: u32) -> Result<ImportThunkList<'data>> {
let offset = address.wrapping_sub(self.section_address);
let mut data = self.section_data;
data.skip(offset as usize)
.read_error("Invalid PE import thunk table address")?;
Ok(ImportThunkList { data })
}
/// Parse a thunk.
pub fn import<Pe: ImageNtHeaders>(&self, thunk: Pe::ImageThunkData) -> Result<Import<'data>> {
if thunk.is_ordinal() {
Ok(Import::Ordinal(thunk.ordinal()))
} else {
let (hint, name) = self.hint_name(thunk.address())?;
Ok(Import::Name(hint, name))
}
}
/// Return the hint and name at the given address.
///
/// This address may be from [`pe::ImageThunkData32`] or [`pe::ImageThunkData64`].
///
/// The hint is an index into the export name pointer table in the target library.
pub fn hint_name(&self, address: u32) -> Result<(u16, &'data [u8])> {
let offset = address.wrapping_sub(self.section_address);
let mut data = self.section_data;
data.skip(offset as usize)
.read_error("Invalid PE import thunk address")?;
let hint = data
.read::<U16Bytes<LE>>()
.read_error("Missing PE import thunk hint")?
.get(LE);
let name = data
.read_string()
.read_error("Missing PE import thunk name")?;
Ok((hint, name))
}
}
/// A fallible iterator for the descriptors in the import data directory.
#[derive(Debug, Clone)]
pub struct ImportDescriptorIterator<'data> {
data: Bytes<'data>,
}
impl<'data> ImportDescriptorIterator<'data> {
/// Return the next descriptor.
///
/// Returns `Ok(None)` when a null descriptor is found.
pub fn next(&mut self) -> Result<Option<&'data pe::ImageImportDescriptor>> {
let import_desc = self
.data
.read::<pe::ImageImportDescriptor>()
.read_error("Missing PE null import descriptor")?;
if import_desc.is_null() {
Ok(None)
} else {
Ok(Some(import_desc))
}
}
}
/// A list of import thunks.
///
/// These may be in the import lookup table, or the import address table.
#[derive(Debug, Clone)]
pub struct ImportThunkList<'data> {
data: Bytes<'data>,
}
impl<'data> ImportThunkList<'data> {
/// Get the thunk at the given index.
pub fn get<Pe: ImageNtHeaders>(&self, index: usize) -> Result<Pe::ImageThunkData> {
let thunk = self
.data
.read_at(index * mem::size_of::<Pe::ImageThunkData>())
.read_error("Invalid PE import thunk index")?;
Ok(*thunk)
}
/// Return the first thunk in the list, and update `self` to point after it.
///
/// Returns `Ok(None)` when a null thunk is found.
pub fn next<Pe: ImageNtHeaders>(&mut self) -> Result<Option<Pe::ImageThunkData>> {
let thunk = self
.data
.read::<Pe::ImageThunkData>()
.read_error("Missing PE null import thunk")?;
if thunk.address() == 0 {
Ok(None)
} else {
Ok(Some(*thunk))
}
}
}
/// A parsed import thunk.
#[derive(Debug, Clone, Copy)]
pub enum Import<'data> {
/// Import by ordinal.
Ordinal(u16),
/// Import by name.
///
/// Includes a hint for the index into the export name pointer table in the target library.
Name(u16, &'data [u8]),
}
/// A trait for generic access to [`pe::ImageThunkData32`] and [`pe::ImageThunkData64`].
#[allow(missing_docs)]
pub trait ImageThunkData: Debug + Pod {
/// Return the raw thunk value.
fn raw(self) -> u64;
/// Returns true if the ordinal flag is set.
fn is_ordinal(self) -> bool;
/// Return the ordinal portion of the thunk.
///
/// Does not check the ordinal flag.
fn ordinal(self) -> u16;
/// Return the RVA portion of the thunk.
///
/// Does not check the ordinal flag.
fn address(self) -> u32;
}
impl ImageThunkData for pe::ImageThunkData64 {
fn raw(self) -> u64 {
self.0.get(LE)
}
fn is_ordinal(self) -> bool {
self.0.get(LE) & pe::IMAGE_ORDINAL_FLAG64 != 0
}
fn ordinal(self) -> u16 {
self.0.get(LE) as u16
}
fn address(self) -> u32 {
self.0.get(LE) as u32 & 0x7fff_ffff
}
}
impl ImageThunkData for pe::ImageThunkData32 {
fn raw(self) -> u64 {
self.0.get(LE).into()
}
fn is_ordinal(self) -> bool {
self.0.get(LE) & pe::IMAGE_ORDINAL_FLAG32 != 0
}
fn ordinal(self) -> u16 {
self.0.get(LE) as u16
}
fn address(self) -> u32 {
self.0.get(LE) & 0x7fff_ffff
}
}
/// Information for parsing a PE delay-load import table.
///
/// Returned by
/// [`DataDirectories::delay_load_import_table`](super::DataDirectories::delay_load_import_table).
#[derive(Debug, Clone)]
pub struct DelayLoadImportTable<'data> {
section_data: Bytes<'data>,
section_address: u32,
import_address: u32,
}
impl<'data> DelayLoadImportTable<'data> {
/// Create a new delay load import table parser.
///
/// The import descriptors start at `import_address`.
/// This table works in the same way the import table does: descriptors will be
/// parsed until a null entry.
///
/// `section_data` should be from the section containing `import_address`, and
/// `section_address` should be the address of that section. Pointers within the
/// descriptors and thunks may point to anywhere within the section data.
pub fn new(section_data: &'data [u8], section_address: u32, import_address: u32) -> Self {
DelayLoadImportTable {
section_data: Bytes(section_data),
section_address,
import_address,
}
}
/// Return an iterator for the import descriptors.
pub fn descriptors(&self) -> Result<DelayLoadDescriptorIterator<'data>> {
let offset = self.import_address.wrapping_sub(self.section_address);
let mut data = self.section_data;
data.skip(offset as usize)
.read_error("Invalid PE delay-load import descriptor address")?;
Ok(DelayLoadDescriptorIterator { data })
}
/// Return a library name given its address.
///
/// This address may be from [`pe::ImageDelayloadDescriptor::dll_name_rva`].
pub fn name(&self, address: u32) -> Result<&'data [u8]> {
self.section_data
.read_string_at(address.wrapping_sub(self.section_address) as usize)
.read_error("Invalid PE import descriptor name")
}
/// Return a list of thunks given its address.
///
/// This address may be from the INT, i.e. from
/// [`pe::ImageDelayloadDescriptor::import_name_table_rva`].
///
/// Please note that others RVA values from [`pe::ImageDelayloadDescriptor`] are used
/// by the delay loader at runtime to store values, and thus do not point inside the same
/// section as the INT. Calling this function on those addresses will fail.
pub fn thunks(&self, address: u32) -> Result<ImportThunkList<'data>> {
let offset = address.wrapping_sub(self.section_address);
let mut data = self.section_data;
data.skip(offset as usize)
.read_error("Invalid PE delay load import thunk table address")?;
Ok(ImportThunkList { data })
}
/// Parse a thunk.
pub fn import<Pe: ImageNtHeaders>(&self, thunk: Pe::ImageThunkData) -> Result<Import<'data>> {
if thunk.is_ordinal() {
Ok(Import::Ordinal(thunk.ordinal()))
} else {
let (hint, name) = self.hint_name(thunk.address())?;
Ok(Import::Name(hint, name))
}
}
/// Return the hint and name at the given address.
///
/// This address may be from [`pe::ImageThunkData32`] or [`pe::ImageThunkData64`].
///
/// The hint is an index into the export name pointer table in the target library.
pub fn hint_name(&self, address: u32) -> Result<(u16, &'data [u8])> {
let offset = address.wrapping_sub(self.section_address);
let mut data = self.section_data;
data.skip(offset as usize)
.read_error("Invalid PE delay load import thunk address")?;
let hint = data
.read::<U16Bytes<LE>>()
.read_error("Missing PE delay load import thunk hint")?
.get(LE);
let name = data
.read_string()
.read_error("Missing PE delay load import thunk name")?;
Ok((hint, name))
}
}
/// A fallible iterator for the descriptors in the delay-load data directory.
#[derive(Debug, Clone)]
pub struct DelayLoadDescriptorIterator<'data> {
data: Bytes<'data>,
}
impl<'data> DelayLoadDescriptorIterator<'data> {
/// Return the next descriptor.
///
/// Returns `Ok(None)` when a null descriptor is found.
pub fn next(&mut self) -> Result<Option<&'data pe::ImageDelayloadDescriptor>> {
let import_desc = self
.data
.read::<pe::ImageDelayloadDescriptor>()
.read_error("Missing PE null delay-load import descriptor")?;
if import_desc.is_null() {
Ok(None)
} else {
Ok(Some(import_desc))
}
}
}

68
vendor/object/src/read/pe/mod.rs vendored Normal file
View File

@ -0,0 +1,68 @@
//! Support for reading PE files.
//!
//! Traits are used to abstract over the difference between PE32 and PE32+.
//! The primary trait for this is [`ImageNtHeaders`].
//!
//! ## High level API
//!
//! [`PeFile`] implements the [`Object`](crate::read::Object) trait for
//! PE files. [`PeFile`] is parameterised by [`ImageNtHeaders`] to allow
//! reading both PE32 and PE32+. There are type aliases for these parameters
//! ([`PeFile32`] and [`PeFile64`]).
//!
//! ## Low level API
//!
//! The [`ImageNtHeaders`] trait can be directly used to parse both
//! [`pe::ImageNtHeaders32`] and [`pe::ImageNtHeaders64`].
//!
//! ### Example for low level API
//! ```no_run
//! use object::pe;
//! use object::read::pe::ImageNtHeaders;
//! use std::error::Error;
//! use std::fs;
//!
//! /// Reads a file and displays the name of each section.
//! fn main() -> Result<(), Box<dyn Error>> {
//! # #[cfg(feature = "std")] {
//! let data = fs::read("path/to/binary")?;
//! let dos_header = pe::ImageDosHeader::parse(&*data)?;
//! let mut offset = dos_header.nt_headers_offset().into();
//! let (nt_headers, data_directories) = pe::ImageNtHeaders64::parse(&*data, &mut offset)?;
//! let sections = nt_headers.sections(&*data, offset)?;
//! let symbols = nt_headers.symbols(&*data)?;
//! for section in sections.iter() {
//! println!("{}", String::from_utf8_lossy(section.name(symbols.strings())?));
//! }
//! # }
//! Ok(())
//! }
//! ```
#[cfg(doc)]
use crate::pe;
mod file;
pub use file::*;
mod section;
pub use section::*;
mod data_directory;
pub use data_directory::*;
mod export;
pub use export::*;
mod import;
pub use import::*;
mod relocation;
pub use relocation::*;
mod resource;
pub use resource::*;
mod rich;
pub use rich::*;
pub use super::coff::{SectionTable, SymbolTable};

92
vendor/object/src/read/pe/relocation.rs vendored Normal file
View File

@ -0,0 +1,92 @@
use core::slice;
use crate::endian::{LittleEndian as LE, U16};
use crate::pe;
use crate::read::{Bytes, Error, ReadError, Result};
/// An iterator over the relocation blocks in the `.reloc` section of a PE file.
///
/// Returned by [`DataDirectories::relocation_blocks`](super::DataDirectories::relocation_blocks).
#[derive(Debug, Default, Clone, Copy)]
pub struct RelocationBlockIterator<'data> {
data: Bytes<'data>,
}
impl<'data> RelocationBlockIterator<'data> {
/// Construct a new iterator from the data of the `.reloc` section.
pub fn new(data: &'data [u8]) -> Self {
RelocationBlockIterator { data: Bytes(data) }
}
/// Read the next relocation page.
pub fn next(&mut self) -> Result<Option<RelocationIterator<'data>>> {
if self.data.is_empty() {
return Ok(None);
}
let header = self
.data
.read::<pe::ImageBaseRelocation>()
.read_error("Invalid PE reloc section size")?;
let virtual_address = header.virtual_address.get(LE);
let size = header.size_of_block.get(LE);
if size <= 8 || size & 3 != 0 {
return Err(Error("Invalid PE reloc block size"));
}
let count = (size - 8) / 2;
let relocs = self
.data
.read_slice::<U16<LE>>(count as usize)
.read_error("Invalid PE reloc block size")?
.iter();
Ok(Some(RelocationIterator {
virtual_address,
size,
relocs,
}))
}
}
/// An iterator of the relocations in a block in the `.reloc` section of a PE file.
#[derive(Debug, Clone)]
pub struct RelocationIterator<'data> {
virtual_address: u32,
size: u32,
relocs: slice::Iter<'data, U16<LE>>,
}
impl<'data> RelocationIterator<'data> {
/// Return the virtual address of the page that this block of relocations applies to.
pub fn virtual_address(&self) -> u32 {
self.virtual_address
}
/// Return the size in bytes of this block of relocations.
pub fn size(&self) -> u32 {
self.size
}
}
impl<'data> Iterator for RelocationIterator<'data> {
type Item = Relocation;
fn next(&mut self) -> Option<Relocation> {
loop {
let reloc = self.relocs.next()?.get(LE);
if reloc != 0 {
return Some(Relocation {
virtual_address: self.virtual_address.wrapping_add((reloc & 0xfff) as u32),
typ: reloc >> 12,
});
}
}
}
}
/// A relocation in the `.reloc` section of a PE file.
#[derive(Debug, Default, Clone, Copy)]
pub struct Relocation {
/// The virtual address of the relocation.
pub virtual_address: u32,
/// One of the `pe::IMAGE_REL_BASED_*` constants.
pub typ: u16,
}

209
vendor/object/src/read/pe/resource.rs vendored Normal file
View File

@ -0,0 +1,209 @@
use alloc::string::String;
use core::char;
use crate::read::{ReadError, ReadRef, Result};
use crate::{pe, LittleEndian as LE, U16Bytes};
/// The `.rsrc` section of a PE file.
///
/// Returned by [`DataDirectories::resource_directory`](super::DataDirectories::resource_directory).
#[derive(Debug, Clone, Copy)]
pub struct ResourceDirectory<'data> {
data: &'data [u8],
}
impl<'data> ResourceDirectory<'data> {
/// Construct from the data of the `.rsrc` section.
pub fn new(data: &'data [u8]) -> Self {
ResourceDirectory { data }
}
/// Parses the root resource directory.
pub fn root(&self) -> Result<ResourceDirectoryTable<'data>> {
ResourceDirectoryTable::parse(self.data, 0)
}
}
/// A table of resource entries.
#[derive(Debug, Clone)]
pub struct ResourceDirectoryTable<'data> {
/// The table header.
pub header: &'data pe::ImageResourceDirectory,
/// The table entries.
pub entries: &'data [pe::ImageResourceDirectoryEntry],
}
impl<'data> ResourceDirectoryTable<'data> {
fn parse(data: &'data [u8], offset: u32) -> Result<Self> {
let mut offset = u64::from(offset);
let header = data
.read::<pe::ImageResourceDirectory>(&mut offset)
.read_error("Invalid resource table header")?;
let entries_count = header.number_of_id_entries.get(LE) as usize
+ header.number_of_named_entries.get(LE) as usize;
let entries = data
.read_slice::<pe::ImageResourceDirectoryEntry>(&mut offset, entries_count)
.read_error("Invalid resource table entries")?;
Ok(Self { header, entries })
}
}
impl pe::ImageResourceDirectoryEntry {
/// Returns true if the entry has a name, rather than an ID.
pub fn has_name(&self) -> bool {
self.name_or_id.get(LE) & pe::IMAGE_RESOURCE_NAME_IS_STRING != 0
}
/// Returns the section offset of the name.
///
/// Valid if `has_name()` returns true.
fn name(&self) -> ResourceName {
let offset = self.name_or_id.get(LE) & !pe::IMAGE_RESOURCE_NAME_IS_STRING;
ResourceName { offset }
}
/// Returns the ID.
///
/// Valid if `has_string_name()` returns false.
fn id(&self) -> u16 {
(self.name_or_id.get(LE) & 0x0000_FFFF) as u16
}
/// Returns the entry name
pub fn name_or_id(&self) -> ResourceNameOrId {
if self.has_name() {
ResourceNameOrId::Name(self.name())
} else {
ResourceNameOrId::Id(self.id())
}
}
/// Returns true if the entry is a subtable.
pub fn is_table(&self) -> bool {
self.offset_to_data_or_directory.get(LE) & pe::IMAGE_RESOURCE_DATA_IS_DIRECTORY != 0
}
/// Returns the section offset of the associated table or data.
pub fn data_offset(&self) -> u32 {
self.offset_to_data_or_directory.get(LE) & !pe::IMAGE_RESOURCE_DATA_IS_DIRECTORY
}
/// Returns the data associated to this directory entry.
pub fn data<'data>(
&self,
section: ResourceDirectory<'data>,
) -> Result<ResourceDirectoryEntryData<'data>> {
if self.is_table() {
ResourceDirectoryTable::parse(section.data, self.data_offset())
.map(ResourceDirectoryEntryData::Table)
} else {
section
.data
.read_at::<pe::ImageResourceDataEntry>(self.data_offset().into())
.read_error("Invalid resource entry")
.map(ResourceDirectoryEntryData::Data)
}
}
}
/// Data associated with a resource directory entry.
#[derive(Debug, Clone)]
pub enum ResourceDirectoryEntryData<'data> {
/// A subtable entry.
Table(ResourceDirectoryTable<'data>),
/// A resource data entry.
Data(&'data pe::ImageResourceDataEntry),
}
impl<'data> ResourceDirectoryEntryData<'data> {
/// Converts to an option of table.
///
/// Helper for iterator filtering.
pub fn table(self) -> Option<ResourceDirectoryTable<'data>> {
match self {
Self::Table(dir) => Some(dir),
_ => None,
}
}
/// Converts to an option of data entry.
///
/// Helper for iterator filtering.
pub fn data(self) -> Option<&'data pe::ImageResourceDataEntry> {
match self {
Self::Data(rsc) => Some(rsc),
_ => None,
}
}
}
/// A resource name.
#[derive(Debug, Clone, Copy)]
pub struct ResourceName {
offset: u32,
}
impl ResourceName {
/// Converts to a `String`.
pub fn to_string_lossy(&self, directory: ResourceDirectory<'_>) -> Result<String> {
let d = self.data(directory)?.iter().map(|c| c.get(LE));
Ok(char::decode_utf16(d)
.map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
.collect::<String>())
}
/// Returns the string unicode buffer.
pub fn data<'data>(
&self,
directory: ResourceDirectory<'data>,
) -> Result<&'data [U16Bytes<LE>]> {
let mut offset = u64::from(self.offset);
let len = directory
.data
.read::<U16Bytes<LE>>(&mut offset)
.read_error("Invalid resource name offset")?;
directory
.data
.read_slice::<U16Bytes<LE>>(&mut offset, len.get(LE).into())
.read_error("Invalid resource name length")
}
/// Returns the string buffer as raw bytes.
pub fn raw_data<'data>(&self, directory: ResourceDirectory<'data>) -> Result<&'data [u8]> {
self.data(directory).map(crate::pod::bytes_of_slice)
}
}
/// A resource name or ID.
///
/// Can be either a string or a numeric ID.
#[derive(Debug)]
pub enum ResourceNameOrId {
/// A resource name.
Name(ResourceName),
/// A resource ID.
Id(u16),
}
impl ResourceNameOrId {
/// Converts to an option of name.
///
/// Helper for iterator filtering.
pub fn name(self) -> Option<ResourceName> {
match self {
Self::Name(name) => Some(name),
_ => None,
}
}
/// Converts to an option of ID.
///
/// Helper for iterator filtering.
pub fn id(self) -> Option<u16> {
match self {
Self::Id(id) => Some(id),
_ => None,
}
}
}

91
vendor/object/src/read/pe/rich.rs vendored Normal file
View File

@ -0,0 +1,91 @@
//! PE rich header handling
use core::mem;
use crate::pod::bytes_of_slice;
use crate::read::Bytes;
use crate::{pe, LittleEndian as LE, ReadRef, U32};
/// Parsed information about a Rich Header.
#[derive(Debug, Clone, Copy)]
pub struct RichHeaderInfo<'data> {
/// The offset at which the rich header starts.
pub offset: usize,
/// The length (in bytes) of the rich header.
///
/// This includes the payload, but also the 16-byte start sequence and the
/// 8-byte final "Rich" and XOR key.
pub length: usize,
/// The XOR key used to mask the rich header.
///
/// Unless the file has been tampered with, it should be equal to a checksum
/// of the file header.
pub xor_key: u32,
masked_entries: &'data [pe::MaskedRichHeaderEntry],
}
/// A PE rich header entry after it has been unmasked.
///
/// See [`pe::MaskedRichHeaderEntry`].
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct RichHeaderEntry {
/// ID of the component.
pub comp_id: u32,
/// Number of times this component has been used when building this PE.
pub count: u32,
}
impl<'data> RichHeaderInfo<'data> {
/// Try to locate a rich header and its entries in the current PE file.
pub fn parse<R: ReadRef<'data>>(data: R, nt_header_offset: u64) -> Option<Self> {
// Locate the rich header, if any.
// It ends with the "Rich" string and an XOR key, before the NT header.
let data = data.read_bytes_at(0, nt_header_offset).map(Bytes).ok()?;
let end_marker_offset = memmem(data.0, b"Rich", 4)?;
let xor_key = *data.read_at::<U32<LE>>(end_marker_offset + 4).ok()?;
// It starts at the masked "DanS" string and 3 masked zeroes.
let masked_start_marker = U32::new(LE, 0x536e_6144 ^ xor_key.get(LE));
let start_header = [masked_start_marker, xor_key, xor_key, xor_key];
let start_sequence = bytes_of_slice(&start_header);
let start_marker_offset = memmem(&data.0[..end_marker_offset], start_sequence, 4)?;
// Extract the items between the markers.
let items_offset = start_marker_offset + start_sequence.len();
let items_len = end_marker_offset - items_offset;
let item_count = items_len / mem::size_of::<pe::MaskedRichHeaderEntry>();
let items = data.read_slice_at(items_offset, item_count).ok()?;
Some(RichHeaderInfo {
offset: start_marker_offset,
// Includes "Rich" marker and the XOR key.
length: end_marker_offset - start_marker_offset + 8,
xor_key: xor_key.get(LE),
masked_entries: items,
})
}
/// Returns an iterator over the unmasked entries.
pub fn unmasked_entries(&self) -> impl Iterator<Item = RichHeaderEntry> + 'data {
let xor_key = self.xor_key;
self.masked_entries
.iter()
.map(move |entry| RichHeaderEntry {
comp_id: entry.masked_comp_id.get(LE) ^ xor_key,
count: entry.masked_count.get(LE) ^ xor_key,
})
}
}
/// Find the offset of the first occurrence of needle in the data.
///
/// The offset must have the given alignment.
fn memmem(data: &[u8], needle: &[u8], align: usize) -> Option<usize> {
let mut offset = 0;
loop {
if data.get(offset..)?.get(..needle.len())? == needle {
return Some(offset);
}
offset += align;
}
}

440
vendor/object/src/read/pe/section.rs vendored Normal file
View File

@ -0,0 +1,440 @@
use core::marker::PhantomData;
use core::{cmp, iter, slice, str};
use crate::endian::LittleEndian as LE;
use crate::pe;
use crate::pe::ImageSectionHeader;
use crate::read::{
self, CompressedData, CompressedFileRange, ObjectSection, ObjectSegment, ReadError, ReadRef,
Relocation, Result, SectionFlags, SectionIndex, SectionKind, SegmentFlags,
};
use super::{ImageNtHeaders, PeFile, SectionTable};
/// An iterator for the loadable sections in a [`PeFile32`](super::PeFile32).
pub type PeSegmentIterator32<'data, 'file, R = &'data [u8]> =
PeSegmentIterator<'data, 'file, pe::ImageNtHeaders32, R>;
/// An iterator for the loadable sections in a [`PeFile64`](super::PeFile64).
pub type PeSegmentIterator64<'data, 'file, R = &'data [u8]> =
PeSegmentIterator<'data, 'file, pe::ImageNtHeaders64, R>;
/// An iterator for the loadable sections in a [`PeFile`].
#[derive(Debug)]
pub struct PeSegmentIterator<'data, 'file, Pe, R = &'data [u8]>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
pub(super) file: &'file PeFile<'data, Pe, R>,
pub(super) iter: slice::Iter<'data, pe::ImageSectionHeader>,
}
impl<'data, 'file, Pe, R> Iterator for PeSegmentIterator<'data, 'file, Pe, R>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
type Item = PeSegment<'data, 'file, Pe, R>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|section| PeSegment {
file: self.file,
section,
})
}
}
/// A loadable section in a [`PeFile32`](super::PeFile32).
pub type PeSegment32<'data, 'file, R = &'data [u8]> =
PeSegment<'data, 'file, pe::ImageNtHeaders32, R>;
/// A loadable section in a [`PeFile64`](super::PeFile64).
pub type PeSegment64<'data, 'file, R = &'data [u8]> =
PeSegment<'data, 'file, pe::ImageNtHeaders64, R>;
/// A loadable section in a [`PeFile`].
///
/// Most functionality is provided by the [`ObjectSegment`] trait implementation.
#[derive(Debug)]
pub struct PeSegment<'data, 'file, Pe, R = &'data [u8]>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
file: &'file PeFile<'data, Pe, R>,
section: &'data pe::ImageSectionHeader,
}
impl<'data, 'file, Pe, R> read::private::Sealed for PeSegment<'data, 'file, Pe, R>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Pe, R> ObjectSegment<'data> for PeSegment<'data, 'file, Pe, R>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
#[inline]
fn address(&self) -> u64 {
u64::from(self.section.virtual_address.get(LE)).wrapping_add(self.file.common.image_base)
}
#[inline]
fn size(&self) -> u64 {
u64::from(self.section.virtual_size.get(LE))
}
#[inline]
fn align(&self) -> u64 {
self.file.section_alignment()
}
#[inline]
fn file_range(&self) -> (u64, u64) {
let (offset, size) = self.section.pe_file_range();
(u64::from(offset), u64::from(size))
}
fn data(&self) -> Result<&'data [u8]> {
self.section.pe_data(self.file.data)
}
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>> {
Ok(read::util::data_range(
self.data()?,
self.address(),
address,
size,
))
}
#[inline]
fn name_bytes(&self) -> Result<Option<&[u8]>> {
self.section
.name(self.file.common.symbols.strings())
.map(Some)
}
#[inline]
fn name(&self) -> Result<Option<&str>> {
let name = self.section.name(self.file.common.symbols.strings())?;
Ok(Some(
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 PE section name")?,
))
}
#[inline]
fn flags(&self) -> SegmentFlags {
let characteristics = self.section.characteristics.get(LE);
SegmentFlags::Coff { characteristics }
}
}
/// An iterator for the sections in a [`PeFile32`](super::PeFile32).
pub type PeSectionIterator32<'data, 'file, R = &'data [u8]> =
PeSectionIterator<'data, 'file, pe::ImageNtHeaders32, R>;
/// An iterator for the sections in a [`PeFile64`](super::PeFile64).
pub type PeSectionIterator64<'data, 'file, R = &'data [u8]> =
PeSectionIterator<'data, 'file, pe::ImageNtHeaders64, R>;
/// An iterator for the sections in a [`PeFile`].
#[derive(Debug)]
pub struct PeSectionIterator<'data, 'file, Pe, R = &'data [u8]>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
pub(super) file: &'file PeFile<'data, Pe, R>,
pub(super) iter: iter::Enumerate<slice::Iter<'data, pe::ImageSectionHeader>>,
}
impl<'data, 'file, Pe, R> Iterator for PeSectionIterator<'data, 'file, Pe, R>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
type Item = PeSection<'data, 'file, Pe, R>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(index, section)| PeSection {
file: self.file,
index: SectionIndex(index + 1),
section,
})
}
}
/// A section in a [`PeFile32`](super::PeFile32).
pub type PeSection32<'data, 'file, R = &'data [u8]> =
PeSection<'data, 'file, pe::ImageNtHeaders32, R>;
/// A section in a [`PeFile64`](super::PeFile64).
pub type PeSection64<'data, 'file, R = &'data [u8]> =
PeSection<'data, 'file, pe::ImageNtHeaders64, R>;
/// A section in a [`PeFile`].
///
/// Most functionality is provided by the [`ObjectSection`] trait implementation.
#[derive(Debug)]
pub struct PeSection<'data, 'file, Pe, R = &'data [u8]>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
pub(super) file: &'file PeFile<'data, Pe, R>,
pub(super) index: SectionIndex,
pub(super) section: &'data pe::ImageSectionHeader,
}
impl<'data, 'file, Pe, R> read::private::Sealed for PeSection<'data, 'file, Pe, R>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Pe, R> ObjectSection<'data> for PeSection<'data, 'file, Pe, R>
where
Pe: ImageNtHeaders,
R: ReadRef<'data>,
{
type RelocationIterator = PeRelocationIterator<'data, 'file, R>;
#[inline]
fn index(&self) -> SectionIndex {
self.index
}
#[inline]
fn address(&self) -> u64 {
u64::from(self.section.virtual_address.get(LE)).wrapping_add(self.file.common.image_base)
}
#[inline]
fn size(&self) -> u64 {
u64::from(self.section.virtual_size.get(LE))
}
#[inline]
fn align(&self) -> u64 {
self.file.section_alignment()
}
#[inline]
fn file_range(&self) -> Option<(u64, u64)> {
let (offset, size) = self.section.pe_file_range();
if size == 0 {
None
} else {
Some((u64::from(offset), u64::from(size)))
}
}
fn data(&self) -> Result<&'data [u8]> {
self.section.pe_data(self.file.data)
}
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>> {
Ok(read::util::data_range(
self.data()?,
self.address(),
address,
size,
))
}
#[inline]
fn compressed_file_range(&self) -> Result<CompressedFileRange> {
Ok(CompressedFileRange::none(self.file_range()))
}
#[inline]
fn compressed_data(&self) -> Result<CompressedData<'data>> {
self.data().map(CompressedData::none)
}
#[inline]
fn name_bytes(&self) -> Result<&[u8]> {
self.section.name(self.file.common.symbols.strings())
}
#[inline]
fn name(&self) -> Result<&str> {
let name = self.name_bytes()?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 PE section name")
}
#[inline]
fn segment_name_bytes(&self) -> Result<Option<&[u8]>> {
Ok(None)
}
#[inline]
fn segment_name(&self) -> Result<Option<&str>> {
Ok(None)
}
#[inline]
fn kind(&self) -> SectionKind {
self.section.kind()
}
fn relocations(&self) -> PeRelocationIterator<'data, 'file, R> {
PeRelocationIterator(PhantomData)
}
fn flags(&self) -> SectionFlags {
SectionFlags::Coff {
characteristics: self.section.characteristics.get(LE),
}
}
}
impl<'data> SectionTable<'data> {
/// Return the file offset of the given virtual address, and the size up
/// to the end of the section containing it.
///
/// Returns `None` if no section contains the address.
pub fn pe_file_range_at(&self, va: u32) -> Option<(u32, u32)> {
self.iter().find_map(|section| section.pe_file_range_at(va))
}
/// Return the data starting at the given virtual address, up to the end of the
/// section containing it.
///
/// Ignores sections with invalid data.
///
/// Returns `None` if no section contains the address.
pub fn pe_data_at<R: ReadRef<'data>>(&self, data: R, va: u32) -> Option<&'data [u8]> {
self.iter().find_map(|section| section.pe_data_at(data, va))
}
/// Return the data of the section that contains the given virtual address in a PE file.
///
/// Also returns the virtual address of that section.
///
/// Ignores sections with invalid data.
pub fn pe_data_containing<R: ReadRef<'data>>(
&self,
data: R,
va: u32,
) -> Option<(&'data [u8], u32)> {
self.iter()
.find_map(|section| section.pe_data_containing(data, va))
}
/// Return the section that contains a given virtual address.
pub fn section_containing(&self, va: u32) -> Option<&'data ImageSectionHeader> {
self.iter().find(|section| section.contains_rva(va))
}
}
impl pe::ImageSectionHeader {
/// Return the offset and size of the section in a PE file.
///
/// The size of the range will be the minimum of the file size and virtual size.
pub fn pe_file_range(&self) -> (u32, u32) {
// Pointer and size will be zero for uninitialized data; we don't need to validate this.
let offset = self.pointer_to_raw_data.get(LE);
let size = cmp::min(self.virtual_size.get(LE), self.size_of_raw_data.get(LE));
(offset, size)
}
/// Return the file offset of the given virtual address, and the remaining size up
/// to the end of the section.
///
/// Returns `None` if the section does not contain the address.
pub fn pe_file_range_at(&self, va: u32) -> Option<(u32, u32)> {
let section_va = self.virtual_address.get(LE);
let offset = va.checked_sub(section_va)?;
let (section_offset, section_size) = self.pe_file_range();
// Address must be within section (and not at its end).
if offset < section_size {
Some((section_offset.checked_add(offset)?, section_size - offset))
} else {
None
}
}
/// Return the virtual address and size of the section.
pub fn pe_address_range(&self) -> (u32, u32) {
(self.virtual_address.get(LE), self.virtual_size.get(LE))
}
/// Return the section data in a PE file.
///
/// The length of the data will be the minimum of the file size and virtual size.
pub fn pe_data<'data, R: ReadRef<'data>>(&self, data: R) -> Result<&'data [u8]> {
let (offset, size) = self.pe_file_range();
data.read_bytes_at(offset.into(), size.into())
.read_error("Invalid PE section offset or size")
}
/// Return the data starting at the given virtual address, up to the end of the
/// section.
///
/// Ignores sections with invalid data.
///
/// Returns `None` if the section does not contain the address.
pub fn pe_data_at<'data, R: ReadRef<'data>>(&self, data: R, va: u32) -> Option<&'data [u8]> {
let (offset, size) = self.pe_file_range_at(va)?;
data.read_bytes_at(offset.into(), size.into()).ok()
}
/// Tests whether a given RVA is part of this section
pub fn contains_rva(&self, va: u32) -> bool {
let section_va = self.virtual_address.get(LE);
match va.checked_sub(section_va) {
None => false,
Some(offset) => {
// Address must be within section (and not at its end).
offset < self.virtual_size.get(LE)
}
}
}
/// Return the section data if it contains the given virtual address.
///
/// Also returns the virtual address of that section.
///
/// Ignores sections with invalid data.
pub fn pe_data_containing<'data, R: ReadRef<'data>>(
&self,
data: R,
va: u32,
) -> Option<(&'data [u8], u32)> {
let section_va = self.virtual_address.get(LE);
let offset = va.checked_sub(section_va)?;
let (section_offset, section_size) = self.pe_file_range();
// Address must be within section (and not at its end).
if offset < section_size {
let section_data = data
.read_bytes_at(section_offset.into(), section_size.into())
.ok()?;
Some((section_data, section_va))
} else {
None
}
}
}
/// An iterator for the relocations in an [`PeSection`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct PeRelocationIterator<'data, 'file, R = &'data [u8]>(
PhantomData<(&'data (), &'file (), R)>,
);
impl<'data, 'file, R> Iterator for PeRelocationIterator<'data, 'file, R> {
type Item = (u64, Relocation);
fn next(&mut self) -> Option<Self::Item> {
None
}
}

178
vendor/object/src/read/read_cache.rs vendored Normal file
View File

@ -0,0 +1,178 @@
use core::ops::Range;
use std::boxed::Box;
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::convert::TryInto;
use std::io::{Read, Seek, SeekFrom};
use std::mem;
use std::vec::Vec;
use crate::read::ReadRef;
/// An implementation of [`ReadRef`] for data in a stream that implements
/// `Read + Seek`.
///
/// Contains a cache of read-only blocks of data, allowing references to
/// them to be returned. Entries in the cache are never removed.
/// Entries are keyed on the offset and size of the read.
/// Currently overlapping reads are considered separate reads.
#[derive(Debug)]
pub struct ReadCache<R: Read + Seek> {
cache: RefCell<ReadCacheInternal<R>>,
}
#[derive(Debug)]
struct ReadCacheInternal<R: Read + Seek> {
read: R,
bufs: HashMap<(u64, u64), Box<[u8]>>,
strings: HashMap<(u64, u8), Box<[u8]>>,
}
impl<R: Read + Seek> ReadCache<R> {
/// Create an empty `ReadCache` for the given stream.
pub fn new(read: R) -> Self {
ReadCache {
cache: RefCell::new(ReadCacheInternal {
read,
bufs: HashMap::new(),
strings: HashMap::new(),
}),
}
}
/// Return an implementation of `ReadRef` that restricts reads
/// to the given range of the stream.
pub fn range(&self, offset: u64, size: u64) -> ReadCacheRange<'_, R> {
ReadCacheRange {
r: self,
offset,
size,
}
}
/// Free buffers used by the cache.
pub fn clear(&mut self) {
self.cache.borrow_mut().bufs.clear();
}
/// Unwrap this `ReadCache<R>`, returning the underlying reader.
pub fn into_inner(self) -> R {
self.cache.into_inner().read
}
}
impl<'a, R: Read + Seek> ReadRef<'a> for &'a ReadCache<R> {
fn len(self) -> Result<u64, ()> {
let cache = &mut *self.cache.borrow_mut();
cache.read.seek(SeekFrom::End(0)).map_err(|_| ())
}
fn read_bytes_at(self, offset: u64, size: u64) -> Result<&'a [u8], ()> {
if size == 0 {
return Ok(&[]);
}
let cache = &mut *self.cache.borrow_mut();
let buf = match cache.bufs.entry((offset, size)) {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let size = size.try_into().map_err(|_| ())?;
cache.read.seek(SeekFrom::Start(offset)).map_err(|_| ())?;
let mut bytes = vec![0; size].into_boxed_slice();
cache.read.read_exact(&mut bytes).map_err(|_| ())?;
entry.insert(bytes)
}
};
// Extend the lifetime to that of self.
// This is OK because we never mutate or remove entries.
Ok(unsafe { mem::transmute::<&[u8], &[u8]>(buf) })
}
fn read_bytes_at_until(self, range: Range<u64>, delimiter: u8) -> Result<&'a [u8], ()> {
let cache = &mut *self.cache.borrow_mut();
let buf = match cache.strings.entry((range.start, delimiter)) {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
cache
.read
.seek(SeekFrom::Start(range.start))
.map_err(|_| ())?;
let max_check: usize = (range.end - range.start).try_into().map_err(|_| ())?;
// Strings should be relatively small.
// TODO: make this configurable?
let max_check = max_check.min(4096);
let mut bytes = Vec::new();
let mut checked = 0;
loop {
bytes.resize((checked + 256).min(max_check), 0);
let read = cache.read.read(&mut bytes[checked..]).map_err(|_| ())?;
if read == 0 {
return Err(());
}
if let Some(len) = memchr::memchr(delimiter, &bytes[checked..][..read]) {
bytes.truncate(checked + len);
break entry.insert(bytes.into_boxed_slice());
}
checked += read;
if checked >= max_check {
return Err(());
}
}
}
};
// Extend the lifetime to that of self.
// This is OK because we never mutate or remove entries.
Ok(unsafe { mem::transmute::<&[u8], &[u8]>(buf) })
}
}
/// An implementation of [`ReadRef`] for a range of data in a stream that
/// implements `Read + Seek`.
///
/// Shares an underlying `ReadCache` with a lifetime of `'a`.
#[derive(Debug)]
pub struct ReadCacheRange<'a, R: Read + Seek> {
r: &'a ReadCache<R>,
offset: u64,
size: u64,
}
impl<'a, R: Read + Seek> Clone for ReadCacheRange<'a, R> {
fn clone(&self) -> Self {
*self
}
}
impl<'a, R: Read + Seek> Copy for ReadCacheRange<'a, R> {}
impl<'a, R: Read + Seek> ReadRef<'a> for ReadCacheRange<'a, R> {
fn len(self) -> Result<u64, ()> {
Ok(self.size)
}
fn read_bytes_at(self, offset: u64, size: u64) -> Result<&'a [u8], ()> {
if size == 0 {
return Ok(&[]);
}
let end = offset.checked_add(size).ok_or(())?;
if end > self.size {
return Err(());
}
let r_offset = self.offset.checked_add(offset).ok_or(())?;
self.r.read_bytes_at(r_offset, size)
}
fn read_bytes_at_until(self, range: Range<u64>, delimiter: u8) -> Result<&'a [u8], ()> {
let r_start = self.offset.checked_add(range.start).ok_or(())?;
let r_end = self.offset.checked_add(range.end).ok_or(())?;
let bytes = self.r.read_bytes_at_until(r_start..r_end, delimiter)?;
let size = bytes.len().try_into().map_err(|_| ())?;
let end = range.start.checked_add(size).ok_or(())?;
if end > self.size {
return Err(());
}
Ok(bytes)
}
}

137
vendor/object/src/read/read_ref.rs vendored Normal file
View File

@ -0,0 +1,137 @@
#![allow(clippy::len_without_is_empty)]
use core::convert::TryInto;
use core::ops::Range;
use core::{mem, result};
use crate::pod::{from_bytes, slice_from_bytes, Pod};
type Result<T> = result::Result<T, ()>;
/// A trait for reading references to [`Pod`] types from a block of data.
///
/// This allows parsers to handle both of these cases:
/// - the block of data exists in memory, and it is desirable
/// to use references to this block instead of copying it,
/// - the block of data exists in storage, and it is desirable
/// to read on demand to minimize I/O and memory usage.
///
/// The methods accept `self` by value because `Self` is expected to behave
/// similar to a reference: it may be a reference with a lifetime of `'a`,
/// or it may be a wrapper of a reference.
///
/// The `Clone` and `Copy` bounds are for convenience, and since `Self` is
/// expected to be similar to a reference, these are easily satisfied.
///
/// Object file parsers typically use offsets to locate the structures
/// in the block, and will most commonly use the `*_at` methods to
/// read a structure at a known offset.
///
/// Occasionally file parsers will need to treat the block as a stream,
/// and so convenience methods are provided that update an offset with
/// the size that was read.
//
// An alternative would be for methods to accept `&mut self` and use a
// `seek` method instead of the `offset` parameters, but this is less
// convenient for implementers.
pub trait ReadRef<'a>: Clone + Copy {
/// The total size of the block of data.
fn len(self) -> Result<u64>;
/// Get a reference to a `u8` slice at the given offset.
///
/// Returns an error if offset or size are out of bounds.
fn read_bytes_at(self, offset: u64, size: u64) -> Result<&'a [u8]>;
/// Get a reference to a delimited `u8` slice which starts at range.start.
///
/// Does not include the delimiter.
///
/// Returns an error if the range is out of bounds or the delimiter is
/// not found in the range.
fn read_bytes_at_until(self, range: Range<u64>, delimiter: u8) -> Result<&'a [u8]>;
/// Get a reference to a `u8` slice at the given offset, and update the offset.
///
/// Returns an error if offset or size are out of bounds.
fn read_bytes(self, offset: &mut u64, size: u64) -> Result<&'a [u8]> {
let bytes = self.read_bytes_at(*offset, size)?;
*offset = offset.wrapping_add(size);
Ok(bytes)
}
/// Get a reference to a `Pod` type at the given offset, and update the offset.
///
/// Returns an error if offset or size are out of bounds.
///
/// The default implementation uses `read_bytes`, and returns an error if
/// `read_bytes` does not return bytes with the correct alignment for `T`.
/// Implementors may want to provide their own implementation that ensures
/// the alignment can be satisfied. Alternatively, only use this method with
/// types that do not need alignment (see the `unaligned` feature of this crate).
fn read<T: Pod>(self, offset: &mut u64) -> Result<&'a T> {
let size = mem::size_of::<T>().try_into().map_err(|_| ())?;
let bytes = self.read_bytes(offset, size)?;
let (t, _) = from_bytes(bytes)?;
Ok(t)
}
/// Get a reference to a `Pod` type at the given offset.
///
/// Returns an error if offset or size are out of bounds.
///
/// Also see the `read` method for information regarding alignment of `T`.
fn read_at<T: Pod>(self, mut offset: u64) -> Result<&'a T> {
self.read(&mut offset)
}
/// Get a reference to a slice of a `Pod` type at the given offset, and update the offset.
///
/// Returns an error if offset or size are out of bounds.
///
/// Also see the `read` method for information regarding alignment of `T`.
fn read_slice<T: Pod>(self, offset: &mut u64, count: usize) -> Result<&'a [T]> {
let size = count
.checked_mul(mem::size_of::<T>())
.ok_or(())?
.try_into()
.map_err(|_| ())?;
let bytes = self.read_bytes(offset, size)?;
let (t, _) = slice_from_bytes(bytes, count)?;
Ok(t)
}
/// Get a reference to a slice of a `Pod` type at the given offset.
///
/// Returns an error if offset or size are out of bounds.
///
/// Also see the `read` method for information regarding alignment of `T`.
fn read_slice_at<T: Pod>(self, mut offset: u64, count: usize) -> Result<&'a [T]> {
self.read_slice(&mut offset, count)
}
}
impl<'a> ReadRef<'a> for &'a [u8] {
fn len(self) -> Result<u64> {
self.len().try_into().map_err(|_| ())
}
fn read_bytes_at(self, offset: u64, size: u64) -> Result<&'a [u8]> {
let offset: usize = offset.try_into().map_err(|_| ())?;
let size: usize = size.try_into().map_err(|_| ())?;
self.get(offset..).ok_or(())?.get(..size).ok_or(())
}
fn read_bytes_at_until(self, range: Range<u64>, delimiter: u8) -> Result<&'a [u8]> {
let start: usize = range.start.try_into().map_err(|_| ())?;
let end: usize = range.end.try_into().map_err(|_| ())?;
let bytes = self.get(start..end).ok_or(())?;
match memchr::memchr(delimiter, bytes) {
Some(len) => {
// This will never fail.
bytes.get(..len).ok_or(())
}
None => Err(()),
}
}
}

551
vendor/object/src/read/traits.rs vendored Normal file
View File

@ -0,0 +1,551 @@
use alloc::borrow::Cow;
use alloc::vec::Vec;
use crate::read::{
self, Architecture, CodeView, ComdatKind, CompressedData, CompressedFileRange, Export,
FileFlags, Import, ObjectKind, ObjectMap, Relocation, Result, SectionFlags, SectionIndex,
SectionKind, SegmentFlags, SubArchitecture, SymbolFlags, SymbolIndex, SymbolKind, SymbolMap,
SymbolMapName, SymbolScope, SymbolSection,
};
use crate::Endianness;
/// An object file.
///
/// This is the primary trait for the unified read API.
pub trait Object<'data: 'file, 'file>: read::private::Sealed {
/// A loadable segment in the object file.
type Segment: ObjectSegment<'data>;
/// An iterator for the loadable segments in the object file.
type SegmentIterator: Iterator<Item = Self::Segment>;
/// A section in the object file.
type Section: ObjectSection<'data>;
/// An iterator for the sections in the object file.
type SectionIterator: Iterator<Item = Self::Section>;
/// A COMDAT section group in the object file.
type Comdat: ObjectComdat<'data>;
/// An iterator for the COMDAT section groups in the object file.
type ComdatIterator: Iterator<Item = Self::Comdat>;
/// A symbol in the object file.
type Symbol: ObjectSymbol<'data>;
/// An iterator for symbols in the object file.
type SymbolIterator: Iterator<Item = Self::Symbol>;
/// A symbol table in the object file.
type SymbolTable: ObjectSymbolTable<
'data,
Symbol = Self::Symbol,
SymbolIterator = Self::SymbolIterator,
>;
/// An iterator for the dynamic relocations in the file.
///
/// The first field in the item tuple is the address
/// that the relocation applies to.
type DynamicRelocationIterator: Iterator<Item = (u64, Relocation)>;
/// Get the architecture type of the file.
fn architecture(&self) -> Architecture;
/// Get the sub-architecture type of the file if known.
///
/// A value of `None` has a range of meanings: the file supports all
/// sub-architectures, the file does not explicitly specify a
/// sub-architecture, or the sub-architecture is currently unrecognized.
fn sub_architecture(&self) -> Option<SubArchitecture> {
None
}
/// Get the endianness of the file.
#[inline]
fn endianness(&self) -> Endianness {
if self.is_little_endian() {
Endianness::Little
} else {
Endianness::Big
}
}
/// Return true if the file is little endian, false if it is big endian.
fn is_little_endian(&self) -> bool;
/// Return true if the file can contain 64-bit addresses.
fn is_64(&self) -> bool;
/// Return the kind of this object.
fn kind(&self) -> ObjectKind;
/// Get an iterator for the loadable segments in the file.
///
/// For ELF, this is program headers with type [`PT_LOAD`](crate::elf::PT_LOAD).
/// For Mach-O, this is load commands with type [`LC_SEGMENT`](crate::macho::LC_SEGMENT)
/// or [`LC_SEGMENT_64`](crate::macho::LC_SEGMENT_64).
/// For PE, this is all sections.
fn segments(&'file self) -> Self::SegmentIterator;
/// Get the section named `section_name`, if such a section exists.
///
/// If `section_name` starts with a '.' then it is treated as a system section name,
/// and is compared using the conventions specific to the object file format. This
/// includes:
/// - if ".debug_str_offsets" is requested for a Mach-O object file, then the actual
/// section name that is searched for is "__debug_str_offs".
/// - if ".debug_info" is requested for an ELF object file, then
/// ".zdebug_info" may be returned (and similarly for other debug sections).
///
/// For some object files, multiple segments may contain sections with the same
/// name. In this case, the first matching section will be used.
///
/// This method skips over sections with invalid names.
fn section_by_name(&'file self, section_name: &str) -> Option<Self::Section> {
self.section_by_name_bytes(section_name.as_bytes())
}
/// Like [`Self::section_by_name`], but allows names that are not UTF-8.
fn section_by_name_bytes(&'file self, section_name: &[u8]) -> Option<Self::Section>;
/// Get the section at the given index.
///
/// The meaning of the index depends on the object file.
///
/// For some object files, this requires iterating through all sections.
///
/// Returns an error if the index is invalid.
fn section_by_index(&'file self, index: SectionIndex) -> Result<Self::Section>;
/// Get an iterator for the sections in the file.
fn sections(&'file self) -> Self::SectionIterator;
/// Get an iterator for the COMDAT section groups in the file.
fn comdats(&'file self) -> Self::ComdatIterator;
/// Get the debugging symbol table, if any.
fn symbol_table(&'file self) -> Option<Self::SymbolTable>;
/// Get the debugging symbol at the given index.
///
/// The meaning of the index depends on the object file.
///
/// Returns an error if the index is invalid.
fn symbol_by_index(&'file self, index: SymbolIndex) -> Result<Self::Symbol>;
/// Get an iterator for the debugging symbols in the file.
///
/// This may skip over symbols that are malformed or unsupported.
///
/// For Mach-O files, this does not include STAB entries.
fn symbols(&'file self) -> Self::SymbolIterator;
/// Get the symbol named `symbol_name`, if the symbol exists.
fn symbol_by_name(&'file self, symbol_name: &str) -> Option<Self::Symbol> {
self.symbol_by_name_bytes(symbol_name.as_bytes())
}
/// Like [`Self::symbol_by_name`], but allows names that are not UTF-8.
fn symbol_by_name_bytes(&'file self, symbol_name: &[u8]) -> Option<Self::Symbol> {
self.symbols()
.find(|sym| sym.name_bytes() == Ok(symbol_name))
}
/// Get the dynamic linking symbol table, if any.
///
/// Only ELF has a separate dynamic linking symbol table.
/// Consider using [`Self::exports`] or [`Self::imports`] instead.
fn dynamic_symbol_table(&'file self) -> Option<Self::SymbolTable>;
/// Get an iterator for the dynamic linking symbols in the file.
///
/// This may skip over symbols that are malformed or unsupported.
///
/// Only ELF has dynamic linking symbols.
/// Other file formats will return an empty iterator.
/// Consider using [`Self::exports`] or [`Self::imports`] instead.
fn dynamic_symbols(&'file self) -> Self::SymbolIterator;
/// Get the dynamic relocations for this file.
///
/// Symbol indices in these relocations refer to the dynamic symbol table.
///
/// Only ELF has dynamic relocations.
fn dynamic_relocations(&'file self) -> Option<Self::DynamicRelocationIterator>;
/// Construct a map from addresses to symbol names.
///
/// The map will only contain defined text and data symbols.
/// The dynamic symbol table will only be used if there are no debugging symbols.
fn symbol_map(&'file self) -> SymbolMap<SymbolMapName<'data>> {
let mut symbols = Vec::new();
if let Some(table) = self.symbol_table().or_else(|| self.dynamic_symbol_table()) {
// Sometimes symbols share addresses. Collect them all then choose the "best".
let mut all_symbols = Vec::new();
for symbol in table.symbols() {
// Must have an address.
if !symbol.is_definition() {
continue;
}
// Must have a name.
let name = match symbol.name() {
Ok(name) => name,
_ => continue,
};
if name.is_empty() {
continue;
}
// Lower is better.
let mut priority = 0u32;
// Prefer known kind.
match symbol.kind() {
SymbolKind::Text | SymbolKind::Data => {}
SymbolKind::Unknown => priority += 1,
_ => continue,
}
priority *= 2;
// Prefer global visibility.
priority += match symbol.scope() {
SymbolScope::Unknown => 3,
SymbolScope::Compilation => 2,
SymbolScope::Linkage => 1,
SymbolScope::Dynamic => 0,
};
priority *= 4;
// Prefer later entries (earlier symbol is likely to be less specific).
let index = !0 - symbol.index().0;
// Tuple is ordered for sort.
all_symbols.push((symbol.address(), priority, index, name));
}
// Unstable sort is okay because tuple includes index.
all_symbols.sort_unstable();
let mut previous_address = !0;
for (address, _priority, _index, name) in all_symbols {
if address != previous_address {
symbols.push(SymbolMapName::new(address, name));
previous_address = address;
}
}
}
SymbolMap::new(symbols)
}
/// Construct a map from addresses to symbol names and object file names.
///
/// This is derived from Mach-O STAB entries.
fn object_map(&'file self) -> ObjectMap<'data> {
ObjectMap::default()
}
/// Get the imported symbols.
fn imports(&self) -> Result<Vec<Import<'data>>>;
/// Get the exported symbols that expose both a name and an address.
///
/// Some file formats may provide other kinds of symbols that can be retrieved using
/// the low level API.
fn exports(&self) -> Result<Vec<Export<'data>>>;
/// Return true if the file contains DWARF debug information sections, false if not.
fn has_debug_symbols(&self) -> bool;
/// The UUID from a Mach-O [`LC_UUID`](crate::macho::LC_UUID) load command.
#[inline]
fn mach_uuid(&self) -> Result<Option<[u8; 16]>> {
Ok(None)
}
/// The build ID from an ELF [`NT_GNU_BUILD_ID`](crate::elf::NT_GNU_BUILD_ID) note.
#[inline]
fn build_id(&self) -> Result<Option<&'data [u8]>> {
Ok(None)
}
/// The filename and CRC from a `.gnu_debuglink` section.
#[inline]
fn gnu_debuglink(&self) -> Result<Option<(&'data [u8], u32)>> {
Ok(None)
}
/// The filename and build ID from a `.gnu_debugaltlink` section.
#[inline]
fn gnu_debugaltlink(&self) -> Result<Option<(&'data [u8], &'data [u8])>> {
Ok(None)
}
/// The filename and GUID from the PE CodeView section.
#[inline]
fn pdb_info(&self) -> Result<Option<CodeView<'_>>> {
Ok(None)
}
/// Get the base address used for relative virtual addresses.
///
/// Currently this is only non-zero for PE.
fn relative_address_base(&'file self) -> u64;
/// Get the virtual address of the entry point of the binary.
fn entry(&'file self) -> u64;
/// File flags that are specific to each file format.
fn flags(&self) -> FileFlags;
}
/// A loadable segment in an [`Object`].
///
/// This trait is part of the unified read API.
pub trait ObjectSegment<'data>: read::private::Sealed {
/// Returns the virtual address of the segment.
fn address(&self) -> u64;
/// Returns the size of the segment in memory.
fn size(&self) -> u64;
/// Returns the alignment of the segment in memory.
fn align(&self) -> u64;
/// Returns the offset and size of the segment in the file.
fn file_range(&self) -> (u64, u64);
/// Returns a reference to the file contents of the segment.
///
/// The length of this data may be different from the size of the
/// segment in memory.
fn data(&self) -> Result<&'data [u8]>;
/// Return the segment data in the given range.
///
/// Returns `Ok(None)` if the segment does not contain the given range.
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>>;
/// Returns the name of the segment.
fn name_bytes(&self) -> Result<Option<&[u8]>>;
/// Returns the name of the segment.
///
/// Returns an error if the name is not UTF-8.
fn name(&self) -> Result<Option<&str>>;
/// Return the flags of segment.
fn flags(&self) -> SegmentFlags;
}
/// A section in an [`Object`].
///
/// This trait is part of the unified read API.
pub trait ObjectSection<'data>: read::private::Sealed {
/// An iterator for the relocations for a section.
///
/// The first field in the item tuple is the section offset
/// that the relocation applies to.
type RelocationIterator: Iterator<Item = (u64, Relocation)>;
/// Returns the section index.
fn index(&self) -> SectionIndex;
/// Returns the address of the section.
fn address(&self) -> u64;
/// Returns the size of the section in memory.
fn size(&self) -> u64;
/// Returns the alignment of the section in memory.
fn align(&self) -> u64;
/// Returns offset and size of on-disk segment (if any).
fn file_range(&self) -> Option<(u64, u64)>;
/// Returns the raw contents of the section.
///
/// The length of this data may be different from the size of the
/// section in memory.
///
/// This does not do any decompression.
fn data(&self) -> Result<&'data [u8]>;
/// Return the raw contents of the section data in the given range.
///
/// This does not do any decompression.
///
/// Returns `Ok(None)` if the section does not contain the given range.
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>>;
/// Returns the potentially compressed file range of the section,
/// along with information about the compression.
fn compressed_file_range(&self) -> Result<CompressedFileRange>;
/// Returns the potentially compressed contents of the section,
/// along with information about the compression.
fn compressed_data(&self) -> Result<CompressedData<'data>>;
/// Returns the uncompressed contents of the section.
///
/// The length of this data may be different from the size of the
/// section in memory.
///
/// If no compression is detected, then returns the data unchanged.
/// Returns `Err` if decompression fails.
fn uncompressed_data(&self) -> Result<Cow<'data, [u8]>> {
self.compressed_data()?.decompress()
}
/// Returns the name of the section.
fn name_bytes(&self) -> Result<&[u8]>;
/// Returns the name of the section.
///
/// Returns an error if the name is not UTF-8.
fn name(&self) -> Result<&str>;
/// Returns the name of the segment for this section.
fn segment_name_bytes(&self) -> Result<Option<&[u8]>>;
/// Returns the name of the segment for this section.
///
/// Returns an error if the name is not UTF-8.
fn segment_name(&self) -> Result<Option<&str>>;
/// Return the kind of this section.
fn kind(&self) -> SectionKind;
/// Get the relocations for this section.
fn relocations(&self) -> Self::RelocationIterator;
/// Section flags that are specific to each file format.
fn flags(&self) -> SectionFlags;
}
/// A COMDAT section group in an [`Object`].
///
/// This trait is part of the unified read API.
pub trait ObjectComdat<'data>: read::private::Sealed {
/// An iterator for the sections in the section group.
type SectionIterator: Iterator<Item = SectionIndex>;
/// Returns the COMDAT selection kind.
fn kind(&self) -> ComdatKind;
/// Returns the index of the symbol used for the name of COMDAT section group.
fn symbol(&self) -> SymbolIndex;
/// Returns the name of the COMDAT section group.
fn name_bytes(&self) -> Result<&[u8]>;
/// Returns the name of the COMDAT section group.
///
/// Returns an error if the name is not UTF-8.
fn name(&self) -> Result<&str>;
/// Get the sections in this section group.
fn sections(&self) -> Self::SectionIterator;
}
/// A symbol table in an [`Object`].
///
/// This trait is part of the unified read API.
pub trait ObjectSymbolTable<'data>: read::private::Sealed {
/// A symbol table entry.
type Symbol: ObjectSymbol<'data>;
/// An iterator for the symbols in a symbol table.
type SymbolIterator: Iterator<Item = Self::Symbol>;
/// Get an iterator for the symbols in the table.
///
/// This may skip over symbols that are malformed or unsupported.
fn symbols(&self) -> Self::SymbolIterator;
/// Get the symbol at the given index.
///
/// The meaning of the index depends on the object file.
///
/// Returns an error if the index is invalid.
fn symbol_by_index(&self, index: SymbolIndex) -> Result<Self::Symbol>;
}
/// A symbol table entry in an [`Object`].
///
/// This trait is part of the unified read API.
pub trait ObjectSymbol<'data>: read::private::Sealed {
/// The index of the symbol.
fn index(&self) -> SymbolIndex;
/// The name of the symbol.
fn name_bytes(&self) -> Result<&'data [u8]>;
/// The name of the symbol.
///
/// Returns an error if the name is not UTF-8.
fn name(&self) -> Result<&'data str>;
/// The address of the symbol. May be zero if the address is unknown.
fn address(&self) -> u64;
/// The size of the symbol. May be zero if the size is unknown.
fn size(&self) -> u64;
/// Return the kind of this symbol.
fn kind(&self) -> SymbolKind;
/// Returns the section where the symbol is defined.
fn section(&self) -> SymbolSection;
/// Returns the section index for the section containing this symbol.
///
/// May return `None` if the symbol is not defined in a section.
fn section_index(&self) -> Option<SectionIndex> {
self.section().index()
}
/// Return true if the symbol is undefined.
fn is_undefined(&self) -> bool;
/// Return true if the symbol is a definition of a function or data object
/// that has a known address.
///
/// This is primarily used to implement [`Object::symbol_map`].
fn is_definition(&self) -> bool;
/// Return true if the symbol is common data.
///
/// Note: does not check for [`SymbolSection::Section`] with [`SectionKind::Common`].
fn is_common(&self) -> bool;
/// Return true if the symbol is weak.
fn is_weak(&self) -> bool;
/// Returns the symbol scope.
fn scope(&self) -> SymbolScope;
/// Return true if the symbol visible outside of the compilation unit.
///
/// This treats [`SymbolScope::Unknown`] as global.
fn is_global(&self) -> bool;
/// Return true if the symbol is only visible within the compilation unit.
fn is_local(&self) -> bool;
/// Symbol flags that are specific to each file format.
fn flags(&self) -> SymbolFlags<SectionIndex, SymbolIndex>;
}
/// An iterator for files that don't have dynamic relocations.
#[derive(Debug)]
pub struct NoDynamicRelocationIterator;
impl Iterator for NoDynamicRelocationIterator {
type Item = (u64, Relocation);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
None
}
}

425
vendor/object/src/read/util.rs vendored Normal file
View File

@ -0,0 +1,425 @@
use alloc::string::String;
use core::convert::TryInto;
use core::fmt;
use core::marker::PhantomData;
use crate::pod::{from_bytes, slice_from_bytes, Pod};
use crate::ReadRef;
/// A newtype for byte slices.
///
/// It has these important features:
/// - no methods that can panic, such as `Index`
/// - convenience methods for `Pod` types
/// - a useful `Debug` implementation
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub struct Bytes<'data>(pub &'data [u8]);
impl<'data> fmt::Debug for Bytes<'data> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
debug_list_bytes(self.0, fmt)
}
}
impl<'data> Bytes<'data> {
/// Return the length of the byte slice.
#[inline]
pub fn len(&self) -> usize {
self.0.len()
}
/// Return true if the byte slice is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Skip over the given number of bytes at the start of the byte slice.
///
/// Modifies the byte slice to start after the bytes.
///
/// Returns an error if there are too few bytes.
#[inline]
pub fn skip(&mut self, offset: usize) -> Result<(), ()> {
match self.0.get(offset..) {
Some(tail) => {
self.0 = tail;
Ok(())
}
None => {
self.0 = &[];
Err(())
}
}
}
/// Return a reference to the given number of bytes at the start of the byte slice.
///
/// Modifies the byte slice to start after the bytes.
///
/// Returns an error if there are too few bytes.
#[inline]
pub fn read_bytes(&mut self, count: usize) -> Result<Bytes<'data>, ()> {
match (self.0.get(..count), self.0.get(count..)) {
(Some(head), Some(tail)) => {
self.0 = tail;
Ok(Bytes(head))
}
_ => {
self.0 = &[];
Err(())
}
}
}
/// Return a reference to the given number of bytes at the given offset of the byte slice.
///
/// Returns an error if the offset is invalid or there are too few bytes.
#[inline]
pub fn read_bytes_at(mut self, offset: usize, count: usize) -> Result<Bytes<'data>, ()> {
self.skip(offset)?;
self.read_bytes(count)
}
/// Return a reference to a `Pod` struct at the start of the byte slice.
///
/// Modifies the byte slice to start after the bytes.
///
/// Returns an error if there are too few bytes or the slice is incorrectly aligned.
#[inline]
pub fn read<T: Pod>(&mut self) -> Result<&'data T, ()> {
match from_bytes(self.0) {
Ok((value, tail)) => {
self.0 = tail;
Ok(value)
}
Err(()) => {
self.0 = &[];
Err(())
}
}
}
/// Return a reference to a `Pod` struct at the given offset of the byte slice.
///
/// Returns an error if there are too few bytes or the offset is incorrectly aligned.
#[inline]
pub fn read_at<T: Pod>(mut self, offset: usize) -> Result<&'data T, ()> {
self.skip(offset)?;
self.read()
}
/// Return a reference to a slice of `Pod` structs at the start of the byte slice.
///
/// Modifies the byte slice to start after the bytes.
///
/// Returns an error if there are too few bytes or the offset is incorrectly aligned.
#[inline]
pub fn read_slice<T: Pod>(&mut self, count: usize) -> Result<&'data [T], ()> {
match slice_from_bytes(self.0, count) {
Ok((value, tail)) => {
self.0 = tail;
Ok(value)
}
Err(()) => {
self.0 = &[];
Err(())
}
}
}
/// Return a reference to a slice of `Pod` structs at the given offset of the byte slice.
///
/// Returns an error if there are too few bytes or the offset is incorrectly aligned.
#[inline]
pub fn read_slice_at<T: Pod>(mut self, offset: usize, count: usize) -> Result<&'data [T], ()> {
self.skip(offset)?;
self.read_slice(count)
}
/// Read a null terminated string.
///
/// Does not assume any encoding.
/// Reads past the null byte, but doesn't return it.
#[inline]
pub fn read_string(&mut self) -> Result<&'data [u8], ()> {
match memchr::memchr(b'\0', self.0) {
Some(null) => {
// These will never fail.
let bytes = self.read_bytes(null)?;
self.skip(1)?;
Ok(bytes.0)
}
None => {
self.0 = &[];
Err(())
}
}
}
/// Read a null terminated string at an offset.
///
/// Does not assume any encoding. Does not return the null byte.
#[inline]
pub fn read_string_at(mut self, offset: usize) -> Result<&'data [u8], ()> {
self.skip(offset)?;
self.read_string()
}
/// Read an unsigned LEB128 number.
pub fn read_uleb128(&mut self) -> Result<u64, ()> {
let mut result = 0;
let mut shift = 0;
loop {
let byte = *self.read::<u8>()?;
if shift == 63 && byte != 0x00 && byte != 0x01 {
return Err(());
}
result |= u64::from(byte & 0x7f) << shift;
shift += 7;
if byte & 0x80 == 0 {
return Ok(result);
}
}
}
/// Read a signed LEB128 number.
pub fn read_sleb128(&mut self) -> Result<i64, ()> {
let mut result = 0;
let mut shift = 0;
loop {
let byte = *self.read::<u8>()?;
if shift == 63 && byte != 0x00 && byte != 0x7f {
return Err(());
}
result |= i64::from(byte & 0x7f) << shift;
shift += 7;
if byte & 0x80 == 0 {
if shift < 64 && (byte & 0x40) != 0 {
// Sign extend the result.
result |= !0 << shift;
}
return Ok(result);
}
}
}
}
// Only for Debug impl of `Bytes`.
fn debug_list_bytes(bytes: &[u8], fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut list = fmt.debug_list();
list.entries(bytes.iter().take(8).copied().map(DebugByte));
if bytes.len() > 8 {
list.entry(&DebugLen(bytes.len()));
}
list.finish()
}
struct DebugByte(u8);
impl fmt::Debug for DebugByte {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "0x{:02x}", self.0)
}
}
struct DebugLen(usize);
impl fmt::Debug for DebugLen {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "...; {}", self.0)
}
}
/// A newtype for byte strings.
///
/// For byte slices that are strings of an unknown encoding.
///
/// Provides a `Debug` implementation that interprets the bytes as UTF-8.
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub(crate) struct ByteString<'data>(pub &'data [u8]);
impl<'data> fmt::Debug for ByteString<'data> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "\"{}\"", String::from_utf8_lossy(self.0))
}
}
#[allow(dead_code)]
#[inline]
pub(crate) fn align(offset: usize, size: usize) -> usize {
(offset + (size - 1)) & !(size - 1)
}
#[allow(dead_code)]
pub(crate) fn data_range(
data: &[u8],
data_address: u64,
range_address: u64,
size: u64,
) -> Option<&[u8]> {
let offset = range_address.checked_sub(data_address)?;
data.get(offset.try_into().ok()?..)?
.get(..size.try_into().ok()?)
}
/// A table of zero-terminated strings.
///
/// This is used by most file formats for strings such as section names and symbol names.
#[derive(Debug, Clone, Copy)]
pub struct StringTable<'data, R = &'data [u8]>
where
R: ReadRef<'data>,
{
data: Option<R>,
start: u64,
end: u64,
marker: PhantomData<&'data ()>,
}
impl<'data, R: ReadRef<'data>> StringTable<'data, R> {
/// Interpret the given data as a string table.
pub fn new(data: R, start: u64, end: u64) -> Self {
StringTable {
data: Some(data),
start,
end,
marker: PhantomData,
}
}
/// Return the string at the given offset.
pub fn get(&self, offset: u32) -> Result<&'data [u8], ()> {
match self.data {
Some(data) => {
let r_start = self.start.checked_add(offset.into()).ok_or(())?;
data.read_bytes_at_until(r_start..self.end, 0)
}
None => Err(()),
}
}
}
impl<'data, R: ReadRef<'data>> Default for StringTable<'data, R> {
fn default() -> Self {
StringTable {
data: None,
start: 0,
end: 0,
marker: PhantomData,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::pod::bytes_of;
#[test]
fn bytes() {
let x = u32::to_be(0x0123_4567);
let data = Bytes(bytes_of(&x));
let mut bytes = data;
assert_eq!(bytes.skip(0), Ok(()));
assert_eq!(bytes, data);
let mut bytes = data;
assert_eq!(bytes.skip(4), Ok(()));
assert_eq!(bytes, Bytes(&[]));
let mut bytes = data;
assert_eq!(bytes.skip(5), Err(()));
assert_eq!(bytes, Bytes(&[]));
let mut bytes = data;
assert_eq!(bytes.read_bytes(0), Ok(Bytes(&[])));
assert_eq!(bytes, data);
let mut bytes = data;
assert_eq!(bytes.read_bytes(4), Ok(data));
assert_eq!(bytes, Bytes(&[]));
let mut bytes = data;
assert_eq!(bytes.read_bytes(5), Err(()));
assert_eq!(bytes, Bytes(&[]));
assert_eq!(data.read_bytes_at(0, 0), Ok(Bytes(&[])));
assert_eq!(data.read_bytes_at(4, 0), Ok(Bytes(&[])));
assert_eq!(data.read_bytes_at(0, 4), Ok(data));
assert_eq!(data.read_bytes_at(1, 4), Err(()));
let mut bytes = data;
assert_eq!(bytes.read::<u16>(), Ok(&u16::to_be(0x0123)));
assert_eq!(bytes, Bytes(&[0x45, 0x67]));
assert_eq!(data.read_at::<u16>(2), Ok(&u16::to_be(0x4567)));
assert_eq!(data.read_at::<u16>(3), Err(()));
assert_eq!(data.read_at::<u16>(4), Err(()));
let mut bytes = data;
assert_eq!(bytes.read::<u32>(), Ok(&x));
assert_eq!(bytes, Bytes(&[]));
let mut bytes = data;
assert_eq!(bytes.read::<u64>(), Err(()));
assert_eq!(bytes, Bytes(&[]));
let mut bytes = data;
assert_eq!(bytes.read_slice::<u8>(0), Ok(&[][..]));
assert_eq!(bytes, data);
let mut bytes = data;
assert_eq!(bytes.read_slice::<u8>(4), Ok(data.0));
assert_eq!(bytes, Bytes(&[]));
let mut bytes = data;
assert_eq!(bytes.read_slice::<u8>(5), Err(()));
assert_eq!(bytes, Bytes(&[]));
assert_eq!(data.read_slice_at::<u8>(0, 0), Ok(&[][..]));
assert_eq!(data.read_slice_at::<u8>(4, 0), Ok(&[][..]));
assert_eq!(data.read_slice_at::<u8>(0, 4), Ok(data.0));
assert_eq!(data.read_slice_at::<u8>(1, 4), Err(()));
let data = Bytes(&[0x01, 0x02, 0x00, 0x04]);
let mut bytes = data;
assert_eq!(bytes.read_string(), Ok(&data.0[..2]));
assert_eq!(bytes.0, &data.0[3..]);
let mut bytes = data;
bytes.skip(3).unwrap();
assert_eq!(bytes.read_string(), Err(()));
assert_eq!(bytes.0, &[]);
assert_eq!(data.read_string_at(0), Ok(&data.0[..2]));
assert_eq!(data.read_string_at(1), Ok(&data.0[1..2]));
assert_eq!(data.read_string_at(2), Ok(&[][..]));
assert_eq!(data.read_string_at(3), Err(()));
}
#[test]
fn bytes_debug() {
assert_eq!(format!("{:?}", Bytes(&[])), "[]");
assert_eq!(format!("{:?}", Bytes(&[0x01])), "[0x01]");
assert_eq!(
format!(
"{:?}",
Bytes(&[0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08])
),
"[0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08]"
);
assert_eq!(
format!(
"{:?}",
Bytes(&[0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09])
),
"[0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, ...; 9]"
);
}
}

966
vendor/object/src/read/wasm.rs vendored Normal file
View File

@ -0,0 +1,966 @@
//! Support for reading Wasm files.
//!
//! [`WasmFile`] implements the [`Object`] trait for Wasm files.
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::marker::PhantomData;
use core::ops::Range;
use core::{slice, str};
use wasmparser as wp;
use crate::read::{
self, Architecture, ComdatKind, CompressedData, CompressedFileRange, Error, Export, FileFlags,
Import, NoDynamicRelocationIterator, Object, ObjectComdat, ObjectKind, ObjectSection,
ObjectSegment, ObjectSymbol, ObjectSymbolTable, ReadError, ReadRef, Relocation, Result,
SectionFlags, SectionIndex, SectionKind, SegmentFlags, SymbolFlags, SymbolIndex, SymbolKind,
SymbolScope, SymbolSection,
};
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(usize)]
enum SectionId {
Custom = 0,
Type = 1,
Import = 2,
Function = 3,
Table = 4,
Memory = 5,
Global = 6,
Export = 7,
Start = 8,
Element = 9,
Code = 10,
Data = 11,
DataCount = 12,
}
// Update this constant when adding new section id:
const MAX_SECTION_ID: usize = SectionId::DataCount as usize;
/// A WebAssembly object file.
#[derive(Debug)]
pub struct WasmFile<'data, R = &'data [u8]> {
data: &'data [u8],
has_memory64: bool,
// All sections, including custom sections.
sections: Vec<SectionHeader<'data>>,
// Indices into `sections` of sections with a non-zero id.
id_sections: Box<[Option<usize>; MAX_SECTION_ID + 1]>,
// Whether the file has DWARF information.
has_debug_symbols: bool,
// Symbols collected from imports, exports, code and name sections.
symbols: Vec<WasmSymbolInternal<'data>>,
// Address of the function body for the entry point.
entry: u64,
marker: PhantomData<R>,
}
#[derive(Debug)]
struct SectionHeader<'data> {
id: SectionId,
range: Range<usize>,
name: &'data str,
}
#[derive(Clone)]
enum LocalFunctionKind {
Unknown,
Exported { symbol_ids: Vec<u32> },
Local { symbol_id: u32 },
}
impl<T> ReadError<T> for wasmparser::Result<T> {
fn read_error(self, error: &'static str) -> Result<T> {
self.map_err(|_| Error(error))
}
}
impl<'data, R: ReadRef<'data>> WasmFile<'data, R> {
/// Parse the raw wasm data.
pub fn parse(data: R) -> Result<Self> {
let len = data.len().read_error("Unknown Wasm file size")?;
let data = data.read_bytes_at(0, len).read_error("Wasm read failed")?;
let parser = wp::Parser::new(0).parse_all(data);
let mut file = WasmFile {
data,
has_memory64: false,
sections: Vec::new(),
id_sections: Default::default(),
has_debug_symbols: false,
symbols: Vec::new(),
entry: 0,
marker: PhantomData,
};
let mut main_file_symbol = Some(WasmSymbolInternal {
name: "",
address: 0,
size: 0,
kind: SymbolKind::File,
section: SymbolSection::None,
scope: SymbolScope::Compilation,
});
let mut imported_funcs_count = 0;
let mut local_func_kinds = Vec::new();
let mut entry_func_id = None;
let mut code_range_start = 0;
let mut code_func_index = 0;
// One-to-one mapping of globals to their value (if the global is a constant integer).
let mut global_values = Vec::new();
for payload in parser {
let payload = payload.read_error("Invalid Wasm section header")?;
match payload {
wp::Payload::TypeSection(section) => {
file.add_section(SectionId::Type, section.range(), "");
}
wp::Payload::ImportSection(section) => {
file.add_section(SectionId::Import, section.range(), "");
let mut last_module_name = None;
for import in section {
let import = import.read_error("Couldn't read an import item")?;
let module_name = import.module;
if last_module_name != Some(module_name) {
file.symbols.push(WasmSymbolInternal {
name: module_name,
address: 0,
size: 0,
kind: SymbolKind::File,
section: SymbolSection::None,
scope: SymbolScope::Dynamic,
});
last_module_name = Some(module_name);
}
let kind = match import.ty {
wp::TypeRef::Func(_) => {
imported_funcs_count += 1;
SymbolKind::Text
}
wp::TypeRef::Memory(memory) => {
file.has_memory64 |= memory.memory64;
SymbolKind::Data
}
wp::TypeRef::Table(_) | wp::TypeRef::Global(_) => SymbolKind::Data,
wp::TypeRef::Tag(_) => SymbolKind::Unknown,
};
file.symbols.push(WasmSymbolInternal {
name: import.name,
address: 0,
size: 0,
kind,
section: SymbolSection::Undefined,
scope: SymbolScope::Dynamic,
});
}
}
wp::Payload::FunctionSection(section) => {
file.add_section(SectionId::Function, section.range(), "");
local_func_kinds =
vec![LocalFunctionKind::Unknown; section.into_iter().count()];
}
wp::Payload::TableSection(section) => {
file.add_section(SectionId::Table, section.range(), "");
}
wp::Payload::MemorySection(section) => {
file.add_section(SectionId::Memory, section.range(), "");
for memory in section {
let memory = memory.read_error("Couldn't read a memory item")?;
file.has_memory64 |= memory.memory64;
}
}
wp::Payload::GlobalSection(section) => {
file.add_section(SectionId::Global, section.range(), "");
for global in section {
let global = global.read_error("Couldn't read a global item")?;
let mut address = None;
if !global.ty.mutable {
// There should be exactly one instruction.
let init = global.init_expr.get_operators_reader().read();
address = match init.read_error("Couldn't read a global init expr")? {
wp::Operator::I32Const { value } => Some(value as u64),
wp::Operator::I64Const { value } => Some(value as u64),
_ => None,
};
}
global_values.push(address);
}
}
wp::Payload::ExportSection(section) => {
file.add_section(SectionId::Export, section.range(), "");
if let Some(main_file_symbol) = main_file_symbol.take() {
file.symbols.push(main_file_symbol);
}
for export in section {
let export = export.read_error("Couldn't read an export item")?;
let (kind, section_idx) = match export.kind {
wp::ExternalKind::Func => {
if let Some(local_func_id) =
export.index.checked_sub(imported_funcs_count)
{
let local_func_kind =
&mut local_func_kinds[local_func_id as usize];
if let LocalFunctionKind::Unknown = local_func_kind {
*local_func_kind = LocalFunctionKind::Exported {
symbol_ids: Vec::new(),
};
}
let symbol_ids = match local_func_kind {
LocalFunctionKind::Exported { symbol_ids } => symbol_ids,
_ => unreachable!(),
};
symbol_ids.push(file.symbols.len() as u32);
}
(SymbolKind::Text, SectionId::Code)
}
wp::ExternalKind::Table
| wp::ExternalKind::Memory
| wp::ExternalKind::Global => (SymbolKind::Data, SectionId::Data),
// TODO
wp::ExternalKind::Tag => continue,
};
// Try to guess the symbol address. Rust and C export a global containing
// the address in linear memory of the symbol.
let mut address = 0;
if export.kind == wp::ExternalKind::Global {
if let Some(&Some(x)) = global_values.get(export.index as usize) {
address = x;
}
}
file.symbols.push(WasmSymbolInternal {
name: export.name,
address,
size: 0,
kind,
section: SymbolSection::Section(SectionIndex(section_idx as usize)),
scope: SymbolScope::Dynamic,
});
}
}
wp::Payload::StartSection { func, range, .. } => {
file.add_section(SectionId::Start, range, "");
entry_func_id = Some(func);
}
wp::Payload::ElementSection(section) => {
file.add_section(SectionId::Element, section.range(), "");
}
wp::Payload::CodeSectionStart { range, .. } => {
code_range_start = range.start;
file.add_section(SectionId::Code, range, "");
if let Some(main_file_symbol) = main_file_symbol.take() {
file.symbols.push(main_file_symbol);
}
}
wp::Payload::CodeSectionEntry(body) => {
let i = code_func_index;
code_func_index += 1;
let range = body.range();
let address = range.start as u64 - code_range_start as u64;
let size = (range.end - range.start) as u64;
if entry_func_id == Some(i as u32) {
file.entry = address;
}
let local_func_kind = &mut local_func_kinds[i];
match local_func_kind {
LocalFunctionKind::Unknown => {
*local_func_kind = LocalFunctionKind::Local {
symbol_id: file.symbols.len() as u32,
};
file.symbols.push(WasmSymbolInternal {
name: "",
address,
size,
kind: SymbolKind::Text,
section: SymbolSection::Section(SectionIndex(
SectionId::Code as usize,
)),
scope: SymbolScope::Compilation,
});
}
LocalFunctionKind::Exported { symbol_ids } => {
for symbol_id in core::mem::take(symbol_ids) {
let export_symbol = &mut file.symbols[symbol_id as usize];
export_symbol.address = address;
export_symbol.size = size;
}
}
_ => unreachable!(),
}
}
wp::Payload::DataSection(section) => {
file.add_section(SectionId::Data, section.range(), "");
}
wp::Payload::DataCountSection { range, .. } => {
file.add_section(SectionId::DataCount, range, "");
}
wp::Payload::CustomSection(section) => {
let name = section.name();
let size = section.data().len();
let mut range = section.range();
range.start = range.end - size;
file.add_section(SectionId::Custom, range, name);
if name == "name" {
for name in
wp::NameSectionReader::new(section.data(), section.data_offset())
{
// TODO: Right now, ill-formed name subsections
// are silently ignored in order to maintain
// compatibility with extended name sections, which
// are not yet supported by the version of
// `wasmparser` currently used.
// A better fix would be to update `wasmparser` to
// the newest version, but this requires
// a major rewrite of this file.
if let Ok(wp::Name::Function(name_map)) = name {
for naming in name_map {
let naming =
naming.read_error("Couldn't read a function name")?;
if let Some(local_index) =
naming.index.checked_sub(imported_funcs_count)
{
if let LocalFunctionKind::Local { symbol_id } =
local_func_kinds[local_index as usize]
{
file.symbols[symbol_id as usize].name = naming.name;
}
}
}
}
}
} else if name.starts_with(".debug_") {
file.has_debug_symbols = true;
}
}
_ => {}
}
}
Ok(file)
}
fn add_section(&mut self, id: SectionId, range: Range<usize>, name: &'data str) {
let section = SectionHeader { id, range, name };
self.id_sections[id as usize] = Some(self.sections.len());
self.sections.push(section);
}
}
impl<'data, R> read::private::Sealed for WasmFile<'data, R> {}
impl<'data, 'file, R: ReadRef<'data>> Object<'data, 'file> for WasmFile<'data, R>
where
'data: 'file,
R: 'file,
{
type Segment = WasmSegment<'data, 'file, R>;
type SegmentIterator = WasmSegmentIterator<'data, 'file, R>;
type Section = WasmSection<'data, 'file, R>;
type SectionIterator = WasmSectionIterator<'data, 'file, R>;
type Comdat = WasmComdat<'data, 'file, R>;
type ComdatIterator = WasmComdatIterator<'data, 'file, R>;
type Symbol = WasmSymbol<'data, 'file>;
type SymbolIterator = WasmSymbolIterator<'data, 'file>;
type SymbolTable = WasmSymbolTable<'data, 'file>;
type DynamicRelocationIterator = NoDynamicRelocationIterator;
#[inline]
fn architecture(&self) -> Architecture {
if self.has_memory64 {
Architecture::Wasm64
} else {
Architecture::Wasm32
}
}
#[inline]
fn is_little_endian(&self) -> bool {
true
}
#[inline]
fn is_64(&self) -> bool {
self.has_memory64
}
fn kind(&self) -> ObjectKind {
// TODO: check for `linking` custom section
ObjectKind::Unknown
}
fn segments(&'file self) -> Self::SegmentIterator {
WasmSegmentIterator { file: self }
}
fn section_by_name_bytes(
&'file self,
section_name: &[u8],
) -> Option<WasmSection<'data, 'file, R>> {
self.sections()
.find(|section| section.name_bytes() == Ok(section_name))
}
fn section_by_index(&'file self, index: SectionIndex) -> Result<WasmSection<'data, 'file, R>> {
// TODO: Missing sections should return an empty section.
let id_section = self
.id_sections
.get(index.0)
.and_then(|x| *x)
.read_error("Invalid Wasm section index")?;
let section = self.sections.get(id_section).unwrap();
Ok(WasmSection {
file: self,
section,
})
}
fn sections(&'file self) -> Self::SectionIterator {
WasmSectionIterator {
file: self,
sections: self.sections.iter(),
}
}
fn comdats(&'file self) -> Self::ComdatIterator {
WasmComdatIterator { file: self }
}
#[inline]
fn symbol_by_index(&'file self, index: SymbolIndex) -> Result<WasmSymbol<'data, 'file>> {
let symbol = self
.symbols
.get(index.0)
.read_error("Invalid Wasm symbol index")?;
Ok(WasmSymbol { index, symbol })
}
fn symbols(&'file self) -> Self::SymbolIterator {
WasmSymbolIterator {
symbols: self.symbols.iter().enumerate(),
}
}
fn symbol_table(&'file self) -> Option<WasmSymbolTable<'data, 'file>> {
Some(WasmSymbolTable {
symbols: &self.symbols,
})
}
fn dynamic_symbols(&'file self) -> Self::SymbolIterator {
WasmSymbolIterator {
symbols: [].iter().enumerate(),
}
}
#[inline]
fn dynamic_symbol_table(&'file self) -> Option<WasmSymbolTable<'data, 'file>> {
None
}
#[inline]
fn dynamic_relocations(&self) -> Option<NoDynamicRelocationIterator> {
None
}
fn imports(&self) -> Result<Vec<Import<'data>>> {
// TODO: return entries in the import section
Ok(Vec::new())
}
fn exports(&self) -> Result<Vec<Export<'data>>> {
// TODO: return entries in the export section
Ok(Vec::new())
}
fn has_debug_symbols(&self) -> bool {
self.has_debug_symbols
}
fn relative_address_base(&self) -> u64 {
0
}
#[inline]
fn entry(&'file self) -> u64 {
self.entry
}
#[inline]
fn flags(&self) -> FileFlags {
FileFlags::None
}
}
/// An iterator for the segments in a [`WasmFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct WasmSegmentIterator<'data, 'file, R = &'data [u8]> {
#[allow(unused)]
file: &'file WasmFile<'data, R>,
}
impl<'data, 'file, R> Iterator for WasmSegmentIterator<'data, 'file, R> {
type Item = WasmSegment<'data, 'file, R>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
None
}
}
/// A segment in a [`WasmFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct WasmSegment<'data, 'file, R = &'data [u8]> {
#[allow(unused)]
file: &'file WasmFile<'data, R>,
}
impl<'data, 'file, R> read::private::Sealed for WasmSegment<'data, 'file, R> {}
impl<'data, 'file, R> ObjectSegment<'data> for WasmSegment<'data, 'file, R> {
#[inline]
fn address(&self) -> u64 {
unreachable!()
}
#[inline]
fn size(&self) -> u64 {
unreachable!()
}
#[inline]
fn align(&self) -> u64 {
unreachable!()
}
#[inline]
fn file_range(&self) -> (u64, u64) {
unreachable!()
}
fn data(&self) -> Result<&'data [u8]> {
unreachable!()
}
fn data_range(&self, _address: u64, _size: u64) -> Result<Option<&'data [u8]>> {
unreachable!()
}
#[inline]
fn name_bytes(&self) -> Result<Option<&[u8]>> {
unreachable!()
}
#[inline]
fn name(&self) -> Result<Option<&str>> {
unreachable!()
}
#[inline]
fn flags(&self) -> SegmentFlags {
unreachable!()
}
}
/// An iterator for the sections in a [`WasmFile`].
#[derive(Debug)]
pub struct WasmSectionIterator<'data, 'file, R = &'data [u8]> {
file: &'file WasmFile<'data, R>,
sections: slice::Iter<'file, SectionHeader<'data>>,
}
impl<'data, 'file, R> Iterator for WasmSectionIterator<'data, 'file, R> {
type Item = WasmSection<'data, 'file, R>;
fn next(&mut self) -> Option<Self::Item> {
let section = self.sections.next()?;
Some(WasmSection {
file: self.file,
section,
})
}
}
/// A section in a [`WasmFile`].
///
/// Most functionality is provided by the [`ObjectSection`] trait implementation.
#[derive(Debug)]
pub struct WasmSection<'data, 'file, R = &'data [u8]> {
file: &'file WasmFile<'data, R>,
section: &'file SectionHeader<'data>,
}
impl<'data, 'file, R> read::private::Sealed for WasmSection<'data, 'file, R> {}
impl<'data, 'file, R: ReadRef<'data>> ObjectSection<'data> for WasmSection<'data, 'file, R> {
type RelocationIterator = WasmRelocationIterator<'data, 'file, R>;
#[inline]
fn index(&self) -> SectionIndex {
// Note that we treat all custom sections as index 0.
// This is ok because they are never looked up by index.
SectionIndex(self.section.id as usize)
}
#[inline]
fn address(&self) -> u64 {
0
}
#[inline]
fn size(&self) -> u64 {
let range = &self.section.range;
(range.end - range.start) as u64
}
#[inline]
fn align(&self) -> u64 {
1
}
#[inline]
fn file_range(&self) -> Option<(u64, u64)> {
let range = &self.section.range;
Some((range.start as _, range.end as _))
}
#[inline]
fn data(&self) -> Result<&'data [u8]> {
let range = &self.section.range;
self.file
.data
.read_bytes_at(range.start as u64, range.end as u64 - range.start as u64)
.read_error("Invalid Wasm section size or offset")
}
fn data_range(&self, _address: u64, _size: u64) -> Result<Option<&'data [u8]>> {
unimplemented!()
}
#[inline]
fn compressed_file_range(&self) -> Result<CompressedFileRange> {
Ok(CompressedFileRange::none(self.file_range()))
}
#[inline]
fn compressed_data(&self) -> Result<CompressedData<'data>> {
self.data().map(CompressedData::none)
}
#[inline]
fn name_bytes(&self) -> Result<&[u8]> {
self.name().map(str::as_bytes)
}
#[inline]
fn name(&self) -> Result<&str> {
Ok(match self.section.id {
SectionId::Custom => self.section.name,
SectionId::Type => "<type>",
SectionId::Import => "<import>",
SectionId::Function => "<function>",
SectionId::Table => "<table>",
SectionId::Memory => "<memory>",
SectionId::Global => "<global>",
SectionId::Export => "<export>",
SectionId::Start => "<start>",
SectionId::Element => "<element>",
SectionId::Code => "<code>",
SectionId::Data => "<data>",
SectionId::DataCount => "<data_count>",
})
}
#[inline]
fn segment_name_bytes(&self) -> Result<Option<&[u8]>> {
Ok(None)
}
#[inline]
fn segment_name(&self) -> Result<Option<&str>> {
Ok(None)
}
#[inline]
fn kind(&self) -> SectionKind {
match self.section.id {
SectionId::Custom => match self.section.name {
"reloc." | "linking" => SectionKind::Linker,
_ => SectionKind::Other,
},
SectionId::Type => SectionKind::Metadata,
SectionId::Import => SectionKind::Linker,
SectionId::Function => SectionKind::Metadata,
SectionId::Table => SectionKind::UninitializedData,
SectionId::Memory => SectionKind::UninitializedData,
SectionId::Global => SectionKind::Data,
SectionId::Export => SectionKind::Linker,
SectionId::Start => SectionKind::Linker,
SectionId::Element => SectionKind::Data,
SectionId::Code => SectionKind::Text,
SectionId::Data => SectionKind::Data,
SectionId::DataCount => SectionKind::UninitializedData,
}
}
#[inline]
fn relocations(&self) -> WasmRelocationIterator<'data, 'file, R> {
WasmRelocationIterator(PhantomData)
}
#[inline]
fn flags(&self) -> SectionFlags {
SectionFlags::None
}
}
/// An iterator for the COMDAT section groups in a [`WasmFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct WasmComdatIterator<'data, 'file, R = &'data [u8]> {
#[allow(unused)]
file: &'file WasmFile<'data, R>,
}
impl<'data, 'file, R> Iterator for WasmComdatIterator<'data, 'file, R> {
type Item = WasmComdat<'data, 'file, R>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
None
}
}
/// A COMDAT section group in a [`WasmFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct WasmComdat<'data, 'file, R = &'data [u8]> {
#[allow(unused)]
file: &'file WasmFile<'data, R>,
}
impl<'data, 'file, R> read::private::Sealed for WasmComdat<'data, 'file, R> {}
impl<'data, 'file, R> ObjectComdat<'data> for WasmComdat<'data, 'file, R> {
type SectionIterator = WasmComdatSectionIterator<'data, 'file, R>;
#[inline]
fn kind(&self) -> ComdatKind {
unreachable!();
}
#[inline]
fn symbol(&self) -> SymbolIndex {
unreachable!();
}
#[inline]
fn name_bytes(&self) -> Result<&[u8]> {
unreachable!();
}
#[inline]
fn name(&self) -> Result<&str> {
unreachable!();
}
#[inline]
fn sections(&self) -> Self::SectionIterator {
unreachable!();
}
}
/// An iterator for the sections in a COMDAT section group in a [`WasmFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct WasmComdatSectionIterator<'data, 'file, R = &'data [u8]> {
#[allow(unused)]
file: &'file WasmFile<'data, R>,
}
impl<'data, 'file, R> Iterator for WasmComdatSectionIterator<'data, 'file, R> {
type Item = SectionIndex;
fn next(&mut self) -> Option<Self::Item> {
None
}
}
/// A symbol table in a [`WasmFile`].
#[derive(Debug)]
pub struct WasmSymbolTable<'data, 'file> {
symbols: &'file [WasmSymbolInternal<'data>],
}
impl<'data, 'file> read::private::Sealed for WasmSymbolTable<'data, 'file> {}
impl<'data, 'file> ObjectSymbolTable<'data> for WasmSymbolTable<'data, 'file> {
type Symbol = WasmSymbol<'data, 'file>;
type SymbolIterator = WasmSymbolIterator<'data, 'file>;
fn symbols(&self) -> Self::SymbolIterator {
WasmSymbolIterator {
symbols: self.symbols.iter().enumerate(),
}
}
fn symbol_by_index(&self, index: SymbolIndex) -> Result<Self::Symbol> {
let symbol = self
.symbols
.get(index.0)
.read_error("Invalid Wasm symbol index")?;
Ok(WasmSymbol { index, symbol })
}
}
/// An iterator for the symbols in a [`WasmFile`].
#[derive(Debug)]
pub struct WasmSymbolIterator<'data, 'file> {
symbols: core::iter::Enumerate<slice::Iter<'file, WasmSymbolInternal<'data>>>,
}
impl<'data, 'file> Iterator for WasmSymbolIterator<'data, 'file> {
type Item = WasmSymbol<'data, 'file>;
fn next(&mut self) -> Option<Self::Item> {
let (index, symbol) = self.symbols.next()?;
Some(WasmSymbol {
index: SymbolIndex(index),
symbol,
})
}
}
/// A symbol in a [`WasmFile`].
///
/// Most functionality is provided by the [`ObjectSymbol`] trait implementation.
#[derive(Clone, Copy, Debug)]
pub struct WasmSymbol<'data, 'file> {
index: SymbolIndex,
symbol: &'file WasmSymbolInternal<'data>,
}
#[derive(Clone, Debug)]
struct WasmSymbolInternal<'data> {
name: &'data str,
address: u64,
size: u64,
kind: SymbolKind,
section: SymbolSection,
scope: SymbolScope,
}
impl<'data, 'file> read::private::Sealed for WasmSymbol<'data, 'file> {}
impl<'data, 'file> ObjectSymbol<'data> for WasmSymbol<'data, 'file> {
#[inline]
fn index(&self) -> SymbolIndex {
self.index
}
#[inline]
fn name_bytes(&self) -> read::Result<&'data [u8]> {
Ok(self.symbol.name.as_bytes())
}
#[inline]
fn name(&self) -> read::Result<&'data str> {
Ok(self.symbol.name)
}
#[inline]
fn address(&self) -> u64 {
self.symbol.address
}
#[inline]
fn size(&self) -> u64 {
self.symbol.size
}
#[inline]
fn kind(&self) -> SymbolKind {
self.symbol.kind
}
#[inline]
fn section(&self) -> SymbolSection {
self.symbol.section
}
#[inline]
fn is_undefined(&self) -> bool {
self.symbol.section == SymbolSection::Undefined
}
#[inline]
fn is_definition(&self) -> bool {
(self.symbol.kind == SymbolKind::Text || self.symbol.kind == SymbolKind::Data)
&& self.symbol.section != SymbolSection::Undefined
}
#[inline]
fn is_common(&self) -> bool {
self.symbol.section == SymbolSection::Common
}
#[inline]
fn is_weak(&self) -> bool {
false
}
#[inline]
fn scope(&self) -> SymbolScope {
self.symbol.scope
}
#[inline]
fn is_global(&self) -> bool {
self.symbol.scope != SymbolScope::Compilation
}
#[inline]
fn is_local(&self) -> bool {
self.symbol.scope == SymbolScope::Compilation
}
#[inline]
fn flags(&self) -> SymbolFlags<SectionIndex, SymbolIndex> {
SymbolFlags::None
}
}
/// An iterator for the relocations for a [`WasmSection`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct WasmRelocationIterator<'data, 'file, R = &'data [u8]>(
PhantomData<(&'data (), &'file (), R)>,
);
impl<'data, 'file, R> Iterator for WasmRelocationIterator<'data, 'file, R> {
type Item = (u64, Relocation);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
None
}
}

135
vendor/object/src/read/xcoff/comdat.rs vendored Normal file
View File

@ -0,0 +1,135 @@
//! XCOFF doesn't support the COMDAT section.
use core::fmt::Debug;
use crate::xcoff;
use crate::read::{self, ComdatKind, ObjectComdat, ReadRef, Result, SectionIndex, SymbolIndex};
use super::{FileHeader, XcoffFile};
/// An iterator for the COMDAT section groups in a [`XcoffFile32`](super::XcoffFile32).
pub type XcoffComdatIterator32<'data, 'file, R = &'data [u8]> =
XcoffComdatIterator<'data, 'file, xcoff::FileHeader32, R>;
/// An iterator for the COMDAT section groups in a [`XcoffFile64`](super::XcoffFile64).
pub type XcoffComdatIterator64<'data, 'file, R = &'data [u8]> =
XcoffComdatIterator<'data, 'file, xcoff::FileHeader64, R>;
/// An iterator for the COMDAT section groups in a [`XcoffFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct XcoffComdatIterator<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
pub(crate) file: &'file XcoffFile<'data, Xcoff, R>,
}
impl<'data, 'file, Xcoff, R> Iterator for XcoffComdatIterator<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
type Item = XcoffComdat<'data, 'file, Xcoff, R>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
None
}
}
/// A COMDAT section group in a [`XcoffFile32`](super::XcoffFile32).
pub type XcoffComdat32<'data, 'file, R = &'data [u8]> =
XcoffComdat<'data, 'file, xcoff::FileHeader32, R>;
/// A COMDAT section group in a [`XcoffFile64`](super::XcoffFile64).
pub type XcoffComdat64<'data, 'file, R = &'data [u8]> =
XcoffComdat<'data, 'file, xcoff::FileHeader64, R>;
/// A COMDAT section group in a [`XcoffFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct XcoffComdat<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
file: &'file XcoffFile<'data, Xcoff, R>,
}
impl<'data, 'file, Xcoff, R> read::private::Sealed for XcoffComdat<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Xcoff, R> ObjectComdat<'data> for XcoffComdat<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
type SectionIterator = XcoffComdatSectionIterator<'data, 'file, Xcoff, R>;
#[inline]
fn kind(&self) -> ComdatKind {
unreachable!();
}
#[inline]
fn symbol(&self) -> SymbolIndex {
unreachable!();
}
#[inline]
fn name_bytes(&self) -> Result<&[u8]> {
unreachable!();
}
#[inline]
fn name(&self) -> Result<&str> {
unreachable!();
}
#[inline]
fn sections(&self) -> Self::SectionIterator {
unreachable!();
}
}
/// An iterator for the sections in a COMDAT section group in a [`XcoffFile32`](super::XcoffFile32).
pub type XcoffComdatSectionIterator32<'data, 'file, R = &'data [u8]> =
XcoffComdatSectionIterator<'data, 'file, xcoff::FileHeader32, R>;
/// An iterator for the sections in a COMDAT section group in a [`XcoffFile64`](super::XcoffFile64).
pub type XcoffComdatSectionIterator64<'data, 'file, R = &'data [u8]> =
XcoffComdatSectionIterator<'data, 'file, xcoff::FileHeader64, R>;
/// An iterator for the sections in a COMDAT section group in a [`XcoffFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct XcoffComdatSectionIterator<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
file: &'file XcoffFile<'data, Xcoff, R>,
}
impl<'data, 'file, Xcoff, R> Iterator for XcoffComdatSectionIterator<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
type Item = SectionIndex;
fn next(&mut self) -> Option<Self::Item> {
None
}
}

696
vendor/object/src/read/xcoff/file.rs vendored Normal file
View File

@ -0,0 +1,696 @@
use core::fmt::Debug;
use core::mem;
use alloc::vec::Vec;
use crate::read::{self, Error, NoDynamicRelocationIterator, Object, ReadError, ReadRef, Result};
use crate::{
xcoff, Architecture, BigEndian as BE, FileFlags, ObjectKind, ObjectSection, Pod, SectionIndex,
SymbolIndex,
};
use super::{
CsectAux, FileAux, SectionHeader, SectionTable, Symbol, SymbolTable, XcoffComdat,
XcoffComdatIterator, XcoffSection, XcoffSectionIterator, XcoffSegment, XcoffSegmentIterator,
XcoffSymbol, XcoffSymbolIterator, XcoffSymbolTable,
};
/// A 32-bit XCOFF object file.
///
/// This is a file that starts with [`xcoff::FileHeader32`], and corresponds
/// to [`crate::FileKind::Xcoff32`].
pub type XcoffFile32<'data, R = &'data [u8]> = XcoffFile<'data, xcoff::FileHeader32, R>;
/// A 64-bit XCOFF object file.
///
/// This is a file that starts with [`xcoff::FileHeader64`], and corresponds
/// to [`crate::FileKind::Xcoff64`].
pub type XcoffFile64<'data, R = &'data [u8]> = XcoffFile<'data, xcoff::FileHeader64, R>;
/// A partially parsed XCOFF file.
///
/// Most functionality is provided by the [`Object`] trait implementation.
#[derive(Debug)]
pub struct XcoffFile<'data, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
pub(super) data: R,
pub(super) header: &'data Xcoff,
pub(super) aux_header: Option<&'data Xcoff::AuxHeader>,
pub(super) sections: SectionTable<'data, Xcoff>,
pub(super) symbols: SymbolTable<'data, Xcoff, R>,
}
impl<'data, Xcoff, R> XcoffFile<'data, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
/// Parse the raw XCOFF file data.
pub fn parse(data: R) -> Result<Self> {
let mut offset = 0;
let header = Xcoff::parse(data, &mut offset)?;
let aux_header = header.aux_header(data, &mut offset)?;
let sections = header.sections(data, &mut offset)?;
let symbols = header.symbols(data)?;
Ok(XcoffFile {
data,
header,
aux_header,
sections,
symbols,
})
}
/// Returns the raw data.
pub fn data(&self) -> R {
self.data
}
/// Returns the raw XCOFF file header.
pub fn raw_header(&self) -> &'data Xcoff {
self.header
}
}
impl<'data, Xcoff, R> read::private::Sealed for XcoffFile<'data, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Xcoff, R> Object<'data, 'file> for XcoffFile<'data, Xcoff, R>
where
'data: 'file,
Xcoff: FileHeader,
R: 'file + ReadRef<'data>,
{
type Segment = XcoffSegment<'data, 'file, Xcoff, R>;
type SegmentIterator = XcoffSegmentIterator<'data, 'file, Xcoff, R>;
type Section = XcoffSection<'data, 'file, Xcoff, R>;
type SectionIterator = XcoffSectionIterator<'data, 'file, Xcoff, R>;
type Comdat = XcoffComdat<'data, 'file, Xcoff, R>;
type ComdatIterator = XcoffComdatIterator<'data, 'file, Xcoff, R>;
type Symbol = XcoffSymbol<'data, 'file, Xcoff, R>;
type SymbolIterator = XcoffSymbolIterator<'data, 'file, Xcoff, R>;
type SymbolTable = XcoffSymbolTable<'data, 'file, Xcoff, R>;
type DynamicRelocationIterator = NoDynamicRelocationIterator;
fn architecture(&self) -> crate::Architecture {
if self.is_64() {
Architecture::PowerPc64
} else {
Architecture::PowerPc
}
}
fn is_little_endian(&self) -> bool {
false
}
fn is_64(&self) -> bool {
self.header.is_type_64()
}
fn kind(&self) -> ObjectKind {
let flags = self.header.f_flags();
if flags & xcoff::F_EXEC != 0 {
ObjectKind::Executable
} else if flags & xcoff::F_SHROBJ != 0 {
ObjectKind::Dynamic
} else if flags & xcoff::F_RELFLG == 0 {
ObjectKind::Relocatable
} else {
ObjectKind::Unknown
}
}
fn segments(&'file self) -> XcoffSegmentIterator<'data, 'file, Xcoff, R> {
XcoffSegmentIterator { file: self }
}
fn section_by_name_bytes(
&'file self,
section_name: &[u8],
) -> Option<XcoffSection<'data, 'file, Xcoff, R>> {
self.sections()
.find(|section| section.name_bytes() == Ok(section_name))
}
fn section_by_index(
&'file self,
index: SectionIndex,
) -> Result<XcoffSection<'data, 'file, Xcoff, R>> {
let section = self.sections.section(index)?;
Ok(XcoffSection {
file: self,
section,
index,
})
}
fn sections(&'file self) -> XcoffSectionIterator<'data, 'file, Xcoff, R> {
XcoffSectionIterator {
file: self,
iter: self.sections.iter().enumerate(),
}
}
fn comdats(&'file self) -> XcoffComdatIterator<'data, 'file, Xcoff, R> {
XcoffComdatIterator { file: self }
}
fn symbol_table(&'file self) -> Option<XcoffSymbolTable<'data, 'file, Xcoff, R>> {
if self.symbols.is_empty() {
return None;
}
Some(XcoffSymbolTable {
symbols: &self.symbols,
file: self,
})
}
fn symbol_by_index(
&'file self,
index: SymbolIndex,
) -> Result<XcoffSymbol<'data, 'file, Xcoff, R>> {
let symbol = self.symbols.symbol(index.0)?;
Ok(XcoffSymbol {
symbols: &self.symbols,
index,
symbol,
file: self,
})
}
fn symbols(&'file self) -> XcoffSymbolIterator<'data, 'file, Xcoff, R> {
XcoffSymbolIterator {
file: self,
symbols: self.symbols.iter(),
}
}
fn dynamic_symbol_table(&'file self) -> Option<XcoffSymbolTable<'data, 'file, Xcoff, R>> {
None
}
fn dynamic_symbols(&'file self) -> XcoffSymbolIterator<'data, 'file, Xcoff, R> {
// TODO: return the symbols in the STYP_LOADER section.
XcoffSymbolIterator {
file: self,
symbols: self.symbols.iter_none(),
}
}
fn dynamic_relocations(&'file self) -> Option<Self::DynamicRelocationIterator> {
// TODO: return the relocations in the STYP_LOADER section.
None
}
fn imports(&self) -> Result<alloc::vec::Vec<crate::Import<'data>>> {
// TODO: return the imports in the STYP_LOADER section.
Ok(Vec::new())
}
fn exports(&self) -> Result<alloc::vec::Vec<crate::Export<'data>>> {
// TODO: return the exports in the STYP_LOADER section.
Ok(Vec::new())
}
fn has_debug_symbols(&self) -> bool {
self.section_by_name(".debug").is_some() || self.section_by_name(".dwinfo").is_some()
}
fn relative_address_base(&'file self) -> u64 {
0
}
fn entry(&'file self) -> u64 {
if let Some(aux_header) = self.aux_header {
aux_header.o_entry().into()
} else {
0
}
}
fn flags(&self) -> FileFlags {
FileFlags::Xcoff {
f_flags: self.header.f_flags(),
}
}
}
/// A trait for generic access to [`xcoff::FileHeader32`] and [`xcoff::FileHeader64`].
#[allow(missing_docs)]
pub trait FileHeader: Debug + Pod {
type Word: Into<u64>;
type AuxHeader: AuxHeader<Word = Self::Word>;
type SectionHeader: SectionHeader<Word = Self::Word>;
type Symbol: Symbol<Word = Self::Word>;
type FileAux: FileAux;
type CsectAux: CsectAux;
/// Return true if this type is a 64-bit header.
fn is_type_64(&self) -> bool;
fn f_magic(&self) -> u16;
fn f_nscns(&self) -> u16;
fn f_timdat(&self) -> u32;
fn f_symptr(&self) -> Self::Word;
fn f_nsyms(&self) -> u32;
fn f_opthdr(&self) -> u16;
fn f_flags(&self) -> u16;
// Provided methods.
/// Read the file header.
///
/// Also checks that the magic field in the file header is a supported format.
fn parse<'data, R: ReadRef<'data>>(data: R, offset: &mut u64) -> Result<&'data Self> {
let header = data
.read::<Self>(offset)
.read_error("Invalid XCOFF header size or alignment")?;
if !header.is_supported() {
return Err(Error("Unsupported XCOFF header"));
}
Ok(header)
}
fn is_supported(&self) -> bool {
(self.is_type_64() && self.f_magic() == xcoff::MAGIC_64)
|| (!self.is_type_64() && self.f_magic() == xcoff::MAGIC_32)
}
/// Read the auxiliary file header.
fn aux_header<'data, R: ReadRef<'data>>(
&self,
data: R,
offset: &mut u64,
) -> Result<Option<&'data Self::AuxHeader>> {
let aux_header_size = self.f_opthdr();
if self.f_flags() & xcoff::F_EXEC == 0 {
// No auxiliary header is required for an object file that is not an executable.
// TODO: Some AIX programs generate auxiliary headers for 32-bit object files
// that end after the data_start field.
*offset += u64::from(aux_header_size);
return Ok(None);
}
// Executables, however, must have auxiliary headers that include the
// full structure definitions.
if aux_header_size != mem::size_of::<Self::AuxHeader>() as u16 {
*offset += u64::from(aux_header_size);
return Ok(None);
}
let aux_header = data
.read::<Self::AuxHeader>(offset)
.read_error("Invalid XCOFF auxiliary header size")?;
Ok(Some(aux_header))
}
/// Read the section table.
#[inline]
fn sections<'data, R: ReadRef<'data>>(
&self,
data: R,
offset: &mut u64,
) -> Result<SectionTable<'data, Self>> {
SectionTable::parse(self, data, offset)
}
/// Return the symbol table.
#[inline]
fn symbols<'data, R: ReadRef<'data>>(&self, data: R) -> Result<SymbolTable<'data, Self, R>> {
SymbolTable::parse(*self, data)
}
}
impl FileHeader for xcoff::FileHeader32 {
type Word = u32;
type AuxHeader = xcoff::AuxHeader32;
type SectionHeader = xcoff::SectionHeader32;
type Symbol = xcoff::Symbol32;
type FileAux = xcoff::FileAux32;
type CsectAux = xcoff::CsectAux32;
fn is_type_64(&self) -> bool {
false
}
fn f_magic(&self) -> u16 {
self.f_magic.get(BE)
}
fn f_nscns(&self) -> u16 {
self.f_nscns.get(BE)
}
fn f_timdat(&self) -> u32 {
self.f_timdat.get(BE)
}
fn f_symptr(&self) -> Self::Word {
self.f_symptr.get(BE)
}
fn f_nsyms(&self) -> u32 {
self.f_nsyms.get(BE)
}
fn f_opthdr(&self) -> u16 {
self.f_opthdr.get(BE)
}
fn f_flags(&self) -> u16 {
self.f_flags.get(BE)
}
}
impl FileHeader for xcoff::FileHeader64 {
type Word = u64;
type AuxHeader = xcoff::AuxHeader64;
type SectionHeader = xcoff::SectionHeader64;
type Symbol = xcoff::Symbol64;
type FileAux = xcoff::FileAux64;
type CsectAux = xcoff::CsectAux64;
fn is_type_64(&self) -> bool {
true
}
fn f_magic(&self) -> u16 {
self.f_magic.get(BE)
}
fn f_nscns(&self) -> u16 {
self.f_nscns.get(BE)
}
fn f_timdat(&self) -> u32 {
self.f_timdat.get(BE)
}
fn f_symptr(&self) -> Self::Word {
self.f_symptr.get(BE)
}
fn f_nsyms(&self) -> u32 {
self.f_nsyms.get(BE)
}
fn f_opthdr(&self) -> u16 {
self.f_opthdr.get(BE)
}
fn f_flags(&self) -> u16 {
self.f_flags.get(BE)
}
}
/// A trait for generic access to [`xcoff::AuxHeader32`] and [`xcoff::AuxHeader64`].
#[allow(missing_docs)]
pub trait AuxHeader: Debug + Pod {
type Word: Into<u64>;
fn o_mflag(&self) -> u16;
fn o_vstamp(&self) -> u16;
fn o_tsize(&self) -> Self::Word;
fn o_dsize(&self) -> Self::Word;
fn o_bsize(&self) -> Self::Word;
fn o_entry(&self) -> Self::Word;
fn o_text_start(&self) -> Self::Word;
fn o_data_start(&self) -> Self::Word;
fn o_toc(&self) -> Self::Word;
fn o_snentry(&self) -> u16;
fn o_sntext(&self) -> u16;
fn o_sndata(&self) -> u16;
fn o_sntoc(&self) -> u16;
fn o_snloader(&self) -> u16;
fn o_snbss(&self) -> u16;
fn o_algntext(&self) -> u16;
fn o_algndata(&self) -> u16;
fn o_modtype(&self) -> u16;
fn o_cpuflag(&self) -> u8;
fn o_cputype(&self) -> u8;
fn o_maxstack(&self) -> Self::Word;
fn o_maxdata(&self) -> Self::Word;
fn o_debugger(&self) -> u32;
fn o_textpsize(&self) -> u8;
fn o_datapsize(&self) -> u8;
fn o_stackpsize(&self) -> u8;
fn o_flags(&self) -> u8;
fn o_sntdata(&self) -> u16;
fn o_sntbss(&self) -> u16;
fn o_x64flags(&self) -> Option<u16>;
}
impl AuxHeader for xcoff::AuxHeader32 {
type Word = u32;
fn o_mflag(&self) -> u16 {
self.o_mflag.get(BE)
}
fn o_vstamp(&self) -> u16 {
self.o_vstamp.get(BE)
}
fn o_tsize(&self) -> Self::Word {
self.o_tsize.get(BE)
}
fn o_dsize(&self) -> Self::Word {
self.o_dsize.get(BE)
}
fn o_bsize(&self) -> Self::Word {
self.o_bsize.get(BE)
}
fn o_entry(&self) -> Self::Word {
self.o_entry.get(BE)
}
fn o_text_start(&self) -> Self::Word {
self.o_text_start.get(BE)
}
fn o_data_start(&self) -> Self::Word {
self.o_data_start.get(BE)
}
fn o_toc(&self) -> Self::Word {
self.o_toc.get(BE)
}
fn o_snentry(&self) -> u16 {
self.o_snentry.get(BE)
}
fn o_sntext(&self) -> u16 {
self.o_sntext.get(BE)
}
fn o_sndata(&self) -> u16 {
self.o_sndata.get(BE)
}
fn o_sntoc(&self) -> u16 {
self.o_sntoc.get(BE)
}
fn o_snloader(&self) -> u16 {
self.o_snloader.get(BE)
}
fn o_snbss(&self) -> u16 {
self.o_snbss.get(BE)
}
fn o_algntext(&self) -> u16 {
self.o_algntext.get(BE)
}
fn o_algndata(&self) -> u16 {
self.o_algndata.get(BE)
}
fn o_modtype(&self) -> u16 {
self.o_modtype.get(BE)
}
fn o_cpuflag(&self) -> u8 {
self.o_cpuflag
}
fn o_cputype(&self) -> u8 {
self.o_cputype
}
fn o_maxstack(&self) -> Self::Word {
self.o_maxstack.get(BE)
}
fn o_maxdata(&self) -> Self::Word {
self.o_maxdata.get(BE)
}
fn o_debugger(&self) -> u32 {
self.o_debugger.get(BE)
}
fn o_textpsize(&self) -> u8 {
self.o_textpsize
}
fn o_datapsize(&self) -> u8 {
self.o_datapsize
}
fn o_stackpsize(&self) -> u8 {
self.o_stackpsize
}
fn o_flags(&self) -> u8 {
self.o_flags
}
fn o_sntdata(&self) -> u16 {
self.o_sntdata.get(BE)
}
fn o_sntbss(&self) -> u16 {
self.o_sntbss.get(BE)
}
fn o_x64flags(&self) -> Option<u16> {
None
}
}
impl AuxHeader for xcoff::AuxHeader64 {
type Word = u64;
fn o_mflag(&self) -> u16 {
self.o_mflag.get(BE)
}
fn o_vstamp(&self) -> u16 {
self.o_vstamp.get(BE)
}
fn o_tsize(&self) -> Self::Word {
self.o_tsize.get(BE)
}
fn o_dsize(&self) -> Self::Word {
self.o_dsize.get(BE)
}
fn o_bsize(&self) -> Self::Word {
self.o_bsize.get(BE)
}
fn o_entry(&self) -> Self::Word {
self.o_entry.get(BE)
}
fn o_text_start(&self) -> Self::Word {
self.o_text_start.get(BE)
}
fn o_data_start(&self) -> Self::Word {
self.o_data_start.get(BE)
}
fn o_toc(&self) -> Self::Word {
self.o_toc.get(BE)
}
fn o_snentry(&self) -> u16 {
self.o_snentry.get(BE)
}
fn o_sntext(&self) -> u16 {
self.o_sntext.get(BE)
}
fn o_sndata(&self) -> u16 {
self.o_sndata.get(BE)
}
fn o_sntoc(&self) -> u16 {
self.o_sntoc.get(BE)
}
fn o_snloader(&self) -> u16 {
self.o_snloader.get(BE)
}
fn o_snbss(&self) -> u16 {
self.o_snbss.get(BE)
}
fn o_algntext(&self) -> u16 {
self.o_algntext.get(BE)
}
fn o_algndata(&self) -> u16 {
self.o_algndata.get(BE)
}
fn o_modtype(&self) -> u16 {
self.o_modtype.get(BE)
}
fn o_cpuflag(&self) -> u8 {
self.o_cpuflag
}
fn o_cputype(&self) -> u8 {
self.o_cputype
}
fn o_maxstack(&self) -> Self::Word {
self.o_maxstack.get(BE)
}
fn o_maxdata(&self) -> Self::Word {
self.o_maxdata.get(BE)
}
fn o_debugger(&self) -> u32 {
self.o_debugger.get(BE)
}
fn o_textpsize(&self) -> u8 {
self.o_textpsize
}
fn o_datapsize(&self) -> u8 {
self.o_datapsize
}
fn o_stackpsize(&self) -> u8 {
self.o_stackpsize
}
fn o_flags(&self) -> u8 {
self.o_flags
}
fn o_sntdata(&self) -> u16 {
self.o_sntdata.get(BE)
}
fn o_sntbss(&self) -> u16 {
self.o_sntbss.get(BE)
}
fn o_x64flags(&self) -> Option<u16> {
Some(self.o_x64flags.get(BE))
}
}

63
vendor/object/src/read/xcoff/mod.rs vendored Normal file
View File

@ -0,0 +1,63 @@
//! Support for reading AIX XCOFF files.
//!
//! Traits are used to abstract over the difference between 32-bit and 64-bit XCOFF.
//! The primary trait for this is [`FileHeader`].
//!
//! ## High level API
//!
//! [`XcoffFile`] implements the [`Object`](crate::read::Object) trait for XCOFF files.
//! [`XcoffFile`] is parameterised by [`FileHeader`] to allow reading both 32-bit and
//! 64-bit XCOFF. There are type aliases for these parameters ([`XcoffFile32`] and
//! [`XcoffFile64`]).
//!
//! ## Low level API
//!
//! The [`FileHeader`] trait can be directly used to parse both [`xcoff::FileHeader32`]
//! and [`xcoff::FileHeader64`].
//!
//! ### Example for low level API
//! ```no_run
//! use object::xcoff;
//! use object::read::xcoff::{FileHeader, SectionHeader, Symbol};
//! use std::error::Error;
//! use std::fs;
//!
//! /// Reads a file and displays the name of each section and symbol.
//! fn main() -> Result<(), Box<dyn Error>> {
//! # #[cfg(feature = "std")] {
//! let data = fs::read("path/to/binary")?;
//! let mut offset = 0;
//! let header = xcoff::FileHeader64::parse(&*data, &mut offset)?;
//! let aux_header = header.aux_header(&*data, &mut offset)?;
//! let sections = header.sections(&*data, &mut offset)?;
//! let symbols = header.symbols(&*data)?;
//! for section in sections.iter() {
//! println!("{}", String::from_utf8_lossy(section.name()));
//! }
//! for (_index, symbol) in symbols.iter() {
//! println!("{}", String::from_utf8_lossy(symbol.name(symbols.strings())?));
//! }
//! # }
//! Ok(())
//! }
//! ```
#[cfg(doc)]
use crate::xcoff;
mod file;
pub use file::*;
mod section;
pub use section::*;
mod symbol;
pub use symbol::*;
mod relocation;
pub use relocation::*;
mod comdat;
pub use comdat::*;
mod segment;
pub use segment::*;

View File

@ -0,0 +1,127 @@
use alloc::fmt;
use core::fmt::Debug;
use core::slice;
use crate::pod::Pod;
use crate::{xcoff, BigEndian as BE, Relocation};
use crate::read::{ReadRef, RelocationEncoding, RelocationKind, RelocationTarget, SymbolIndex};
use super::{FileHeader, SectionHeader, XcoffFile};
/// An iterator for the relocations in an [`XcoffSection32`](super::XcoffSection32).
pub type XcoffRelocationIterator32<'data, 'file, R = &'data [u8]> =
XcoffRelocationIterator<'data, 'file, xcoff::FileHeader32, R>;
/// An iterator for the relocations in an [`XcoffSection64`](super::XcoffSection64).
pub type XcoffRelocationIterator64<'data, 'file, R = &'data [u8]> =
XcoffRelocationIterator<'data, 'file, xcoff::FileHeader64, R>;
/// An iterator for the relocations in an [`XcoffSection`](super::XcoffSection).
pub struct XcoffRelocationIterator<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
pub(super) file: &'file XcoffFile<'data, Xcoff, R>,
pub(super) relocations:
slice::Iter<'data, <<Xcoff as FileHeader>::SectionHeader as SectionHeader>::Rel>,
}
impl<'data, 'file, Xcoff, R> Iterator for XcoffRelocationIterator<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
type Item = (u64, Relocation);
fn next(&mut self) -> Option<Self::Item> {
self.relocations.next().map(|relocation| {
let encoding = RelocationEncoding::Generic;
let (kind, addend) = match relocation.r_rtype() {
xcoff::R_POS
| xcoff::R_RL
| xcoff::R_RLA
| xcoff::R_BA
| xcoff::R_RBA
| xcoff::R_TLS => (RelocationKind::Absolute, 0),
xcoff::R_REL | xcoff::R_BR | xcoff::R_RBR => (RelocationKind::Relative, -4),
xcoff::R_TOC | xcoff::R_TOCL | xcoff::R_TOCU => (RelocationKind::Got, 0),
r_type => (RelocationKind::Xcoff(r_type), 0),
};
let size = (relocation.r_rsize() & 0x3F) + 1;
let target = RelocationTarget::Symbol(SymbolIndex(relocation.r_symndx() as usize));
(
relocation.r_vaddr().into(),
Relocation {
kind,
encoding,
size,
target,
addend,
implicit_addend: true,
},
)
})
}
}
impl<'data, 'file, Xcoff, R> fmt::Debug for XcoffRelocationIterator<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("XcoffRelocationIterator").finish()
}
}
/// A trait for generic access to [`xcoff::Rel32`] and [`xcoff::Rel64`].
#[allow(missing_docs)]
pub trait Rel: Debug + Pod {
type Word: Into<u64>;
fn r_vaddr(&self) -> Self::Word;
fn r_symndx(&self) -> u32;
fn r_rsize(&self) -> u8;
fn r_rtype(&self) -> u8;
}
impl Rel for xcoff::Rel32 {
type Word = u32;
fn r_vaddr(&self) -> Self::Word {
self.r_vaddr.get(BE)
}
fn r_symndx(&self) -> u32 {
self.r_symndx.get(BE)
}
fn r_rsize(&self) -> u8 {
self.r_rsize
}
fn r_rtype(&self) -> u8 {
self.r_rtype
}
}
impl Rel for xcoff::Rel64 {
type Word = u64;
fn r_vaddr(&self) -> Self::Word {
self.r_vaddr.get(BE)
}
fn r_symndx(&self) -> u32 {
self.r_symndx.get(BE)
}
fn r_rsize(&self) -> u8 {
self.r_rsize
}
fn r_rtype(&self) -> u8 {
self.r_rtype
}
}

431
vendor/object/src/read/xcoff/section.rs vendored Normal file
View File

@ -0,0 +1,431 @@
use core::fmt::Debug;
use core::{iter, result, slice, str};
use crate::{
xcoff, BigEndian as BE, CompressedData, CompressedFileRange, Pod, SectionFlags, SectionKind,
};
use crate::read::{self, Error, ObjectSection, ReadError, ReadRef, Result, SectionIndex};
use super::{AuxHeader, FileHeader, Rel, XcoffFile, XcoffRelocationIterator};
/// An iterator for the sections in an [`XcoffFile32`](super::XcoffFile32).
pub type XcoffSectionIterator32<'data, 'file, R = &'data [u8]> =
XcoffSectionIterator<'data, 'file, xcoff::FileHeader32, R>;
/// An iterator for the sections in an [`XcoffFile64`](super::XcoffFile64).
pub type XcoffSectionIterator64<'data, 'file, R = &'data [u8]> =
XcoffSectionIterator<'data, 'file, xcoff::FileHeader64, R>;
/// An iterator for the sections in an [`XcoffFile`].
#[derive(Debug)]
pub struct XcoffSectionIterator<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file XcoffFile<'data, Xcoff, R>,
pub(super) iter: iter::Enumerate<slice::Iter<'data, Xcoff::SectionHeader>>,
}
impl<'data, 'file, Xcoff, R> Iterator for XcoffSectionIterator<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
type Item = XcoffSection<'data, 'file, Xcoff, R>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(index, section)| XcoffSection {
index: SectionIndex(index + 1),
file: self.file,
section,
})
}
}
/// A section in an [`XcoffFile32`](super::XcoffFile32).
pub type XcoffSection32<'data, 'file, R = &'data [u8]> =
XcoffSection<'data, 'file, xcoff::FileHeader32, R>;
/// A section in an [`XcoffFile64`](super::XcoffFile64).
pub type XcoffSection64<'data, 'file, R = &'data [u8]> =
XcoffSection<'data, 'file, xcoff::FileHeader64, R>;
/// A section in an [`XcoffFile`].
///
/// Most functionality is provided by the [`ObjectSection`] trait implementation.
#[derive(Debug)]
pub struct XcoffSection<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file XcoffFile<'data, Xcoff, R>,
pub(super) section: &'data Xcoff::SectionHeader,
pub(super) index: SectionIndex,
}
impl<'data, 'file, Xcoff: FileHeader, R: ReadRef<'data>> XcoffSection<'data, 'file, Xcoff, R> {
fn bytes(&self) -> Result<&'data [u8]> {
self.section
.data(self.file.data)
.read_error("Invalid XCOFF section offset or size")
}
}
impl<'data, 'file, Xcoff, R> read::private::Sealed for XcoffSection<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Xcoff, R> ObjectSection<'data> for XcoffSection<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
type RelocationIterator = XcoffRelocationIterator<'data, 'file, Xcoff, R>;
fn index(&self) -> SectionIndex {
self.index
}
fn address(&self) -> u64 {
self.section.s_paddr().into()
}
fn size(&self) -> u64 {
self.section.s_size().into()
}
fn align(&self) -> u64 {
// The default section alignment is 4.
if let Some(aux_header) = self.file.aux_header {
match self.kind() {
SectionKind::Text => aux_header.o_algntext().into(),
SectionKind::Data => aux_header.o_algndata().into(),
_ => 4,
}
} else {
4
}
}
fn file_range(&self) -> Option<(u64, u64)> {
self.section.file_range()
}
fn data(&self) -> Result<&'data [u8]> {
self.bytes()
}
fn data_range(&self, address: u64, size: u64) -> Result<Option<&'data [u8]>> {
Ok(read::util::data_range(
self.bytes()?,
self.address(),
address,
size,
))
}
fn compressed_file_range(&self) -> Result<CompressedFileRange> {
Ok(CompressedFileRange::none(self.file_range()))
}
fn compressed_data(&self) -> Result<CompressedData<'data>> {
self.data().map(CompressedData::none)
}
fn name_bytes(&self) -> read::Result<&[u8]> {
Ok(self.section.name())
}
fn name(&self) -> read::Result<&str> {
let name = self.name_bytes()?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 XCOFF section name")
}
fn segment_name_bytes(&self) -> Result<Option<&[u8]>> {
Ok(None)
}
fn segment_name(&self) -> Result<Option<&str>> {
Ok(None)
}
fn kind(&self) -> SectionKind {
let section_type = self.section.s_flags() as u16;
if section_type & xcoff::STYP_TEXT != 0 {
SectionKind::Text
} else if section_type & xcoff::STYP_DATA != 0 {
SectionKind::Data
} else if section_type & xcoff::STYP_TDATA != 0 {
SectionKind::Tls
} else if section_type & xcoff::STYP_BSS != 0 {
SectionKind::UninitializedData
} else if section_type & xcoff::STYP_TBSS != 0 {
SectionKind::UninitializedTls
} else if section_type & (xcoff::STYP_DEBUG | xcoff::STYP_DWARF) != 0 {
SectionKind::Debug
} else if section_type & (xcoff::STYP_LOADER | xcoff::STYP_OVRFLO) != 0 {
SectionKind::Metadata
} else if section_type
& (xcoff::STYP_INFO | xcoff::STYP_EXCEPT | xcoff::STYP_PAD | xcoff::STYP_TYPCHK)
!= 0
{
SectionKind::Other
} else {
SectionKind::Unknown
}
}
fn relocations(&self) -> Self::RelocationIterator {
let rel = self.section.relocations(self.file.data).unwrap_or(&[]);
XcoffRelocationIterator {
file: self.file,
relocations: rel.iter(),
}
}
fn flags(&self) -> SectionFlags {
SectionFlags::Xcoff {
s_flags: self.section.s_flags(),
}
}
fn uncompressed_data(&self) -> Result<alloc::borrow::Cow<'data, [u8]>> {
self.compressed_data()?.decompress()
}
}
/// The table of section headers in an XCOFF file.
///
/// Returned by [`FileHeader::sections`].
#[derive(Debug, Clone, Copy)]
pub struct SectionTable<'data, Xcoff: FileHeader> {
sections: &'data [Xcoff::SectionHeader],
}
impl<'data, Xcoff> Default for SectionTable<'data, Xcoff>
where
Xcoff: FileHeader,
{
fn default() -> Self {
Self { sections: &[] }
}
}
impl<'data, Xcoff> SectionTable<'data, Xcoff>
where
Xcoff: FileHeader,
{
/// Parse the section table.
///
/// `data` must be the entire file data.
/// `offset` must be after the optional file header.
pub fn parse<R: ReadRef<'data>>(header: &Xcoff, data: R, offset: &mut u64) -> Result<Self> {
let section_num = header.f_nscns();
if section_num == 0 {
return Ok(SectionTable::default());
}
let sections = data
.read_slice(offset, section_num as usize)
.read_error("Invalid XCOFF section headers")?;
Ok(SectionTable { sections })
}
/// Iterate over the section headers.
#[inline]
pub fn iter(&self) -> slice::Iter<'data, Xcoff::SectionHeader> {
self.sections.iter()
}
/// Return true if the section table is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.sections.is_empty()
}
/// The number of section headers.
#[inline]
pub fn len(&self) -> usize {
self.sections.len()
}
/// Return the section header at the given index.
///
/// The index is 1-based.
pub fn section(&self, index: SectionIndex) -> read::Result<&'data Xcoff::SectionHeader> {
self.sections
.get(index.0.wrapping_sub(1))
.read_error("Invalid XCOFF section index")
}
}
/// A trait for generic access to [`xcoff::SectionHeader32`] and [`xcoff::SectionHeader64`].
#[allow(missing_docs)]
pub trait SectionHeader: Debug + Pod {
type Word: Into<u64>;
type HalfWord: Into<u32>;
type Xcoff: FileHeader<SectionHeader = Self, Word = Self::Word>;
type Rel: Rel<Word = Self::Word>;
fn s_name(&self) -> &[u8; 8];
fn s_paddr(&self) -> Self::Word;
fn s_vaddr(&self) -> Self::Word;
fn s_size(&self) -> Self::Word;
fn s_scnptr(&self) -> Self::Word;
fn s_relptr(&self) -> Self::Word;
fn s_lnnoptr(&self) -> Self::Word;
fn s_nreloc(&self) -> Self::HalfWord;
fn s_nlnno(&self) -> Self::HalfWord;
fn s_flags(&self) -> u32;
/// Return the section name.
fn name(&self) -> &[u8] {
let sectname = &self.s_name()[..];
match memchr::memchr(b'\0', sectname) {
Some(end) => &sectname[..end],
None => sectname,
}
}
/// Return the offset and size of the section in the file.
fn file_range(&self) -> Option<(u64, u64)> {
Some((self.s_scnptr().into(), self.s_size().into()))
}
/// Return the section data.
///
/// Returns `Ok(&[])` if the section has no data.
/// Returns `Err` for invalid values.
fn data<'data, R: ReadRef<'data>>(&self, data: R) -> result::Result<&'data [u8], ()> {
if let Some((offset, size)) = self.file_range() {
data.read_bytes_at(offset, size)
} else {
Ok(&[])
}
}
/// Read the relocations.
fn relocations<'data, R: ReadRef<'data>>(&self, data: R) -> read::Result<&'data [Self::Rel]>;
}
impl SectionHeader for xcoff::SectionHeader32 {
type Word = u32;
type HalfWord = u16;
type Xcoff = xcoff::FileHeader32;
type Rel = xcoff::Rel32;
fn s_name(&self) -> &[u8; 8] {
&self.s_name
}
fn s_paddr(&self) -> Self::Word {
self.s_paddr.get(BE)
}
fn s_vaddr(&self) -> Self::Word {
self.s_vaddr.get(BE)
}
fn s_size(&self) -> Self::Word {
self.s_size.get(BE)
}
fn s_scnptr(&self) -> Self::Word {
self.s_scnptr.get(BE)
}
fn s_relptr(&self) -> Self::Word {
self.s_relptr.get(BE)
}
fn s_lnnoptr(&self) -> Self::Word {
self.s_lnnoptr.get(BE)
}
fn s_nreloc(&self) -> Self::HalfWord {
self.s_nreloc.get(BE)
}
fn s_nlnno(&self) -> Self::HalfWord {
self.s_nlnno.get(BE)
}
fn s_flags(&self) -> u32 {
self.s_flags.get(BE)
}
/// Read the relocations in a XCOFF32 file.
///
/// `data` must be the entire file data.
fn relocations<'data, R: ReadRef<'data>>(&self, data: R) -> read::Result<&'data [Self::Rel]> {
let reloc_num = self.s_nreloc() as usize;
// TODO: If more than 65,534 relocation entries are required, the field value will be 65535,
// and an STYP_OVRFLO section header will contain the actual count of relocation entries in
// the s_paddr field.
if reloc_num == 65535 {
return Err(Error("Overflow section is not supported yet."));
}
data.read_slice_at(self.s_relptr().into(), reloc_num)
.read_error("Invalid XCOFF relocation offset or number")
}
}
impl SectionHeader for xcoff::SectionHeader64 {
type Word = u64;
type HalfWord = u32;
type Xcoff = xcoff::FileHeader64;
type Rel = xcoff::Rel64;
fn s_name(&self) -> &[u8; 8] {
&self.s_name
}
fn s_paddr(&self) -> Self::Word {
self.s_paddr.get(BE)
}
fn s_vaddr(&self) -> Self::Word {
self.s_vaddr.get(BE)
}
fn s_size(&self) -> Self::Word {
self.s_size.get(BE)
}
fn s_scnptr(&self) -> Self::Word {
self.s_scnptr.get(BE)
}
fn s_relptr(&self) -> Self::Word {
self.s_relptr.get(BE)
}
fn s_lnnoptr(&self) -> Self::Word {
self.s_lnnoptr.get(BE)
}
fn s_nreloc(&self) -> Self::HalfWord {
self.s_nreloc.get(BE)
}
fn s_nlnno(&self) -> Self::HalfWord {
self.s_nlnno.get(BE)
}
fn s_flags(&self) -> u32 {
self.s_flags.get(BE)
}
/// Read the relocations in a XCOFF64 file.
///
/// `data` must be the entire file data.
fn relocations<'data, R: ReadRef<'data>>(&self, data: R) -> read::Result<&'data [Self::Rel]> {
data.read_slice_at(self.s_relptr(), self.s_nreloc() as usize)
.read_error("Invalid XCOFF relocation offset or number")
}
}

117
vendor/object/src/read/xcoff/segment.rs vendored Normal file
View File

@ -0,0 +1,117 @@
//! TODO: Support the segment for XCOFF when auxiliary file header and loader section is ready.
use core::fmt::Debug;
use core::str;
use crate::read::{self, ObjectSegment, ReadRef, Result};
use crate::xcoff;
use super::{FileHeader, XcoffFile};
/// An iterator for the segments in an [`XcoffFile32`](super::XcoffFile32).
pub type XcoffSegmentIterator32<'data, 'file, R = &'data [u8]> =
XcoffSegmentIterator<'data, 'file, xcoff::FileHeader32, R>;
/// An iterator for the segments in an [`XcoffFile64`](super::XcoffFile64).
pub type XcoffSegmentIterator64<'data, 'file, R = &'data [u8]> =
XcoffSegmentIterator<'data, 'file, xcoff::FileHeader64, R>;
/// An iterator for the segments in an [`XcoffFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct XcoffSegmentIterator<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
pub(super) file: &'file XcoffFile<'data, Xcoff, R>,
}
impl<'data, 'file, Xcoff, R> Iterator for XcoffSegmentIterator<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
type Item = XcoffSegment<'data, 'file, Xcoff, R>;
fn next(&mut self) -> Option<Self::Item> {
None
}
}
/// A segment in an [`XcoffFile32`](super::XcoffFile32).
pub type XcoffSegment32<'data, 'file, R = &'data [u8]> =
XcoffSegment<'data, 'file, xcoff::FileHeader32, R>;
/// A segment in an [`XcoffFile64`](super::XcoffFile64).
pub type XcoffSegment64<'data, 'file, R = &'data [u8]> =
XcoffSegment<'data, 'file, xcoff::FileHeader64, R>;
/// A loadable section in an [`XcoffFile`].
///
/// This is a stub that doesn't implement any functionality.
#[derive(Debug)]
pub struct XcoffSegment<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
#[allow(unused)]
pub(super) file: &'file XcoffFile<'data, Xcoff, R>,
}
impl<'data, 'file, Xcoff, R> XcoffSegment<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Xcoff, R> read::private::Sealed for XcoffSegment<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
}
impl<'data, 'file, Xcoff, R> ObjectSegment<'data> for XcoffSegment<'data, 'file, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
fn address(&self) -> u64 {
unreachable!();
}
fn size(&self) -> u64 {
unreachable!();
}
fn align(&self) -> u64 {
unreachable!();
}
fn file_range(&self) -> (u64, u64) {
unreachable!();
}
fn data(&self) -> Result<&'data [u8]> {
unreachable!();
}
fn data_range(&self, _address: u64, _size: u64) -> Result<Option<&'data [u8]>> {
unreachable!();
}
fn name_bytes(&self) -> Result<Option<&[u8]>> {
unreachable!();
}
fn name(&self) -> Result<Option<&str>> {
unreachable!();
}
fn flags(&self) -> crate::SegmentFlags {
unreachable!();
}
}

786
vendor/object/src/read/xcoff/symbol.rs vendored Normal file
View File

@ -0,0 +1,786 @@
use alloc::fmt;
use core::convert::TryInto;
use core::fmt::Debug;
use core::marker::PhantomData;
use core::str;
use crate::endian::{BigEndian as BE, U32Bytes};
use crate::pod::{bytes_of, Pod};
use crate::read::util::StringTable;
use crate::xcoff;
use crate::read::{
self, Bytes, Error, ObjectSymbol, ObjectSymbolTable, ReadError, ReadRef, Result, SectionIndex,
SymbolFlags, SymbolIndex, SymbolKind, SymbolScope, SymbolSection,
};
use super::{FileHeader, XcoffFile};
/// A table of symbol entries in an XCOFF file.
///
/// Also includes the string table used for the symbol names.
///
/// Returned by [`FileHeader::symbols`].
#[derive(Debug)]
pub struct SymbolTable<'data, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
symbols: &'data [xcoff::SymbolBytes],
strings: StringTable<'data, R>,
header: PhantomData<Xcoff>,
}
impl<'data, Xcoff, R> Default for SymbolTable<'data, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
fn default() -> Self {
Self {
symbols: &[],
strings: StringTable::default(),
header: PhantomData,
}
}
}
impl<'data, Xcoff, R> SymbolTable<'data, Xcoff, R>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
/// Parse the symbol table.
pub fn parse(header: Xcoff, data: R) -> Result<Self> {
let mut offset = header.f_symptr().into();
let (symbols, strings) = if offset != 0 {
let symbols = data
.read_slice(&mut offset, header.f_nsyms() as usize)
.read_error("Invalid XCOFF symbol table offset or size")?;
// Parse the string table.
// Note: don't update data when reading length; the length includes itself.
let length = data
.read_at::<U32Bytes<_>>(offset)
.read_error("Missing XCOFF string table")?
.get(BE);
let str_end = offset
.checked_add(length as u64)
.read_error("Invalid XCOFF string table length")?;
let strings = StringTable::new(data, offset, str_end);
(symbols, strings)
} else {
(&[][..], StringTable::default())
};
Ok(SymbolTable {
symbols,
strings,
header: PhantomData,
})
}
/// Return the string table used for the symbol names.
#[inline]
pub fn strings(&self) -> StringTable<'data, R> {
self.strings
}
/// Iterate over the symbols.
#[inline]
pub fn iter<'table>(&'table self) -> SymbolIterator<'data, 'table, Xcoff, R> {
SymbolIterator {
symbols: self,
index: 0,
}
}
/// Empty symbol iterator.
#[inline]
pub(super) fn iter_none<'table>(&'table self) -> SymbolIterator<'data, 'table, Xcoff, R> {
SymbolIterator {
symbols: self,
index: self.symbols.len(),
}
}
/// Return the symbol entry at the given index and offset.
pub fn get<T: Pod>(&self, index: usize, offset: usize) -> Result<&'data T> {
let entry = index
.checked_add(offset)
.and_then(|x| self.symbols.get(x))
.read_error("Invalid XCOFF symbol index")?;
let bytes = bytes_of(entry);
Bytes(bytes).read().read_error("Invalid XCOFF symbol data")
}
/// Return the symbol at the given index.
pub fn symbol(&self, index: usize) -> Result<&'data Xcoff::Symbol> {
self.get::<Xcoff::Symbol>(index, 0)
}
/// Return a file auxiliary symbol.
pub fn aux_file(&self, index: usize, offset: usize) -> Result<&'data Xcoff::FileAux> {
debug_assert!(self.symbol(index)?.has_aux_file());
let aux_file = self.get::<Xcoff::FileAux>(index, offset)?;
if let Some(aux_type) = aux_file.x_auxtype() {
if aux_type != xcoff::AUX_FILE {
return Err(Error("Invalid index for file auxiliary symbol."));
}
}
Ok(aux_file)
}
/// Return the csect auxiliary symbol.
pub fn aux_csect(&self, index: usize, offset: usize) -> Result<&'data Xcoff::CsectAux> {
debug_assert!(self.symbol(index)?.has_aux_csect());
let aux_csect = self.get::<Xcoff::CsectAux>(index, offset)?;
if let Some(aux_type) = aux_csect.x_auxtype() {
if aux_type != xcoff::AUX_CSECT {
return Err(Error("Invalid index/offset for csect auxiliary symbol."));
}
}
Ok(aux_csect)
}
/// Return true if the symbol table is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.symbols.is_empty()
}
/// The number of symbol table entries.
///
/// This includes auxiliary symbol table entries.
#[inline]
pub fn len(&self) -> usize {
self.symbols.len()
}
}
/// An iterator for symbol entries in an XCOFF file.
///
/// Yields the index and symbol structure for each symbol.
#[derive(Debug)]
pub struct SymbolIterator<'data, 'table, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
symbols: &'table SymbolTable<'data, Xcoff, R>,
index: usize,
}
impl<'data, 'table, Xcoff: FileHeader, R: ReadRef<'data>> Iterator
for SymbolIterator<'data, 'table, Xcoff, R>
{
type Item = (SymbolIndex, &'data Xcoff::Symbol);
fn next(&mut self) -> Option<Self::Item> {
let index = self.index;
let symbol = self.symbols.symbol(index).ok()?;
self.index += 1 + symbol.n_numaux() as usize;
Some((SymbolIndex(index), symbol))
}
}
/// A symbol table in an [`XcoffFile32`](super::XcoffFile32).
pub type XcoffSymbolTable32<'data, 'file, R = &'data [u8]> =
XcoffSymbolTable<'data, 'file, xcoff::FileHeader32, R>;
/// A symbol table in an [`XcoffFile64`](super::XcoffFile64).
pub type XcoffSymbolTable64<'data, 'file, R = &'data [u8]> =
XcoffSymbolTable<'data, 'file, xcoff::FileHeader64, R>;
/// A symbol table in an [`XcoffFile`].
#[derive(Debug, Clone, Copy)]
pub struct XcoffSymbolTable<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file XcoffFile<'data, Xcoff, R>,
pub(super) symbols: &'file SymbolTable<'data, Xcoff, R>,
}
impl<'data, 'file, Xcoff: FileHeader, R: ReadRef<'data>> read::private::Sealed
for XcoffSymbolTable<'data, 'file, Xcoff, R>
{
}
impl<'data, 'file, Xcoff: FileHeader, R: ReadRef<'data>> ObjectSymbolTable<'data>
for XcoffSymbolTable<'data, 'file, Xcoff, R>
{
type Symbol = XcoffSymbol<'data, 'file, Xcoff, R>;
type SymbolIterator = XcoffSymbolIterator<'data, 'file, Xcoff, R>;
fn symbols(&self) -> Self::SymbolIterator {
XcoffSymbolIterator {
file: self.file,
symbols: self.symbols.iter(),
}
}
fn symbol_by_index(&self, index: SymbolIndex) -> read::Result<Self::Symbol> {
let symbol = self.symbols.symbol(index.0)?;
Ok(XcoffSymbol {
file: self.file,
symbols: self.symbols,
index,
symbol,
})
}
}
/// An iterator for the symbols in an [`XcoffFile32`](super::XcoffFile32).
pub type XcoffSymbolIterator32<'data, 'file, R = &'data [u8]> =
XcoffSymbolIterator<'data, 'file, xcoff::FileHeader32, R>;
/// An iterator for the symbols in an [`XcoffFile64`](super::XcoffFile64).
pub type XcoffSymbolIterator64<'data, 'file, R = &'data [u8]> =
XcoffSymbolIterator<'data, 'file, xcoff::FileHeader64, R>;
/// An iterator for the symbols in an [`XcoffFile`].
pub struct XcoffSymbolIterator<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file XcoffFile<'data, Xcoff, R>,
pub(super) symbols: SymbolIterator<'data, 'file, Xcoff, R>,
}
impl<'data, 'file, Xcoff: FileHeader, R: ReadRef<'data>> fmt::Debug
for XcoffSymbolIterator<'data, 'file, Xcoff, R>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("XcoffSymbolIterator").finish()
}
}
impl<'data, 'file, Xcoff: FileHeader, R: ReadRef<'data>> Iterator
for XcoffSymbolIterator<'data, 'file, Xcoff, R>
{
type Item = XcoffSymbol<'data, 'file, Xcoff, R>;
fn next(&mut self) -> Option<Self::Item> {
let (index, symbol) = self.symbols.next()?;
Some(XcoffSymbol {
file: self.file,
symbols: self.symbols.symbols,
index,
symbol,
})
}
}
/// A symbol in an [`XcoffFile32`](super::XcoffFile32).
pub type XcoffSymbol32<'data, 'file, R = &'data [u8]> =
XcoffSymbol<'data, 'file, xcoff::FileHeader32, R>;
/// A symbol in an [`XcoffFile64`](super::XcoffFile64).
pub type XcoffSymbol64<'data, 'file, R = &'data [u8]> =
XcoffSymbol<'data, 'file, xcoff::FileHeader64, R>;
/// A symbol in an [`XcoffFile`].
///
/// Most functionality is provided by the [`ObjectSymbol`] trait implementation.
#[derive(Debug, Clone, Copy)]
pub struct XcoffSymbol<'data, 'file, Xcoff, R = &'data [u8]>
where
Xcoff: FileHeader,
R: ReadRef<'data>,
{
pub(super) file: &'file XcoffFile<'data, Xcoff, R>,
pub(super) symbols: &'file SymbolTable<'data, Xcoff, R>,
pub(super) index: SymbolIndex,
pub(super) symbol: &'data Xcoff::Symbol,
}
impl<'data, 'file, Xcoff: FileHeader, R: ReadRef<'data>> read::private::Sealed
for XcoffSymbol<'data, 'file, Xcoff, R>
{
}
impl<'data, 'file, Xcoff: FileHeader, R: ReadRef<'data>> ObjectSymbol<'data>
for XcoffSymbol<'data, 'file, Xcoff, R>
{
#[inline]
fn index(&self) -> SymbolIndex {
self.index
}
fn name_bytes(&self) -> Result<&'data [u8]> {
if self.symbol.has_aux_file() {
// By convention the file name is in the first auxiliary entry.
self.symbols
.aux_file(self.index.0, 1)?
.fname(self.symbols.strings)
} else {
self.symbol.name(self.symbols.strings)
}
}
fn name(&self) -> Result<&'data str> {
let name = self.name_bytes()?;
str::from_utf8(name)
.ok()
.read_error("Non UTF-8 XCOFF symbol name")
}
#[inline]
fn address(&self) -> u64 {
match self.symbol.n_sclass() {
// Relocatable address.
xcoff::C_EXT
| xcoff::C_WEAKEXT
| xcoff::C_HIDEXT
| xcoff::C_FCN
| xcoff::C_BLOCK
| xcoff::C_STAT
| xcoff::C_INFO => self.symbol.n_value().into(),
_ => 0,
}
}
#[inline]
fn size(&self) -> u64 {
if self.symbol.has_aux_csect() {
// XCOFF32 must have the csect auxiliary entry as the last auxiliary entry.
// XCOFF64 doesn't require this, but conventionally does.
if let Ok(aux_csect) = self
.file
.symbols
.aux_csect(self.index.0, self.symbol.n_numaux() as usize)
{
let sym_type = aux_csect.sym_type();
if sym_type == xcoff::XTY_SD || sym_type == xcoff::XTY_CM {
return aux_csect.x_scnlen();
}
}
}
0
}
fn kind(&self) -> SymbolKind {
if self.symbol.has_aux_csect() {
if let Ok(aux_csect) = self
.file
.symbols
.aux_csect(self.index.0, self.symbol.n_numaux() as usize)
{
let sym_type = aux_csect.sym_type();
if sym_type == xcoff::XTY_SD || sym_type == xcoff::XTY_CM {
return match aux_csect.x_smclas() {
xcoff::XMC_PR | xcoff::XMC_GL => SymbolKind::Text,
xcoff::XMC_RO | xcoff::XMC_RW | xcoff::XMC_TD | xcoff::XMC_BS => {
SymbolKind::Data
}
xcoff::XMC_TL | xcoff::XMC_UL => SymbolKind::Tls,
xcoff::XMC_DS | xcoff::XMC_TC0 | xcoff::XMC_TC => {
// `Metadata` might be a better kind for these if we had it.
SymbolKind::Data
}
_ => SymbolKind::Unknown,
};
} else if sym_type == xcoff::XTY_LD {
// A function entry point. Neither `Text` nor `Label` are a good fit for this.
return SymbolKind::Text;
} else if sym_type == xcoff::XTY_ER {
return SymbolKind::Unknown;
}
}
}
match self.symbol.n_sclass() {
xcoff::C_NULL => SymbolKind::Null,
xcoff::C_FILE => SymbolKind::File,
_ => SymbolKind::Unknown,
}
}
fn section(&self) -> SymbolSection {
match self.symbol.n_scnum() {
xcoff::N_ABS => SymbolSection::Absolute,
xcoff::N_UNDEF => SymbolSection::Undefined,
xcoff::N_DEBUG => SymbolSection::None,
index if index > 0 => SymbolSection::Section(SectionIndex(index as usize)),
_ => SymbolSection::Unknown,
}
}
#[inline]
fn is_undefined(&self) -> bool {
self.symbol.is_undefined()
}
/// Return true if the symbol is a definition of a function or data object.
#[inline]
fn is_definition(&self) -> bool {
if self.symbol.n_scnum() <= 0 {
return false;
}
if self.symbol.has_aux_csect() {
if let Ok(aux_csect) = self
.symbols
.aux_csect(self.index.0, self.symbol.n_numaux() as usize)
{
let sym_type = aux_csect.sym_type();
sym_type == xcoff::XTY_SD || sym_type == xcoff::XTY_LD || sym_type == xcoff::XTY_CM
} else {
false
}
} else {
false
}
}
#[inline]
fn is_common(&self) -> bool {
self.symbol.n_sclass() == xcoff::C_EXT && self.symbol.n_scnum() == xcoff::N_UNDEF
}
#[inline]
fn is_weak(&self) -> bool {
self.symbol.n_sclass() == xcoff::C_WEAKEXT
}
fn scope(&self) -> SymbolScope {
if self.symbol.n_scnum() == xcoff::N_UNDEF {
SymbolScope::Unknown
} else {
match self.symbol.n_sclass() {
xcoff::C_EXT | xcoff::C_WEAKEXT => {
let visibility = self.symbol.n_type() & xcoff::SYM_V_MASK;
if visibility == xcoff::SYM_V_HIDDEN {
SymbolScope::Linkage
} else {
SymbolScope::Dynamic
}
}
_ => SymbolScope::Compilation,
}
}
}
#[inline]
fn is_global(&self) -> bool {
match self.symbol.n_sclass() {
xcoff::C_EXT | xcoff::C_WEAKEXT => true,
_ => false,
}
}
#[inline]
fn is_local(&self) -> bool {
!self.is_global()
}
#[inline]
fn flags(&self) -> SymbolFlags<SectionIndex, SymbolIndex> {
let mut x_smtyp = 0;
let mut x_smclas = 0;
let mut containing_csect = None;
if self.symbol.has_aux_csect() {
if let Ok(aux_csect) = self
.file
.symbols
.aux_csect(self.index.0, self.symbol.n_numaux() as usize)
{
x_smtyp = aux_csect.x_smtyp();
x_smclas = aux_csect.x_smclas();
if aux_csect.sym_type() == xcoff::XTY_LD {
containing_csect = Some(SymbolIndex(aux_csect.x_scnlen() as usize))
}
}
}
SymbolFlags::Xcoff {
n_sclass: self.symbol.n_sclass(),
x_smtyp,
x_smclas,
containing_csect,
}
}
}
/// A trait for generic access to [`xcoff::Symbol32`] and [`xcoff::Symbol64`].
#[allow(missing_docs)]
pub trait Symbol: Debug + Pod {
type Word: Into<u64>;
fn n_value(&self) -> Self::Word;
fn n_scnum(&self) -> i16;
fn n_type(&self) -> u16;
fn n_sclass(&self) -> u8;
fn n_numaux(&self) -> u8;
fn name_offset(&self) -> Option<u32>;
fn name<'data, R: ReadRef<'data>>(
&'data self,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]>;
/// Return true if the symbol is undefined.
#[inline]
fn is_undefined(&self) -> bool {
let n_sclass = self.n_sclass();
(n_sclass == xcoff::C_EXT || n_sclass == xcoff::C_WEAKEXT)
&& self.n_scnum() == xcoff::N_UNDEF
}
/// Return true if the symbol has file auxiliary entry.
fn has_aux_file(&self) -> bool {
self.n_numaux() > 0 && self.n_sclass() == xcoff::C_FILE
}
/// Return true if the symbol has csect auxiliary entry.
///
/// A csect auxiliary entry is required for each symbol table entry that has
/// a storage class value of C_EXT, C_WEAKEXT, or C_HIDEXT.
fn has_aux_csect(&self) -> bool {
let sclass = self.n_sclass();
self.n_numaux() > 0
&& (sclass == xcoff::C_EXT || sclass == xcoff::C_WEAKEXT || sclass == xcoff::C_HIDEXT)
}
}
impl Symbol for xcoff::Symbol64 {
type Word = u64;
fn n_value(&self) -> Self::Word {
self.n_value.get(BE)
}
fn n_scnum(&self) -> i16 {
self.n_scnum.get(BE)
}
fn n_type(&self) -> u16 {
self.n_type.get(BE)
}
fn n_sclass(&self) -> u8 {
self.n_sclass
}
fn n_numaux(&self) -> u8 {
self.n_numaux
}
fn name_offset(&self) -> Option<u32> {
Some(self.n_offset.get(BE))
}
/// Parse the symbol name for XCOFF64.
fn name<'data, R: ReadRef<'data>>(
&'data self,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
strings
.get(self.n_offset.get(BE))
.read_error("Invalid XCOFF symbol name offset")
}
}
impl Symbol for xcoff::Symbol32 {
type Word = u32;
fn n_value(&self) -> Self::Word {
self.n_value.get(BE)
}
fn n_scnum(&self) -> i16 {
self.n_scnum.get(BE)
}
fn n_type(&self) -> u16 {
self.n_type.get(BE)
}
fn n_sclass(&self) -> u8 {
self.n_sclass
}
fn n_numaux(&self) -> u8 {
self.n_numaux
}
fn name_offset(&self) -> Option<u32> {
if self.n_name[0] == 0 {
let offset = u32::from_be_bytes(self.n_name[4..8].try_into().unwrap());
Some(offset)
} else {
None
}
}
/// Parse the symbol name for XCOFF32.
fn name<'data, R: ReadRef<'data>>(
&'data self,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
if let Some(offset) = self.name_offset() {
// If the name starts with 0 then the last 4 bytes are a string table offset.
strings
.get(offset)
.read_error("Invalid XCOFF symbol name offset")
} else {
// The name is inline and padded with nulls.
Ok(match memchr::memchr(b'\0', &self.n_name) {
Some(end) => &self.n_name[..end],
None => &self.n_name,
})
}
}
}
/// A trait for generic access to [`xcoff::FileAux32`] and [`xcoff::FileAux64`].
#[allow(missing_docs)]
pub trait FileAux: Debug + Pod {
fn x_fname(&self) -> &[u8; 8];
fn x_ftype(&self) -> u8;
fn x_auxtype(&self) -> Option<u8>;
fn name_offset(&self) -> Option<u32> {
let x_fname = self.x_fname();
if x_fname[0] == 0 {
Some(u32::from_be_bytes(x_fname[4..8].try_into().unwrap()))
} else {
None
}
}
/// Parse the x_fname field, which may be an inline string or a string table offset.
fn fname<'data, R: ReadRef<'data>>(
&'data self,
strings: StringTable<'data, R>,
) -> Result<&'data [u8]> {
if let Some(offset) = self.name_offset() {
// If the name starts with 0 then the last 4 bytes are a string table offset.
strings
.get(offset)
.read_error("Invalid XCOFF symbol name offset")
} else {
// The name is inline and padded with nulls.
let x_fname = self.x_fname();
Ok(match memchr::memchr(b'\0', x_fname) {
Some(end) => &x_fname[..end],
None => x_fname,
})
}
}
}
impl FileAux for xcoff::FileAux64 {
fn x_fname(&self) -> &[u8; 8] {
&self.x_fname
}
fn x_ftype(&self) -> u8 {
self.x_ftype
}
fn x_auxtype(&self) -> Option<u8> {
Some(self.x_auxtype)
}
}
impl FileAux for xcoff::FileAux32 {
fn x_fname(&self) -> &[u8; 8] {
&self.x_fname
}
fn x_ftype(&self) -> u8 {
self.x_ftype
}
fn x_auxtype(&self) -> Option<u8> {
None
}
}
/// A trait for generic access to [`xcoff::CsectAux32`] and [`xcoff::CsectAux64`].
#[allow(missing_docs)]
pub trait CsectAux: Debug + Pod {
fn x_scnlen(&self) -> u64;
fn x_parmhash(&self) -> u32;
fn x_snhash(&self) -> u16;
fn x_smtyp(&self) -> u8;
fn x_smclas(&self) -> u8;
fn x_stab(&self) -> Option<u32>;
fn x_snstab(&self) -> Option<u16>;
fn x_auxtype(&self) -> Option<u8>;
fn alignment(&self) -> u8 {
self.x_smtyp() >> 3
}
fn sym_type(&self) -> u8 {
self.x_smtyp() & 0x07
}
}
impl CsectAux for xcoff::CsectAux64 {
fn x_scnlen(&self) -> u64 {
self.x_scnlen_lo.get(BE) as u64 | ((self.x_scnlen_hi.get(BE) as u64) << 32)
}
fn x_parmhash(&self) -> u32 {
self.x_parmhash.get(BE)
}
fn x_snhash(&self) -> u16 {
self.x_snhash.get(BE)
}
fn x_smtyp(&self) -> u8 {
self.x_smtyp
}
fn x_smclas(&self) -> u8 {
self.x_smclas
}
fn x_stab(&self) -> Option<u32> {
None
}
fn x_snstab(&self) -> Option<u16> {
None
}
fn x_auxtype(&self) -> Option<u8> {
Some(self.x_auxtype)
}
}
impl CsectAux for xcoff::CsectAux32 {
fn x_scnlen(&self) -> u64 {
self.x_scnlen.get(BE) as u64
}
fn x_parmhash(&self) -> u32 {
self.x_parmhash.get(BE)
}
fn x_snhash(&self) -> u16 {
self.x_snhash.get(BE)
}
fn x_smtyp(&self) -> u8 {
self.x_smtyp
}
fn x_smclas(&self) -> u8 {
self.x_smclas
}
fn x_stab(&self) -> Option<u32> {
Some(self.x_stab.get(BE))
}
fn x_snstab(&self) -> Option<u16> {
Some(self.x_snstab.get(BE))
}
fn x_auxtype(&self) -> Option<u8> {
None
}
}

10
vendor/object/src/write/coff/mod.rs vendored Normal file
View File

@ -0,0 +1,10 @@
//! Support for writing COFF files.
//!
//! Provides [`Writer`] for low level writing of COFF files.
//! This is also used to provide COFF support for [`write::Object`](crate::write::Object).
mod object;
pub use self::object::*;
mod writer;
pub use writer::*;

583
vendor/object/src/write/coff/object.rs vendored Normal file
View File

@ -0,0 +1,583 @@
use alloc::vec::Vec;
use crate::pe as coff;
use crate::write::coff::writer;
use crate::write::util::*;
use crate::write::*;
#[derive(Default, Clone, Copy)]
struct SectionOffsets {
name: writer::Name,
offset: u32,
reloc_offset: u32,
selection: u8,
associative_section: u32,
}
#[derive(Default, Clone, Copy)]
struct SymbolOffsets {
name: writer::Name,
index: u32,
aux_count: u8,
}
/// Internal format to use for the `.drectve` section containing linker
/// directives for symbol exports.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum CoffExportStyle {
/// MSVC format supported by link.exe and LLD.
Msvc,
/// Gnu format supported by GNU LD and LLD.
Gnu,
}
impl<'a> Object<'a> {
pub(crate) fn coff_section_info(
&self,
section: StandardSection,
) -> (&'static [u8], &'static [u8], SectionKind, SectionFlags) {
match section {
StandardSection::Text => (&[], &b".text"[..], SectionKind::Text, SectionFlags::None),
StandardSection::Data => (&[], &b".data"[..], SectionKind::Data, SectionFlags::None),
StandardSection::ReadOnlyData
| StandardSection::ReadOnlyDataWithRel
| StandardSection::ReadOnlyString => (
&[],
&b".rdata"[..],
SectionKind::ReadOnlyData,
SectionFlags::None,
),
StandardSection::UninitializedData => (
&[],
&b".bss"[..],
SectionKind::UninitializedData,
SectionFlags::None,
),
// TLS sections are data sections with a special name.
StandardSection::Tls => (&[], &b".tls$"[..], SectionKind::Data, SectionFlags::None),
StandardSection::UninitializedTls => {
// Unsupported section.
(&[], &[], SectionKind::UninitializedTls, SectionFlags::None)
}
StandardSection::TlsVariables => {
// Unsupported section.
(&[], &[], SectionKind::TlsVariables, SectionFlags::None)
}
StandardSection::Common => {
// Unsupported section.
(&[], &[], SectionKind::Common, SectionFlags::None)
}
StandardSection::GnuProperty => {
// Unsupported section.
(&[], &[], SectionKind::Note, SectionFlags::None)
}
}
}
pub(crate) fn coff_subsection_name(&self, section: &[u8], value: &[u8]) -> Vec<u8> {
let mut name = section.to_vec();
name.push(b'$');
name.extend_from_slice(value);
name
}
pub(crate) fn coff_fixup_relocation(&mut self, relocation: &mut Relocation) -> i64 {
if relocation.kind == RelocationKind::GotRelative {
// Use a stub symbol for the relocation instead.
// This isn't really a GOT, but it's a similar purpose.
// TODO: need to handle DLL imports differently?
relocation.kind = RelocationKind::Relative;
relocation.symbol = self.coff_add_stub_symbol(relocation.symbol);
} else if relocation.kind == RelocationKind::PltRelative {
// Windows doesn't need a separate relocation type for
// references to functions in import libraries.
// For convenience, treat this the same as Relative.
relocation.kind = RelocationKind::Relative;
}
let constant = match self.architecture {
Architecture::I386 | Architecture::Arm | Architecture::Aarch64 => match relocation.kind
{
RelocationKind::Relative => {
// IMAGE_REL_I386_REL32, IMAGE_REL_ARM_REL32, IMAGE_REL_ARM64_REL32
relocation.addend + 4
}
_ => relocation.addend,
},
Architecture::X86_64 => match relocation.kind {
RelocationKind::Relative => {
// IMAGE_REL_AMD64_REL32 through to IMAGE_REL_AMD64_REL32_5
if relocation.addend <= -4 && relocation.addend >= -9 {
0
} else {
relocation.addend + 4
}
}
_ => relocation.addend,
},
_ => unimplemented!(),
};
relocation.addend -= constant;
constant
}
fn coff_add_stub_symbol(&mut self, symbol_id: SymbolId) -> SymbolId {
if let Some(stub_id) = self.stub_symbols.get(&symbol_id) {
return *stub_id;
}
let stub_size = self.architecture.address_size().unwrap().bytes();
let name = b".rdata$.refptr".to_vec();
let section_id = self.add_section(Vec::new(), name, SectionKind::ReadOnlyData);
let section = self.section_mut(section_id);
section.set_data(vec![0; stub_size as usize], u64::from(stub_size));
section.relocations = vec![Relocation {
offset: 0,
size: stub_size * 8,
kind: RelocationKind::Absolute,
encoding: RelocationEncoding::Generic,
symbol: symbol_id,
addend: 0,
}];
let mut name = b".refptr.".to_vec();
name.extend_from_slice(&self.symbol(symbol_id).name);
let stub_id = self.add_raw_symbol(Symbol {
name,
value: 0,
size: u64::from(stub_size),
kind: SymbolKind::Data,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::Section(section_id),
flags: SymbolFlags::None,
});
self.stub_symbols.insert(symbol_id, stub_id);
stub_id
}
/// Appends linker directives to the `.drectve` section to tell the linker
/// to export all symbols with `SymbolScope::Dynamic`.
///
/// This must be called after all symbols have been defined.
pub fn add_coff_exports(&mut self, style: CoffExportStyle) {
assert_eq!(self.format, BinaryFormat::Coff);
let mut directives = vec![];
for symbol in &self.symbols {
if symbol.scope == SymbolScope::Dynamic {
match style {
CoffExportStyle::Msvc => directives.extend(b" /EXPORT:\""),
CoffExportStyle::Gnu => directives.extend(b" -export:\""),
}
directives.extend(&symbol.name);
directives.extend(b"\"");
if symbol.kind != SymbolKind::Text {
match style {
CoffExportStyle::Msvc => directives.extend(b",DATA"),
CoffExportStyle::Gnu => directives.extend(b",data"),
}
}
}
}
let drectve = self.add_section(vec![], b".drectve".to_vec(), SectionKind::Linker);
self.append_section_data(drectve, &directives, 1);
}
pub(crate) fn coff_write(&self, buffer: &mut dyn WritableBuffer) -> Result<()> {
let mut writer = writer::Writer::new(buffer);
// Add section strings to strtab.
let mut section_offsets = vec![SectionOffsets::default(); self.sections.len()];
for (index, section) in self.sections.iter().enumerate() {
section_offsets[index].name = writer.add_name(&section.name);
}
// Set COMDAT flags.
for comdat in &self.comdats {
let symbol = &self.symbols[comdat.symbol.0];
let comdat_section = match symbol.section {
SymbolSection::Section(id) => id.0,
_ => {
return Err(Error(format!(
"unsupported COMDAT symbol `{}` section {:?}",
symbol.name().unwrap_or(""),
symbol.section
)));
}
};
section_offsets[comdat_section].selection = match comdat.kind {
ComdatKind::NoDuplicates => coff::IMAGE_COMDAT_SELECT_NODUPLICATES,
ComdatKind::Any => coff::IMAGE_COMDAT_SELECT_ANY,
ComdatKind::SameSize => coff::IMAGE_COMDAT_SELECT_SAME_SIZE,
ComdatKind::ExactMatch => coff::IMAGE_COMDAT_SELECT_EXACT_MATCH,
ComdatKind::Largest => coff::IMAGE_COMDAT_SELECT_LARGEST,
ComdatKind::Newest => coff::IMAGE_COMDAT_SELECT_NEWEST,
ComdatKind::Unknown => {
return Err(Error(format!(
"unsupported COMDAT symbol `{}` kind {:?}",
symbol.name().unwrap_or(""),
comdat.kind
)));
}
};
for id in &comdat.sections {
let section = &self.sections[id.0];
if section.symbol.is_none() {
return Err(Error(format!(
"missing symbol for COMDAT section `{}`",
section.name().unwrap_or(""),
)));
}
if id.0 != comdat_section {
section_offsets[id.0].selection = coff::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
section_offsets[id.0].associative_section = comdat_section as u32 + 1;
}
}
}
// Reserve symbol indices and add symbol strings to strtab.
let mut symbol_offsets = vec![SymbolOffsets::default(); self.symbols.len()];
for (index, symbol) in self.symbols.iter().enumerate() {
symbol_offsets[index].index = writer.reserve_symbol_index();
let mut name = &*symbol.name;
match symbol.kind {
SymbolKind::File => {
// Name goes in auxiliary symbol records.
symbol_offsets[index].aux_count = writer.reserve_aux_file_name(&symbol.name);
name = b".file";
}
SymbolKind::Section if symbol.section.id().is_some() => {
symbol_offsets[index].aux_count = writer.reserve_aux_section();
}
_ => {}
};
symbol_offsets[index].name = writer.add_name(name);
}
// Reserve file ranges.
writer.reserve_file_header();
writer.reserve_section_headers(self.sections.len() as u16);
for (index, section) in self.sections.iter().enumerate() {
section_offsets[index].offset = writer.reserve_section(section.data.len());
section_offsets[index].reloc_offset =
writer.reserve_relocations(section.relocations.len());
}
writer.reserve_symtab_strtab();
// Start writing.
writer.write_file_header(writer::FileHeader {
machine: match (self.architecture, self.sub_architecture) {
(Architecture::Arm, None) => coff::IMAGE_FILE_MACHINE_ARMNT,
(Architecture::Aarch64, None) => coff::IMAGE_FILE_MACHINE_ARM64,
(Architecture::Aarch64, Some(SubArchitecture::Arm64EC)) => {
coff::IMAGE_FILE_MACHINE_ARM64EC
}
(Architecture::I386, None) => coff::IMAGE_FILE_MACHINE_I386,
(Architecture::X86_64, None) => coff::IMAGE_FILE_MACHINE_AMD64,
_ => {
return Err(Error(format!(
"unimplemented architecture {:?} with sub-architecture {:?}",
self.architecture, self.sub_architecture
)));
}
},
time_date_stamp: 0,
characteristics: match self.flags {
FileFlags::Coff { characteristics } => characteristics,
_ => 0,
},
})?;
// Write section headers.
for (index, section) in self.sections.iter().enumerate() {
let mut characteristics = if let SectionFlags::Coff {
characteristics, ..
} = section.flags
{
characteristics
} else {
match section.kind {
SectionKind::Text => {
coff::IMAGE_SCN_CNT_CODE
| coff::IMAGE_SCN_MEM_EXECUTE
| coff::IMAGE_SCN_MEM_READ
}
SectionKind::Data => {
coff::IMAGE_SCN_CNT_INITIALIZED_DATA
| coff::IMAGE_SCN_MEM_READ
| coff::IMAGE_SCN_MEM_WRITE
}
SectionKind::UninitializedData => {
coff::IMAGE_SCN_CNT_UNINITIALIZED_DATA
| coff::IMAGE_SCN_MEM_READ
| coff::IMAGE_SCN_MEM_WRITE
}
SectionKind::ReadOnlyData
| SectionKind::ReadOnlyDataWithRel
| SectionKind::ReadOnlyString => {
coff::IMAGE_SCN_CNT_INITIALIZED_DATA | coff::IMAGE_SCN_MEM_READ
}
SectionKind::Debug | SectionKind::Other | SectionKind::OtherString => {
coff::IMAGE_SCN_CNT_INITIALIZED_DATA
| coff::IMAGE_SCN_MEM_READ
| coff::IMAGE_SCN_MEM_DISCARDABLE
}
SectionKind::Linker => coff::IMAGE_SCN_LNK_INFO | coff::IMAGE_SCN_LNK_REMOVE,
SectionKind::Common
| SectionKind::Tls
| SectionKind::UninitializedTls
| SectionKind::TlsVariables
| SectionKind::Note
| SectionKind::Unknown
| SectionKind::Metadata
| SectionKind::Elf(_) => {
return Err(Error(format!(
"unimplemented section `{}` kind {:?}",
section.name().unwrap_or(""),
section.kind
)));
}
}
};
if section_offsets[index].selection != 0 {
characteristics |= coff::IMAGE_SCN_LNK_COMDAT;
};
if section.relocations.len() > 0xffff {
characteristics |= coff::IMAGE_SCN_LNK_NRELOC_OVFL;
}
characteristics |= match section.align {
1 => coff::IMAGE_SCN_ALIGN_1BYTES,
2 => coff::IMAGE_SCN_ALIGN_2BYTES,
4 => coff::IMAGE_SCN_ALIGN_4BYTES,
8 => coff::IMAGE_SCN_ALIGN_8BYTES,
16 => coff::IMAGE_SCN_ALIGN_16BYTES,
32 => coff::IMAGE_SCN_ALIGN_32BYTES,
64 => coff::IMAGE_SCN_ALIGN_64BYTES,
128 => coff::IMAGE_SCN_ALIGN_128BYTES,
256 => coff::IMAGE_SCN_ALIGN_256BYTES,
512 => coff::IMAGE_SCN_ALIGN_512BYTES,
1024 => coff::IMAGE_SCN_ALIGN_1024BYTES,
2048 => coff::IMAGE_SCN_ALIGN_2048BYTES,
4096 => coff::IMAGE_SCN_ALIGN_4096BYTES,
8192 => coff::IMAGE_SCN_ALIGN_8192BYTES,
_ => {
return Err(Error(format!(
"unimplemented section `{}` align {}",
section.name().unwrap_or(""),
section.align
)));
}
};
writer.write_section_header(writer::SectionHeader {
name: section_offsets[index].name,
size_of_raw_data: section.size as u32,
pointer_to_raw_data: section_offsets[index].offset,
pointer_to_relocations: section_offsets[index].reloc_offset,
pointer_to_linenumbers: 0,
number_of_relocations: section.relocations.len() as u32,
number_of_linenumbers: 0,
characteristics,
});
}
// Write section data and relocations.
for section in &self.sections {
writer.write_section(&section.data);
if !section.relocations.is_empty() {
//debug_assert_eq!(section_offsets[index].reloc_offset, buffer.len());
writer.write_relocations_count(section.relocations.len());
for reloc in &section.relocations {
//assert!(reloc.implicit_addend);
let typ = match self.architecture {
Architecture::I386 => match (reloc.kind, reloc.size, reloc.addend) {
(RelocationKind::Absolute, 16, 0) => coff::IMAGE_REL_I386_DIR16,
(RelocationKind::Relative, 16, 0) => coff::IMAGE_REL_I386_REL16,
(RelocationKind::Absolute, 32, 0) => coff::IMAGE_REL_I386_DIR32,
(RelocationKind::ImageOffset, 32, 0) => coff::IMAGE_REL_I386_DIR32NB,
(RelocationKind::SectionIndex, 16, 0) => coff::IMAGE_REL_I386_SECTION,
(RelocationKind::SectionOffset, 32, 0) => coff::IMAGE_REL_I386_SECREL,
(RelocationKind::SectionOffset, 7, 0) => coff::IMAGE_REL_I386_SECREL7,
(RelocationKind::Relative, 32, -4) => coff::IMAGE_REL_I386_REL32,
(RelocationKind::Coff(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::X86_64 => match (reloc.kind, reloc.size, reloc.addend) {
(RelocationKind::Absolute, 64, 0) => coff::IMAGE_REL_AMD64_ADDR64,
(RelocationKind::Absolute, 32, 0) => coff::IMAGE_REL_AMD64_ADDR32,
(RelocationKind::ImageOffset, 32, 0) => coff::IMAGE_REL_AMD64_ADDR32NB,
(RelocationKind::Relative, 32, -4) => coff::IMAGE_REL_AMD64_REL32,
(RelocationKind::Relative, 32, -5) => coff::IMAGE_REL_AMD64_REL32_1,
(RelocationKind::Relative, 32, -6) => coff::IMAGE_REL_AMD64_REL32_2,
(RelocationKind::Relative, 32, -7) => coff::IMAGE_REL_AMD64_REL32_3,
(RelocationKind::Relative, 32, -8) => coff::IMAGE_REL_AMD64_REL32_4,
(RelocationKind::Relative, 32, -9) => coff::IMAGE_REL_AMD64_REL32_5,
(RelocationKind::SectionIndex, 16, 0) => coff::IMAGE_REL_AMD64_SECTION,
(RelocationKind::SectionOffset, 32, 0) => coff::IMAGE_REL_AMD64_SECREL,
(RelocationKind::SectionOffset, 7, 0) => coff::IMAGE_REL_AMD64_SECREL7,
(RelocationKind::Coff(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Arm => match (reloc.kind, reloc.size, reloc.addend) {
(RelocationKind::Absolute, 32, 0) => coff::IMAGE_REL_ARM_ADDR32,
(RelocationKind::ImageOffset, 32, 0) => coff::IMAGE_REL_ARM_ADDR32NB,
(RelocationKind::Relative, 32, -4) => coff::IMAGE_REL_ARM_REL32,
(RelocationKind::SectionIndex, 16, 0) => coff::IMAGE_REL_ARM_SECTION,
(RelocationKind::SectionOffset, 32, 0) => coff::IMAGE_REL_ARM_SECREL,
(RelocationKind::Coff(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Aarch64 => match (reloc.kind, reloc.size, reloc.addend) {
(RelocationKind::Absolute, 32, 0) => coff::IMAGE_REL_ARM64_ADDR32,
(RelocationKind::ImageOffset, 32, 0) => coff::IMAGE_REL_ARM64_ADDR32NB,
(RelocationKind::SectionIndex, 16, 0) => coff::IMAGE_REL_ARM64_SECTION,
(RelocationKind::SectionOffset, 32, 0) => coff::IMAGE_REL_ARM64_SECREL,
(RelocationKind::Absolute, 64, 0) => coff::IMAGE_REL_ARM64_ADDR64,
(RelocationKind::Relative, 32, -4) => coff::IMAGE_REL_ARM64_REL32,
(RelocationKind::Coff(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
_ => {
return Err(Error(format!(
"unimplemented architecture {:?}",
self.architecture
)));
}
};
writer.write_relocation(writer::Relocation {
virtual_address: reloc.offset as u32,
symbol: symbol_offsets[reloc.symbol.0].index,
typ,
});
}
}
}
// Write symbols.
for (index, symbol) in self.symbols.iter().enumerate() {
let section_number = match symbol.section {
SymbolSection::None => {
debug_assert_eq!(symbol.kind, SymbolKind::File);
coff::IMAGE_SYM_DEBUG as u16
}
SymbolSection::Undefined => coff::IMAGE_SYM_UNDEFINED as u16,
SymbolSection::Absolute => coff::IMAGE_SYM_ABSOLUTE as u16,
SymbolSection::Common => coff::IMAGE_SYM_UNDEFINED as u16,
SymbolSection::Section(id) => id.0 as u16 + 1,
};
let typ = if symbol.kind == SymbolKind::Text {
coff::IMAGE_SYM_DTYPE_FUNCTION << coff::IMAGE_SYM_DTYPE_SHIFT
} else {
coff::IMAGE_SYM_TYPE_NULL
};
let storage_class = match symbol.kind {
SymbolKind::File => coff::IMAGE_SYM_CLASS_FILE,
SymbolKind::Section => {
if symbol.section.id().is_some() {
coff::IMAGE_SYM_CLASS_STATIC
} else {
coff::IMAGE_SYM_CLASS_SECTION
}
}
SymbolKind::Label => coff::IMAGE_SYM_CLASS_LABEL,
SymbolKind::Text | SymbolKind::Data | SymbolKind::Tls => {
match symbol.section {
SymbolSection::None => {
return Err(Error(format!(
"missing section for symbol `{}`",
symbol.name().unwrap_or("")
)));
}
SymbolSection::Undefined | SymbolSection::Common => {
coff::IMAGE_SYM_CLASS_EXTERNAL
}
SymbolSection::Absolute | SymbolSection::Section(_) => {
match symbol.scope {
// TODO: does this need aux symbol records too?
_ if symbol.weak => coff::IMAGE_SYM_CLASS_WEAK_EXTERNAL,
SymbolScope::Unknown => {
return Err(Error(format!(
"unimplemented symbol `{}` scope {:?}",
symbol.name().unwrap_or(""),
symbol.scope
)));
}
SymbolScope::Compilation => coff::IMAGE_SYM_CLASS_STATIC,
SymbolScope::Linkage | SymbolScope::Dynamic => {
coff::IMAGE_SYM_CLASS_EXTERNAL
}
}
}
}
}
SymbolKind::Unknown | SymbolKind::Null => {
return Err(Error(format!(
"unimplemented symbol `{}` kind {:?}",
symbol.name().unwrap_or(""),
symbol.kind
)));
}
};
let number_of_aux_symbols = symbol_offsets[index].aux_count;
let value = if symbol.section == SymbolSection::Common {
symbol.size as u32
} else {
symbol.value as u32
};
writer.write_symbol(writer::Symbol {
name: symbol_offsets[index].name,
value,
section_number,
typ,
storage_class,
number_of_aux_symbols,
});
// Write auxiliary symbols.
match symbol.kind {
SymbolKind::File => {
writer.write_aux_file_name(&symbol.name, number_of_aux_symbols);
}
SymbolKind::Section if symbol.section.id().is_some() => {
debug_assert_eq!(number_of_aux_symbols, 1);
let section_index = symbol.section.id().unwrap().0;
let section = &self.sections[section_index];
writer.write_aux_section(writer::AuxSymbolSection {
length: section.size as u32,
number_of_relocations: section.relocations.len() as u32,
number_of_linenumbers: 0,
check_sum: checksum(section.data()),
number: section_offsets[section_index].associative_section,
selection: section_offsets[section_index].selection,
});
}
_ => {
debug_assert_eq!(number_of_aux_symbols, 0);
}
}
}
writer.write_strtab();
debug_assert_eq!(writer.reserved_len(), writer.len());
Ok(())
}
}
// JamCRC
fn checksum(data: &[u8]) -> u32 {
let mut hasher = crc32fast::Hasher::new_with_initial(0xffff_ffff);
hasher.update(data);
!hasher.finalize()
}

518
vendor/object/src/write/coff/writer.rs vendored Normal file
View File

@ -0,0 +1,518 @@
//! Helper for writing COFF files.
use alloc::string::String;
use alloc::vec::Vec;
use core::mem;
use crate::endian::{LittleEndian as LE, U16Bytes, U32Bytes, U16, U32};
use crate::pe;
use crate::write::string::{StringId, StringTable};
use crate::write::util;
use crate::write::{Error, Result, WritableBuffer};
/// A helper for writing COFF files.
///
/// Writing uses a two phase approach. The first phase builds up all of the information
/// that may need to be known ahead of time:
/// - build string table
/// - reserve section indices
/// - reserve symbol indices
/// - reserve file ranges for headers and sections
///
/// Some of the information has ordering requirements. For example, strings must be added
/// to the string table before reserving the file range for the string table. There are debug
/// asserts to check some of these requirements.
///
/// The second phase writes everything out in order. Thus the caller must ensure writing
/// is in the same order that file ranges were reserved. There are debug asserts to assist
/// with checking this.
#[allow(missing_debug_implementations)]
pub struct Writer<'a> {
buffer: &'a mut dyn WritableBuffer,
len: usize,
section_num: u16,
symtab_offset: u32,
symtab_num: u32,
strtab: StringTable<'a>,
strtab_len: usize,
strtab_offset: u32,
strtab_data: Vec<u8>,
}
impl<'a> Writer<'a> {
/// Create a new `Writer`.
pub fn new(buffer: &'a mut dyn WritableBuffer) -> Self {
Writer {
buffer,
len: 0,
section_num: 0,
symtab_offset: 0,
symtab_num: 0,
strtab: StringTable::default(),
strtab_len: 0,
strtab_offset: 0,
strtab_data: Vec::new(),
}
}
/// Return the current file length that has been reserved.
pub fn reserved_len(&self) -> usize {
self.len
}
/// Return the current file length that has been written.
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.buffer.len()
}
/// Reserve a file range with the given size and starting alignment.
///
/// Returns the aligned offset of the start of the range.
pub fn reserve(&mut self, len: usize, align_start: usize) -> u32 {
if align_start > 1 {
self.len = util::align(self.len, align_start);
}
let offset = self.len;
self.len += len;
offset as u32
}
/// Write alignment padding bytes.
pub fn write_align(&mut self, align_start: usize) {
if align_start > 1 {
util::write_align(self.buffer, align_start);
}
}
/// Write data.
pub fn write(&mut self, data: &[u8]) {
self.buffer.write_bytes(data);
}
/// Reserve the file range up to the given file offset.
pub fn reserve_until(&mut self, offset: usize) {
debug_assert!(self.len <= offset);
self.len = offset;
}
/// Write padding up to the given file offset.
pub fn pad_until(&mut self, offset: usize) {
debug_assert!(self.buffer.len() <= offset);
self.buffer.resize(offset);
}
/// Reserve the range for the file header.
///
/// This must be at the start of the file.
pub fn reserve_file_header(&mut self) {
debug_assert_eq!(self.len, 0);
self.reserve(mem::size_of::<pe::ImageFileHeader>(), 1);
}
/// Write the file header.
///
/// This must be at the start of the file.
///
/// Fields that can be derived from known information are automatically set by this function.
pub fn write_file_header(&mut self, header: FileHeader) -> Result<()> {
debug_assert_eq!(self.buffer.len(), 0);
// Start writing.
self.buffer
.reserve(self.len)
.map_err(|_| Error(String::from("Cannot allocate buffer")))?;
// Write file header.
let header = pe::ImageFileHeader {
machine: U16::new(LE, header.machine),
number_of_sections: U16::new(LE, self.section_num),
time_date_stamp: U32::new(LE, header.time_date_stamp),
pointer_to_symbol_table: U32::new(LE, self.symtab_offset),
number_of_symbols: U32::new(LE, self.symtab_num),
size_of_optional_header: U16::default(),
characteristics: U16::new(LE, header.characteristics),
};
self.buffer.write(&header);
Ok(())
}
/// Reserve the range for the section headers.
pub fn reserve_section_headers(&mut self, section_num: u16) {
debug_assert_eq!(self.section_num, 0);
self.section_num = section_num;
self.reserve(
section_num as usize * mem::size_of::<pe::ImageSectionHeader>(),
1,
);
}
/// Write a section header.
pub fn write_section_header(&mut self, section: SectionHeader) {
let mut coff_section = pe::ImageSectionHeader {
name: [0; 8],
virtual_size: U32::default(),
virtual_address: U32::default(),
size_of_raw_data: U32::new(LE, section.size_of_raw_data),
pointer_to_raw_data: U32::new(LE, section.pointer_to_raw_data),
pointer_to_relocations: U32::new(LE, section.pointer_to_relocations),
pointer_to_linenumbers: U32::new(LE, section.pointer_to_linenumbers),
number_of_relocations: if section.number_of_relocations > 0xffff {
U16::new(LE, 0xffff)
} else {
U16::new(LE, section.number_of_relocations as u16)
},
number_of_linenumbers: U16::default(),
characteristics: U32::new(LE, section.characteristics),
};
match section.name {
Name::Short(name) => coff_section.name = name,
Name::Long(str_id) => {
let mut str_offset = self.strtab.get_offset(str_id);
if str_offset <= 9_999_999 {
let mut name = [0; 7];
let mut len = 0;
if str_offset == 0 {
name[6] = b'0';
len = 1;
} else {
while str_offset != 0 {
let rem = (str_offset % 10) as u8;
str_offset /= 10;
name[6 - len] = b'0' + rem;
len += 1;
}
}
coff_section.name = [0; 8];
coff_section.name[0] = b'/';
coff_section.name[1..][..len].copy_from_slice(&name[7 - len..]);
} else {
debug_assert!(str_offset as u64 <= 0xf_ffff_ffff);
coff_section.name[0] = b'/';
coff_section.name[1] = b'/';
for i in 0..6 {
let rem = (str_offset % 64) as u8;
str_offset /= 64;
let c = match rem {
0..=25 => b'A' + rem,
26..=51 => b'a' + rem - 26,
52..=61 => b'0' + rem - 52,
62 => b'+',
63 => b'/',
_ => unreachable!(),
};
coff_section.name[7 - i] = c;
}
}
}
}
self.buffer.write(&coff_section);
}
/// Reserve the range for the section data.
///
/// Returns the aligned offset of the start of the range.
/// Does nothing and returns 0 if the length is zero.
pub fn reserve_section(&mut self, len: usize) -> u32 {
if len == 0 {
return 0;
}
// TODO: not sure what alignment is required here, but this seems to match LLVM
self.reserve(len, 4)
}
/// Write the alignment bytes prior to section data.
///
/// This is unneeded if you are using `write_section` or `write_section_zeroes`
/// for the data.
pub fn write_section_align(&mut self) {
util::write_align(self.buffer, 4);
}
/// Write the section data.
///
/// Writes alignment bytes prior to the data.
/// Does nothing if the data is empty.
pub fn write_section(&mut self, data: &[u8]) {
if data.is_empty() {
return;
}
self.write_section_align();
self.buffer.write_bytes(data);
}
/// Write the section data using zero bytes.
///
/// Writes alignment bytes prior to the data.
/// Does nothing if the length is zero.
pub fn write_section_zeroes(&mut self, len: usize) {
if len == 0 {
return;
}
self.write_section_align();
self.buffer.resize(self.buffer.len() + len);
}
/// Reserve a file range for the given number of relocations.
///
/// This will automatically reserve an extra relocation if there are more than 0xffff.
///
/// Returns the offset of the range.
/// Does nothing and returns 0 if the count is zero.
pub fn reserve_relocations(&mut self, mut count: usize) -> u32 {
if count == 0 {
return 0;
}
if count > 0xffff {
count += 1;
}
self.reserve(count * mem::size_of::<pe::ImageRelocation>(), 1)
}
/// Write a relocation containing the count if required.
///
/// This should be called before writing the first relocation for a section.
pub fn write_relocations_count(&mut self, count: usize) {
if count > 0xffff {
let coff_relocation = pe::ImageRelocation {
virtual_address: U32Bytes::new(LE, count as u32 + 1),
symbol_table_index: U32Bytes::new(LE, 0),
typ: U16Bytes::new(LE, 0),
};
self.buffer.write(&coff_relocation);
}
}
/// Write a relocation.
pub fn write_relocation(&mut self, reloc: Relocation) {
let coff_relocation = pe::ImageRelocation {
virtual_address: U32Bytes::new(LE, reloc.virtual_address),
symbol_table_index: U32Bytes::new(LE, reloc.symbol),
typ: U16Bytes::new(LE, reloc.typ),
};
self.buffer.write(&coff_relocation);
}
/// Reserve a symbol table entry.
///
/// This must be called before [`Self::reserve_symtab_strtab`].
pub fn reserve_symbol_index(&mut self) -> u32 {
debug_assert_eq!(self.symtab_offset, 0);
let index = self.symtab_num;
self.symtab_num += 1;
index
}
/// Reserve a number of symbol table entries.
pub fn reserve_symbol_indices(&mut self, count: u32) {
debug_assert_eq!(self.symtab_offset, 0);
self.symtab_num += count;
}
/// Write a symbol table entry.
pub fn write_symbol(&mut self, symbol: Symbol) {
let mut coff_symbol = pe::ImageSymbol {
name: [0; 8],
value: U32Bytes::new(LE, symbol.value),
section_number: U16Bytes::new(LE, symbol.section_number),
typ: U16Bytes::new(LE, symbol.typ),
storage_class: symbol.storage_class,
number_of_aux_symbols: symbol.number_of_aux_symbols,
};
match symbol.name {
Name::Short(name) => coff_symbol.name = name,
Name::Long(str_id) => {
let str_offset = self.strtab.get_offset(str_id);
coff_symbol.name[4..8].copy_from_slice(&u32::to_le_bytes(str_offset as u32));
}
}
self.buffer.write(&coff_symbol);
}
/// Reserve auxiliary symbols for a file name.
///
/// Returns the number of auxiliary symbols required.
///
/// This must be called before [`Self::reserve_symtab_strtab`].
pub fn reserve_aux_file_name(&mut self, name: &[u8]) -> u8 {
debug_assert_eq!(self.symtab_offset, 0);
let aux_count = (name.len() + pe::IMAGE_SIZEOF_SYMBOL - 1) / pe::IMAGE_SIZEOF_SYMBOL;
self.symtab_num += aux_count as u32;
aux_count as u8
}
/// Write auxiliary symbols for a file name.
pub fn write_aux_file_name(&mut self, name: &[u8], aux_count: u8) {
let aux_len = aux_count as usize * pe::IMAGE_SIZEOF_SYMBOL;
debug_assert!(aux_len >= name.len());
let old_len = self.buffer.len();
self.buffer.write_bytes(name);
self.buffer.resize(old_len + aux_len);
}
/// Reserve an auxiliary symbol for a section.
///
/// Returns the number of auxiliary symbols required.
///
/// This must be called before [`Self::reserve_symtab_strtab`].
pub fn reserve_aux_section(&mut self) -> u8 {
debug_assert_eq!(self.symtab_offset, 0);
self.symtab_num += 1;
1
}
/// Write an auxiliary symbol for a section.
pub fn write_aux_section(&mut self, section: AuxSymbolSection) {
let aux = pe::ImageAuxSymbolSection {
length: U32Bytes::new(LE, section.length),
number_of_relocations: if section.number_of_relocations > 0xffff {
U16Bytes::new(LE, 0xffff)
} else {
U16Bytes::new(LE, section.number_of_relocations as u16)
},
number_of_linenumbers: U16Bytes::new(LE, section.number_of_linenumbers),
check_sum: U32Bytes::new(LE, section.check_sum),
number: U16Bytes::new(LE, section.number as u16),
selection: section.selection,
reserved: 0,
high_number: U16Bytes::new(LE, (section.number >> 16) as u16),
};
self.buffer.write(&aux);
}
/// Return the number of reserved symbol table entries.
pub fn symbol_count(&self) -> u32 {
self.symtab_num
}
/// Add a string to the string table.
///
/// This must be called before [`Self::reserve_symtab_strtab`].
pub fn add_string(&mut self, name: &'a [u8]) -> StringId {
debug_assert_eq!(self.strtab_offset, 0);
self.strtab.add(name)
}
/// Add a section or symbol name to the string table if required.
///
/// This must be called before [`Self::reserve_symtab_strtab`].
pub fn add_name(&mut self, name: &'a [u8]) -> Name {
if name.len() > 8 {
Name::Long(self.add_string(name))
} else {
let mut short_name = [0; 8];
short_name[..name.len()].copy_from_slice(name);
Name::Short(short_name)
}
}
/// Reserve the range for the symbol table and string table.
///
/// This must be called after functions that reserve symbol
/// indices or add strings.
pub fn reserve_symtab_strtab(&mut self) {
debug_assert_eq!(self.symtab_offset, 0);
self.symtab_offset = self.reserve(self.symtab_num as usize * pe::IMAGE_SIZEOF_SYMBOL, 1);
debug_assert_eq!(self.strtab_offset, 0);
// First 4 bytes of strtab are the length.
self.strtab.write(4, &mut self.strtab_data);
self.strtab_len = self.strtab_data.len() + 4;
self.strtab_offset = self.reserve(self.strtab_len, 1);
}
/// Write the string table.
pub fn write_strtab(&mut self) {
debug_assert_eq!(self.strtab_offset, self.buffer.len() as u32);
self.buffer
.write_bytes(&u32::to_le_bytes(self.strtab_len as u32));
self.buffer.write_bytes(&self.strtab_data);
}
}
/// Shortened and native endian version of [`pe::ImageFileHeader`].
#[allow(missing_docs)]
#[derive(Debug, Default, Clone)]
pub struct FileHeader {
pub machine: u16,
pub time_date_stamp: u32,
pub characteristics: u16,
}
/// A section or symbol name.
#[derive(Debug, Clone, Copy)]
pub enum Name {
/// An inline name.
Short([u8; 8]),
/// An id of a string table entry.
Long(StringId),
}
impl Default for Name {
fn default() -> Name {
Name::Short([0; 8])
}
}
// From isn't useful.
#[allow(clippy::from_over_into)]
impl<'a> Into<Name> for &'a [u8; 8] {
fn into(self) -> Name {
Name::Short(*self)
}
}
/// Native endian version of [`pe::ImageSectionHeader`].
#[allow(missing_docs)]
#[derive(Debug, Default, Clone)]
pub struct SectionHeader {
pub name: Name,
pub size_of_raw_data: u32,
pub pointer_to_raw_data: u32,
pub pointer_to_relocations: u32,
pub pointer_to_linenumbers: u32,
/// This will automatically be clamped if there are more than 0xffff.
pub number_of_relocations: u32,
pub number_of_linenumbers: u16,
pub characteristics: u32,
}
/// Native endian version of [`pe::ImageSymbol`].
#[allow(missing_docs)]
#[derive(Debug, Default, Clone)]
pub struct Symbol {
pub name: Name,
pub value: u32,
pub section_number: u16,
pub typ: u16,
pub storage_class: u8,
pub number_of_aux_symbols: u8,
}
/// Native endian version of [`pe::ImageAuxSymbolSection`].
#[allow(missing_docs)]
#[derive(Debug, Default, Clone)]
pub struct AuxSymbolSection {
pub length: u32,
/// This will automatically be clamped if there are more than 0xffff.
pub number_of_relocations: u32,
pub number_of_linenumbers: u16,
pub check_sum: u32,
pub number: u32,
pub selection: u8,
}
/// Native endian version of [`pe::ImageRelocation`].
#[allow(missing_docs)]
#[derive(Debug, Default, Clone)]
pub struct Relocation {
pub virtual_address: u32,
pub symbol: u32,
pub typ: u16,
}

9
vendor/object/src/write/elf/mod.rs vendored Normal file
View File

@ -0,0 +1,9 @@
//! Support for writing ELF files.
//!
//! Provides [`Writer`] for low level writing of ELF files.
//! This is also used to provide ELF support for [`write::Object`](crate::write::Object).
mod object;
mod writer;
pub use writer::*;

907
vendor/object/src/write/elf/object.rs vendored Normal file
View File

@ -0,0 +1,907 @@
use alloc::vec::Vec;
use crate::write::elf::writer::*;
use crate::write::string::StringId;
use crate::write::*;
use crate::AddressSize;
use crate::{elf, pod};
#[derive(Clone, Copy)]
struct ComdatOffsets {
offset: usize,
str_id: StringId,
}
#[derive(Clone, Copy)]
struct SectionOffsets {
index: SectionIndex,
offset: usize,
str_id: StringId,
reloc_offset: usize,
reloc_str_id: Option<StringId>,
}
#[derive(Default, Clone, Copy)]
struct SymbolOffsets {
index: SymbolIndex,
str_id: Option<StringId>,
}
// Public methods.
impl<'a> Object<'a> {
/// Add a property with a u32 value to the ELF ".note.gnu.property" section.
///
/// Requires `feature = "elf"`.
pub fn add_elf_gnu_property_u32(&mut self, property: u32, value: u32) {
if self.format != BinaryFormat::Elf {
return;
}
let align = if self.elf_is_64() { 8 } else { 4 };
let mut data = Vec::with_capacity(32);
let n_name = b"GNU\0";
data.extend_from_slice(pod::bytes_of(&elf::NoteHeader32 {
n_namesz: U32::new(self.endian, n_name.len() as u32),
n_descsz: U32::new(self.endian, util::align(3 * 4, align) as u32),
n_type: U32::new(self.endian, elf::NT_GNU_PROPERTY_TYPE_0),
}));
data.extend_from_slice(n_name);
// This happens to already be aligned correctly.
debug_assert_eq!(util::align(data.len(), align), data.len());
data.extend_from_slice(pod::bytes_of(&U32::new(self.endian, property)));
// Value size
data.extend_from_slice(pod::bytes_of(&U32::new(self.endian, 4)));
data.extend_from_slice(pod::bytes_of(&U32::new(self.endian, value)));
util::write_align(&mut data, align);
let section = self.section_id(StandardSection::GnuProperty);
self.append_section_data(section, &data, align as u64);
}
}
// Private methods.
impl<'a> Object<'a> {
pub(crate) fn elf_section_info(
&self,
section: StandardSection,
) -> (&'static [u8], &'static [u8], SectionKind, SectionFlags) {
match section {
StandardSection::Text => (&[], &b".text"[..], SectionKind::Text, SectionFlags::None),
StandardSection::Data => (&[], &b".data"[..], SectionKind::Data, SectionFlags::None),
StandardSection::ReadOnlyData | StandardSection::ReadOnlyString => (
&[],
&b".rodata"[..],
SectionKind::ReadOnlyData,
SectionFlags::None,
),
StandardSection::ReadOnlyDataWithRel => (
&[],
b".data.rel.ro",
SectionKind::ReadOnlyDataWithRel,
SectionFlags::None,
),
StandardSection::UninitializedData => (
&[],
&b".bss"[..],
SectionKind::UninitializedData,
SectionFlags::None,
),
StandardSection::Tls => (&[], &b".tdata"[..], SectionKind::Tls, SectionFlags::None),
StandardSection::UninitializedTls => (
&[],
&b".tbss"[..],
SectionKind::UninitializedTls,
SectionFlags::None,
),
StandardSection::TlsVariables => {
// Unsupported section.
(&[], &[], SectionKind::TlsVariables, SectionFlags::None)
}
StandardSection::Common => {
// Unsupported section.
(&[], &[], SectionKind::Common, SectionFlags::None)
}
StandardSection::GnuProperty => (
&[],
&b".note.gnu.property"[..],
SectionKind::Note,
SectionFlags::Elf {
sh_flags: u64::from(elf::SHF_ALLOC),
},
),
}
}
pub(crate) fn elf_subsection_name(&self, section: &[u8], value: &[u8]) -> Vec<u8> {
let mut name = section.to_vec();
name.push(b'.');
name.extend_from_slice(value);
name
}
fn elf_has_relocation_addend(&self) -> Result<bool> {
Ok(match self.architecture {
Architecture::Aarch64 => true,
Architecture::Aarch64_Ilp32 => true,
Architecture::Arm => false,
Architecture::Avr => true,
Architecture::Bpf => false,
Architecture::Csky => true,
Architecture::I386 => false,
Architecture::X86_64 => true,
Architecture::X86_64_X32 => true,
Architecture::Hexagon => true,
Architecture::LoongArch64 => true,
Architecture::Mips => false,
Architecture::Mips64 => true,
Architecture::Msp430 => true,
Architecture::PowerPc => true,
Architecture::PowerPc64 => true,
Architecture::Riscv64 => true,
Architecture::Riscv32 => true,
Architecture::S390x => true,
Architecture::Sbf => false,
Architecture::Sharc => true,
Architecture::Sparc64 => true,
Architecture::Xtensa => true,
_ => {
return Err(Error(format!(
"unimplemented architecture {:?}",
self.architecture
)));
}
})
}
pub(crate) fn elf_fixup_relocation(&mut self, relocation: &mut Relocation) -> Result<i64> {
// Determine whether the addend is stored in the relocation or the data.
if self.elf_has_relocation_addend()? {
Ok(0)
} else {
let constant = relocation.addend;
relocation.addend = 0;
Ok(constant)
}
}
pub(crate) fn elf_is_64(&self) -> bool {
match self.architecture.address_size().unwrap() {
AddressSize::U8 | AddressSize::U16 | AddressSize::U32 => false,
AddressSize::U64 => true,
}
}
pub(crate) fn elf_write(&self, buffer: &mut dyn WritableBuffer) -> Result<()> {
// Create reloc section header names so we can reference them.
let is_rela = self.elf_has_relocation_addend()?;
let reloc_names: Vec<_> = self
.sections
.iter()
.map(|section| {
let mut reloc_name = Vec::with_capacity(
if is_rela { ".rela".len() } else { ".rel".len() } + section.name.len(),
);
if !section.relocations.is_empty() {
reloc_name.extend_from_slice(if is_rela {
&b".rela"[..]
} else {
&b".rel"[..]
});
reloc_name.extend_from_slice(&section.name);
}
reloc_name
})
.collect();
// Start calculating offsets of everything.
let mut writer = Writer::new(self.endian, self.elf_is_64(), buffer);
writer.reserve_file_header();
// Calculate size of section data.
let mut comdat_offsets = Vec::with_capacity(self.comdats.len());
for comdat in &self.comdats {
if comdat.kind != ComdatKind::Any {
return Err(Error(format!(
"unsupported COMDAT symbol `{}` kind {:?}",
self.symbols[comdat.symbol.0].name().unwrap_or(""),
comdat.kind
)));
}
writer.reserve_section_index();
let offset = writer.reserve_comdat(comdat.sections.len());
let str_id = writer.add_section_name(b".group");
comdat_offsets.push(ComdatOffsets { offset, str_id });
}
let mut section_offsets = Vec::with_capacity(self.sections.len());
for (section, reloc_name) in self.sections.iter().zip(reloc_names.iter()) {
let index = writer.reserve_section_index();
let offset = writer.reserve(section.data.len(), section.align as usize);
let str_id = writer.add_section_name(&section.name);
let mut reloc_str_id = None;
if !section.relocations.is_empty() {
writer.reserve_section_index();
reloc_str_id = Some(writer.add_section_name(reloc_name));
}
section_offsets.push(SectionOffsets {
index,
offset,
str_id,
// Relocation data is reserved later.
reloc_offset: 0,
reloc_str_id,
});
}
// Calculate index of symbols and add symbol strings to strtab.
let mut symbol_offsets = vec![SymbolOffsets::default(); self.symbols.len()];
writer.reserve_null_symbol_index();
// Local symbols must come before global.
for (index, symbol) in self.symbols.iter().enumerate() {
if symbol.is_local() {
let section_index = symbol.section.id().map(|s| section_offsets[s.0].index);
symbol_offsets[index].index = writer.reserve_symbol_index(section_index);
}
}
let symtab_num_local = writer.symbol_count();
for (index, symbol) in self.symbols.iter().enumerate() {
if !symbol.is_local() {
let section_index = symbol.section.id().map(|s| section_offsets[s.0].index);
symbol_offsets[index].index = writer.reserve_symbol_index(section_index);
}
}
for (index, symbol) in self.symbols.iter().enumerate() {
if symbol.kind != SymbolKind::Section && !symbol.name.is_empty() {
symbol_offsets[index].str_id = Some(writer.add_string(&symbol.name));
}
}
// Calculate size of symbols.
writer.reserve_symtab_section_index();
writer.reserve_symtab();
if writer.symtab_shndx_needed() {
writer.reserve_symtab_shndx_section_index();
}
writer.reserve_symtab_shndx();
writer.reserve_strtab_section_index();
writer.reserve_strtab();
// Calculate size of relocations.
for (index, section) in self.sections.iter().enumerate() {
let count = section.relocations.len();
if count != 0 {
section_offsets[index].reloc_offset = writer.reserve_relocations(count, is_rela);
}
}
// Calculate size of section headers.
writer.reserve_shstrtab_section_index();
writer.reserve_shstrtab();
writer.reserve_section_headers();
// Start writing.
let e_type = elf::ET_REL;
let e_machine = match (self.architecture, self.sub_architecture) {
(Architecture::Aarch64, None) => elf::EM_AARCH64,
(Architecture::Aarch64_Ilp32, None) => elf::EM_AARCH64,
(Architecture::Arm, None) => elf::EM_ARM,
(Architecture::Avr, None) => elf::EM_AVR,
(Architecture::Bpf, None) => elf::EM_BPF,
(Architecture::Csky, None) => elf::EM_CSKY,
(Architecture::I386, None) => elf::EM_386,
(Architecture::X86_64, None) => elf::EM_X86_64,
(Architecture::X86_64_X32, None) => elf::EM_X86_64,
(Architecture::Hexagon, None) => elf::EM_HEXAGON,
(Architecture::LoongArch64, None) => elf::EM_LOONGARCH,
(Architecture::Mips, None) => elf::EM_MIPS,
(Architecture::Mips64, None) => elf::EM_MIPS,
(Architecture::Msp430, None) => elf::EM_MSP430,
(Architecture::PowerPc, None) => elf::EM_PPC,
(Architecture::PowerPc64, None) => elf::EM_PPC64,
(Architecture::Riscv32, None) => elf::EM_RISCV,
(Architecture::Riscv64, None) => elf::EM_RISCV,
(Architecture::S390x, None) => elf::EM_S390,
(Architecture::Sbf, None) => elf::EM_SBF,
(Architecture::Sharc, None) => elf::EM_SHARC,
(Architecture::Sparc64, None) => elf::EM_SPARCV9,
(Architecture::Xtensa, None) => elf::EM_XTENSA,
_ => {
return Err(Error(format!(
"unimplemented architecture {:?} with sub-architecture {:?}",
self.architecture, self.sub_architecture
)));
}
};
let (os_abi, abi_version, e_flags) = if let FileFlags::Elf {
os_abi,
abi_version,
e_flags,
} = self.flags
{
(os_abi, abi_version, e_flags)
} else {
(elf::ELFOSABI_NONE, 0, 0)
};
writer.write_file_header(&FileHeader {
os_abi,
abi_version,
e_type,
e_machine,
e_entry: 0,
e_flags,
})?;
// Write section data.
for comdat in &self.comdats {
writer.write_comdat_header();
for section in &comdat.sections {
writer.write_comdat_entry(section_offsets[section.0].index);
}
}
for (index, section) in self.sections.iter().enumerate() {
writer.write_align(section.align as usize);
debug_assert_eq!(section_offsets[index].offset, writer.len());
writer.write(&section.data);
}
// Write symbols.
writer.write_null_symbol();
let mut write_symbol = |index: usize, symbol: &Symbol| -> Result<()> {
let st_info = if let SymbolFlags::Elf { st_info, .. } = symbol.flags {
st_info
} else {
let st_type = match symbol.kind {
SymbolKind::Null => elf::STT_NOTYPE,
SymbolKind::Text => {
if symbol.is_undefined() {
elf::STT_NOTYPE
} else {
elf::STT_FUNC
}
}
SymbolKind::Data => {
if symbol.is_undefined() {
elf::STT_NOTYPE
} else if symbol.is_common() {
elf::STT_COMMON
} else {
elf::STT_OBJECT
}
}
SymbolKind::Section => elf::STT_SECTION,
SymbolKind::File => elf::STT_FILE,
SymbolKind::Tls => elf::STT_TLS,
SymbolKind::Label => elf::STT_NOTYPE,
SymbolKind::Unknown => {
if symbol.is_undefined() {
elf::STT_NOTYPE
} else {
return Err(Error(format!(
"unimplemented symbol `{}` kind {:?}",
symbol.name().unwrap_or(""),
symbol.kind
)));
}
}
};
let st_bind = if symbol.weak {
elf::STB_WEAK
} else if symbol.is_undefined() {
elf::STB_GLOBAL
} else if symbol.is_local() {
elf::STB_LOCAL
} else {
elf::STB_GLOBAL
};
(st_bind << 4) + st_type
};
let st_other = if let SymbolFlags::Elf { st_other, .. } = symbol.flags {
st_other
} else if symbol.scope == SymbolScope::Linkage {
elf::STV_HIDDEN
} else {
elf::STV_DEFAULT
};
let (st_shndx, section) = match symbol.section {
SymbolSection::None => {
debug_assert_eq!(symbol.kind, SymbolKind::File);
(elf::SHN_ABS, None)
}
SymbolSection::Undefined => (elf::SHN_UNDEF, None),
SymbolSection::Absolute => (elf::SHN_ABS, None),
SymbolSection::Common => (elf::SHN_COMMON, None),
SymbolSection::Section(id) => (0, Some(section_offsets[id.0].index)),
};
writer.write_symbol(&Sym {
name: symbol_offsets[index].str_id,
section,
st_info,
st_other,
st_shndx,
st_value: symbol.value,
st_size: symbol.size,
});
Ok(())
};
for (index, symbol) in self.symbols.iter().enumerate() {
if symbol.is_local() {
write_symbol(index, symbol)?;
}
}
for (index, symbol) in self.symbols.iter().enumerate() {
if !symbol.is_local() {
write_symbol(index, symbol)?;
}
}
writer.write_symtab_shndx();
writer.write_strtab();
// Write relocations.
for (index, section) in self.sections.iter().enumerate() {
if !section.relocations.is_empty() {
writer.write_align_relocation();
debug_assert_eq!(section_offsets[index].reloc_offset, writer.len());
for reloc in &section.relocations {
let r_type = match self.architecture {
Architecture::Aarch64 => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, RelocationEncoding::Generic, 64) => {
elf::R_AARCH64_ABS64
}
(RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
elf::R_AARCH64_ABS32
}
(RelocationKind::Absolute, RelocationEncoding::Generic, 16) => {
elf::R_AARCH64_ABS16
}
(RelocationKind::Relative, RelocationEncoding::Generic, 64) => {
elf::R_AARCH64_PREL64
}
(RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
elf::R_AARCH64_PREL32
}
(RelocationKind::Relative, RelocationEncoding::Generic, 16) => {
elf::R_AARCH64_PREL16
}
(RelocationKind::Relative, RelocationEncoding::AArch64Call, 26)
| (RelocationKind::PltRelative, RelocationEncoding::AArch64Call, 26) => {
elf::R_AARCH64_CALL26
}
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Aarch64_Ilp32 => {
match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
elf::R_AARCH64_P32_ABS32
}
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!(
"unimplemented relocation {:?}",
reloc
)));
}
}
}
Architecture::Arm => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_ARM_ABS32,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Avr => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_AVR_32,
(RelocationKind::Absolute, _, 16) => elf::R_AVR_16,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Bpf => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 64) => elf::R_BPF_64_64,
(RelocationKind::Absolute, _, 32) => elf::R_BPF_64_32,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Csky => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_CKCORE_ADDR32,
(RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
elf::R_CKCORE_PCREL32
}
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::I386 => match (reloc.kind, reloc.size) {
(RelocationKind::Absolute, 32) => elf::R_386_32,
(RelocationKind::Relative, 32) => elf::R_386_PC32,
(RelocationKind::Got, 32) => elf::R_386_GOT32,
(RelocationKind::PltRelative, 32) => elf::R_386_PLT32,
(RelocationKind::GotBaseOffset, 32) => elf::R_386_GOTOFF,
(RelocationKind::GotBaseRelative, 32) => elf::R_386_GOTPC,
(RelocationKind::Absolute, 16) => elf::R_386_16,
(RelocationKind::Relative, 16) => elf::R_386_PC16,
(RelocationKind::Absolute, 8) => elf::R_386_8,
(RelocationKind::Relative, 8) => elf::R_386_PC8,
(RelocationKind::Elf(x), _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::X86_64 | Architecture::X86_64_X32 => {
match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, RelocationEncoding::Generic, 64) => {
elf::R_X86_64_64
}
(RelocationKind::Relative, RelocationEncoding::X86Branch, 32) => {
elf::R_X86_64_PLT32
}
(RelocationKind::Relative, _, 32) => elf::R_X86_64_PC32,
(RelocationKind::Got, _, 32) => elf::R_X86_64_GOT32,
(RelocationKind::PltRelative, _, 32) => elf::R_X86_64_PLT32,
(RelocationKind::GotRelative, _, 32) => elf::R_X86_64_GOTPCREL,
(RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
elf::R_X86_64_32
}
(RelocationKind::Absolute, RelocationEncoding::X86Signed, 32) => {
elf::R_X86_64_32S
}
(RelocationKind::Absolute, _, 16) => elf::R_X86_64_16,
(RelocationKind::Relative, _, 16) => elf::R_X86_64_PC16,
(RelocationKind::Absolute, _, 8) => elf::R_X86_64_8,
(RelocationKind::Relative, _, 8) => elf::R_X86_64_PC8,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!(
"unimplemented relocation {:?}",
reloc
)));
}
}
}
Architecture::Hexagon => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_HEX_32,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::LoongArch64 => match (reloc.kind, reloc.encoding, reloc.size)
{
(RelocationKind::Absolute, _, 32) => elf::R_LARCH_32,
(RelocationKind::Absolute, _, 64) => elf::R_LARCH_64,
(RelocationKind::Relative, _, 32) => elf::R_LARCH_32_PCREL,
(RelocationKind::Relative, _, 64) => elf::R_LARCH_64_PCREL,
(RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 16)
| (
RelocationKind::PltRelative,
RelocationEncoding::LoongArchBranch,
16,
) => elf::R_LARCH_B16,
(RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 21)
| (
RelocationKind::PltRelative,
RelocationEncoding::LoongArchBranch,
21,
) => elf::R_LARCH_B21,
(RelocationKind::Relative, RelocationEncoding::LoongArchBranch, 26)
| (
RelocationKind::PltRelative,
RelocationEncoding::LoongArchBranch,
26,
) => elf::R_LARCH_B26,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Mips | Architecture::Mips64 => {
match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 16) => elf::R_MIPS_16,
(RelocationKind::Absolute, _, 32) => elf::R_MIPS_32,
(RelocationKind::Absolute, _, 64) => elf::R_MIPS_64,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!(
"unimplemented relocation {:?}",
reloc
)));
}
}
}
Architecture::Msp430 => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_MSP430_32,
(RelocationKind::Absolute, _, 16) => elf::R_MSP430_16_BYTE,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::PowerPc => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_PPC_ADDR32,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::PowerPc64 => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_PPC64_ADDR32,
(RelocationKind::Absolute, _, 64) => elf::R_PPC64_ADDR64,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Riscv32 | Architecture::Riscv64 => {
match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_RISCV_32,
(RelocationKind::Absolute, _, 64) => elf::R_RISCV_64,
(RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
elf::R_RISCV_32_PCREL
}
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!(
"unimplemented relocation {:?}",
reloc
)));
}
}
}
Architecture::S390x => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, RelocationEncoding::Generic, 8) => {
elf::R_390_8
}
(RelocationKind::Absolute, RelocationEncoding::Generic, 16) => {
elf::R_390_16
}
(RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
elf::R_390_32
}
(RelocationKind::Absolute, RelocationEncoding::Generic, 64) => {
elf::R_390_64
}
(RelocationKind::Relative, RelocationEncoding::Generic, 16) => {
elf::R_390_PC16
}
(RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
elf::R_390_PC32
}
(RelocationKind::Relative, RelocationEncoding::Generic, 64) => {
elf::R_390_PC64
}
(RelocationKind::Relative, RelocationEncoding::S390xDbl, 16) => {
elf::R_390_PC16DBL
}
(RelocationKind::Relative, RelocationEncoding::S390xDbl, 32) => {
elf::R_390_PC32DBL
}
(RelocationKind::PltRelative, RelocationEncoding::S390xDbl, 16) => {
elf::R_390_PLT16DBL
}
(RelocationKind::PltRelative, RelocationEncoding::S390xDbl, 32) => {
elf::R_390_PLT32DBL
}
(RelocationKind::Got, RelocationEncoding::Generic, 16) => {
elf::R_390_GOT16
}
(RelocationKind::Got, RelocationEncoding::Generic, 32) => {
elf::R_390_GOT32
}
(RelocationKind::Got, RelocationEncoding::Generic, 64) => {
elf::R_390_GOT64
}
(RelocationKind::GotRelative, RelocationEncoding::S390xDbl, 32) => {
elf::R_390_GOTENT
}
(RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 16) => {
elf::R_390_GOTOFF16
}
(RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 32) => {
elf::R_390_GOTOFF32
}
(RelocationKind::GotBaseOffset, RelocationEncoding::Generic, 64) => {
elf::R_390_GOTOFF64
}
(RelocationKind::GotBaseRelative, RelocationEncoding::Generic, 64) => {
elf::R_390_GOTPC
}
(RelocationKind::GotBaseRelative, RelocationEncoding::S390xDbl, 32) => {
elf::R_390_GOTPCDBL
}
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Sbf => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 64) => elf::R_SBF_64_64,
(RelocationKind::Absolute, _, 32) => elf::R_SBF_64_32,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Sharc => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, RelocationEncoding::SharcTypeA, 32) => {
elf::R_SHARC_ADDR32_V3
}
(RelocationKind::Absolute, RelocationEncoding::Generic, 32) => {
elf::R_SHARC_ADDR_VAR_V3
}
(RelocationKind::Relative, RelocationEncoding::SharcTypeA, 24) => {
elf::R_SHARC_PCRLONG_V3
}
(RelocationKind::Relative, RelocationEncoding::SharcTypeA, 6) => {
elf::R_SHARC_PCRSHORT_V3
}
(RelocationKind::Relative, RelocationEncoding::SharcTypeB, 6) => {
elf::R_SHARC_PCRSHORT_V3
}
(RelocationKind::Absolute, RelocationEncoding::Generic, 16) => {
elf::R_SHARC_ADDR_VAR16_V3
}
(RelocationKind::Absolute, RelocationEncoding::SharcTypeA, 16) => {
elf::R_SHARC_DATA16_V3
}
(RelocationKind::Absolute, RelocationEncoding::SharcTypeB, 16) => {
elf::R_SHARC_DATA16_VISA_V3
}
(RelocationKind::Absolute, RelocationEncoding::SharcTypeA, 24) => {
elf::R_SHARC_ADDR24_V3
}
(RelocationKind::Absolute, RelocationEncoding::SharcTypeA, 6) => {
elf::R_SHARC_DATA6_V3
}
(RelocationKind::Absolute, RelocationEncoding::SharcTypeB, 6) => {
elf::R_SHARC_DATA6_VISA_V3
}
(RelocationKind::Absolute, RelocationEncoding::SharcTypeB, 7) => {
elf::R_SHARC_DATA7_VISA_V3
}
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Sparc64 => match (reloc.kind, reloc.encoding, reloc.size) {
// TODO: use R_SPARC_32/R_SPARC_64 if aligned.
(RelocationKind::Absolute, _, 32) => elf::R_SPARC_UA32,
(RelocationKind::Absolute, _, 64) => elf::R_SPARC_UA64,
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
Architecture::Xtensa => match (reloc.kind, reloc.encoding, reloc.size) {
(RelocationKind::Absolute, _, 32) => elf::R_XTENSA_32,
(RelocationKind::Relative, RelocationEncoding::Generic, 32) => {
elf::R_XTENSA_32_PCREL
}
(RelocationKind::Elf(x), _, _) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
},
_ => {
if let RelocationKind::Elf(x) = reloc.kind {
x
} else {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
}
};
let r_sym = symbol_offsets[reloc.symbol.0].index.0;
writer.write_relocation(
is_rela,
&Rel {
r_offset: reloc.offset,
r_sym,
r_type,
r_addend: reloc.addend,
},
);
}
}
}
writer.write_shstrtab();
// Write section headers.
writer.write_null_section_header();
let symtab_index = writer.symtab_index();
for (comdat, comdat_offset) in self.comdats.iter().zip(comdat_offsets.iter()) {
writer.write_comdat_section_header(
comdat_offset.str_id,
symtab_index,
symbol_offsets[comdat.symbol.0].index,
comdat_offset.offset,
comdat.sections.len(),
);
}
for (index, section) in self.sections.iter().enumerate() {
let sh_type = match section.kind {
SectionKind::UninitializedData | SectionKind::UninitializedTls => elf::SHT_NOBITS,
SectionKind::Note => elf::SHT_NOTE,
SectionKind::Elf(sh_type) => sh_type,
_ => elf::SHT_PROGBITS,
};
let sh_flags = if let SectionFlags::Elf { sh_flags } = section.flags {
sh_flags
} else {
match section.kind {
SectionKind::Text => elf::SHF_ALLOC | elf::SHF_EXECINSTR,
SectionKind::Data | SectionKind::ReadOnlyDataWithRel => {
elf::SHF_ALLOC | elf::SHF_WRITE
}
SectionKind::Tls => elf::SHF_ALLOC | elf::SHF_WRITE | elf::SHF_TLS,
SectionKind::UninitializedData => elf::SHF_ALLOC | elf::SHF_WRITE,
SectionKind::UninitializedTls => elf::SHF_ALLOC | elf::SHF_WRITE | elf::SHF_TLS,
SectionKind::ReadOnlyData => elf::SHF_ALLOC,
SectionKind::ReadOnlyString => {
elf::SHF_ALLOC | elf::SHF_STRINGS | elf::SHF_MERGE
}
SectionKind::OtherString => elf::SHF_STRINGS | elf::SHF_MERGE,
SectionKind::Other
| SectionKind::Debug
| SectionKind::Metadata
| SectionKind::Linker
| SectionKind::Note
| SectionKind::Elf(_) => 0,
SectionKind::Unknown | SectionKind::Common | SectionKind::TlsVariables => {
return Err(Error(format!(
"unimplemented section `{}` kind {:?}",
section.name().unwrap_or(""),
section.kind
)));
}
}
.into()
};
// TODO: not sure if this is correct, maybe user should determine this
let sh_entsize = match section.kind {
SectionKind::ReadOnlyString | SectionKind::OtherString => 1,
_ => 0,
};
writer.write_section_header(&SectionHeader {
name: Some(section_offsets[index].str_id),
sh_type,
sh_flags,
sh_addr: 0,
sh_offset: section_offsets[index].offset as u64,
sh_size: section.size,
sh_link: 0,
sh_info: 0,
sh_addralign: section.align,
sh_entsize,
});
if !section.relocations.is_empty() {
writer.write_relocation_section_header(
section_offsets[index].reloc_str_id.unwrap(),
section_offsets[index].index,
symtab_index,
section_offsets[index].reloc_offset,
section.relocations.len(),
is_rela,
);
}
}
writer.write_symtab_section_header(symtab_num_local);
writer.write_symtab_shndx_section_header();
writer.write_strtab_section_header();
writer.write_shstrtab_section_header();
debug_assert_eq!(writer.reserved_len(), writer.len());
Ok(())
}
}

2143
vendor/object/src/write/elf/writer.rs vendored Normal file

File diff suppressed because it is too large Load Diff

1095
vendor/object/src/write/macho.rs vendored Normal file

File diff suppressed because it is too large Load Diff

961
vendor/object/src/write/mod.rs vendored Normal file
View File

@ -0,0 +1,961 @@
//! Interface for writing object files.
use alloc::borrow::Cow;
use alloc::string::String;
use alloc::vec::Vec;
use core::{fmt, result, str};
#[cfg(not(feature = "std"))]
use hashbrown::HashMap;
#[cfg(feature = "std")]
use std::{boxed::Box, collections::HashMap, error, io};
use crate::endian::{Endianness, U32, U64};
use crate::{
Architecture, BinaryFormat, ComdatKind, FileFlags, RelocationEncoding, RelocationKind,
SectionFlags, SectionKind, SubArchitecture, SymbolFlags, SymbolKind, SymbolScope,
};
#[cfg(feature = "coff")]
pub mod coff;
#[cfg(feature = "coff")]
pub use coff::CoffExportStyle;
#[cfg(feature = "elf")]
pub mod elf;
#[cfg(feature = "macho")]
mod macho;
#[cfg(feature = "macho")]
pub use macho::MachOBuildVersion;
#[cfg(feature = "pe")]
pub mod pe;
#[cfg(feature = "xcoff")]
mod xcoff;
mod string;
pub use string::StringId;
mod util;
pub use util::*;
/// The error type used within the write module.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Error(String);
impl fmt::Display for Error {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.0)
}
}
#[cfg(feature = "std")]
impl error::Error for Error {}
/// The result type used within the write module.
pub type Result<T> = result::Result<T, Error>;
/// A writable relocatable object file.
#[derive(Debug)]
pub struct Object<'a> {
format: BinaryFormat,
architecture: Architecture,
sub_architecture: Option<SubArchitecture>,
endian: Endianness,
sections: Vec<Section<'a>>,
standard_sections: HashMap<StandardSection, SectionId>,
symbols: Vec<Symbol>,
symbol_map: HashMap<Vec<u8>, SymbolId>,
stub_symbols: HashMap<SymbolId, SymbolId>,
comdats: Vec<Comdat>,
/// File flags that are specific to each file format.
pub flags: FileFlags,
/// The symbol name mangling scheme.
pub mangling: Mangling,
/// Mach-O "_tlv_bootstrap" symbol.
tlv_bootstrap: Option<SymbolId>,
/// Mach-O CPU subtype.
#[cfg(feature = "macho")]
macho_cpu_subtype: Option<u32>,
#[cfg(feature = "macho")]
macho_build_version: Option<MachOBuildVersion>,
}
impl<'a> Object<'a> {
/// Create an empty object file.
pub fn new(format: BinaryFormat, architecture: Architecture, endian: Endianness) -> Object<'a> {
Object {
format,
architecture,
sub_architecture: None,
endian,
sections: Vec::new(),
standard_sections: HashMap::new(),
symbols: Vec::new(),
symbol_map: HashMap::new(),
stub_symbols: HashMap::new(),
comdats: Vec::new(),
flags: FileFlags::None,
mangling: Mangling::default(format, architecture),
tlv_bootstrap: None,
#[cfg(feature = "macho")]
macho_cpu_subtype: None,
#[cfg(feature = "macho")]
macho_build_version: None,
}
}
/// Return the file format.
#[inline]
pub fn format(&self) -> BinaryFormat {
self.format
}
/// Return the architecture.
#[inline]
pub fn architecture(&self) -> Architecture {
self.architecture
}
/// Return the sub-architecture.
#[inline]
pub fn sub_architecture(&self) -> Option<SubArchitecture> {
self.sub_architecture
}
/// Specify the sub-architecture.
pub fn set_sub_architecture(&mut self, sub_architecture: Option<SubArchitecture>) {
self.sub_architecture = sub_architecture;
}
/// Return the current mangling setting.
#[inline]
pub fn mangling(&self) -> Mangling {
self.mangling
}
/// Specify the mangling setting.
#[inline]
pub fn set_mangling(&mut self, mangling: Mangling) {
self.mangling = mangling;
}
/// Return the name for a standard segment.
///
/// This will vary based on the file format.
#[allow(unused_variables)]
pub fn segment_name(&self, segment: StandardSegment) -> &'static [u8] {
match self.format {
#[cfg(feature = "coff")]
BinaryFormat::Coff => &[],
#[cfg(feature = "elf")]
BinaryFormat::Elf => &[],
#[cfg(feature = "macho")]
BinaryFormat::MachO => self.macho_segment_name(segment),
_ => unimplemented!(),
}
}
/// Get the section with the given `SectionId`.
#[inline]
pub fn section(&self, section: SectionId) -> &Section<'a> {
&self.sections[section.0]
}
/// Mutably get the section with the given `SectionId`.
#[inline]
pub fn section_mut(&mut self, section: SectionId) -> &mut Section<'a> {
&mut self.sections[section.0]
}
/// Set the data for an existing section.
///
/// Must not be called for sections that already have data, or that contain uninitialized data.
pub fn set_section_data<T>(&mut self, section: SectionId, data: T, align: u64)
where
T: Into<Cow<'a, [u8]>>,
{
self.sections[section.0].set_data(data, align)
}
/// Append data to an existing section. Returns the section offset of the data.
pub fn append_section_data(&mut self, section: SectionId, data: &[u8], align: u64) -> u64 {
self.sections[section.0].append_data(data, align)
}
/// Append zero-initialized data to an existing section. Returns the section offset of the data.
pub fn append_section_bss(&mut self, section: SectionId, size: u64, align: u64) -> u64 {
self.sections[section.0].append_bss(size, align)
}
/// Return the `SectionId` of a standard section.
///
/// If the section doesn't already exist then it is created.
pub fn section_id(&mut self, section: StandardSection) -> SectionId {
self.standard_sections
.get(&section)
.cloned()
.unwrap_or_else(|| {
let (segment, name, kind, flags) = self.section_info(section);
let id = self.add_section(segment.to_vec(), name.to_vec(), kind);
self.section_mut(id).flags = flags;
id
})
}
/// Add a new section and return its `SectionId`.
///
/// This also creates a section symbol.
pub fn add_section(&mut self, segment: Vec<u8>, name: Vec<u8>, kind: SectionKind) -> SectionId {
let id = SectionId(self.sections.len());
self.sections.push(Section {
segment,
name,
kind,
size: 0,
align: 1,
data: Cow::Borrowed(&[]),
relocations: Vec::new(),
symbol: None,
flags: SectionFlags::None,
});
// Add to self.standard_sections if required. This may match multiple standard sections.
let section = &self.sections[id.0];
for standard_section in StandardSection::all() {
if !self.standard_sections.contains_key(standard_section) {
let (segment, name, kind, _flags) = self.section_info(*standard_section);
if segment == &*section.segment && name == &*section.name && kind == section.kind {
self.standard_sections.insert(*standard_section, id);
}
}
}
id
}
fn section_info(
&self,
section: StandardSection,
) -> (&'static [u8], &'static [u8], SectionKind, SectionFlags) {
match self.format {
#[cfg(feature = "coff")]
BinaryFormat::Coff => self.coff_section_info(section),
#[cfg(feature = "elf")]
BinaryFormat::Elf => self.elf_section_info(section),
#[cfg(feature = "macho")]
BinaryFormat::MachO => self.macho_section_info(section),
#[cfg(feature = "xcoff")]
BinaryFormat::Xcoff => self.xcoff_section_info(section),
_ => unimplemented!(),
}
}
/// Add a subsection. Returns the `SectionId` and section offset of the data.
pub fn add_subsection(
&mut self,
section: StandardSection,
name: &[u8],
data: &[u8],
align: u64,
) -> (SectionId, u64) {
let section_id = if self.has_subsections_via_symbols() {
self.set_subsections_via_symbols();
self.section_id(section)
} else {
let (segment, name, kind, flags) = self.subsection_info(section, name);
let id = self.add_section(segment.to_vec(), name, kind);
self.section_mut(id).flags = flags;
id
};
let offset = self.append_section_data(section_id, data, align);
(section_id, offset)
}
fn has_subsections_via_symbols(&self) -> bool {
match self.format {
BinaryFormat::Coff | BinaryFormat::Elf | BinaryFormat::Xcoff => false,
BinaryFormat::MachO => true,
_ => unimplemented!(),
}
}
fn set_subsections_via_symbols(&mut self) {
match self.format {
#[cfg(feature = "macho")]
BinaryFormat::MachO => self.macho_set_subsections_via_symbols(),
_ => unimplemented!(),
}
}
fn subsection_info(
&self,
section: StandardSection,
value: &[u8],
) -> (&'static [u8], Vec<u8>, SectionKind, SectionFlags) {
let (segment, section, kind, flags) = self.section_info(section);
let name = self.subsection_name(section, value);
(segment, name, kind, flags)
}
#[allow(unused_variables)]
fn subsection_name(&self, section: &[u8], value: &[u8]) -> Vec<u8> {
debug_assert!(!self.has_subsections_via_symbols());
match self.format {
#[cfg(feature = "coff")]
BinaryFormat::Coff => self.coff_subsection_name(section, value),
#[cfg(feature = "elf")]
BinaryFormat::Elf => self.elf_subsection_name(section, value),
_ => unimplemented!(),
}
}
/// Get the COMDAT section group with the given `ComdatId`.
#[inline]
pub fn comdat(&self, comdat: ComdatId) -> &Comdat {
&self.comdats[comdat.0]
}
/// Mutably get the COMDAT section group with the given `ComdatId`.
#[inline]
pub fn comdat_mut(&mut self, comdat: ComdatId) -> &mut Comdat {
&mut self.comdats[comdat.0]
}
/// Add a new COMDAT section group and return its `ComdatId`.
pub fn add_comdat(&mut self, comdat: Comdat) -> ComdatId {
let comdat_id = ComdatId(self.comdats.len());
self.comdats.push(comdat);
comdat_id
}
/// Get the `SymbolId` of the symbol with the given name.
pub fn symbol_id(&self, name: &[u8]) -> Option<SymbolId> {
self.symbol_map.get(name).cloned()
}
/// Get the symbol with the given `SymbolId`.
#[inline]
pub fn symbol(&self, symbol: SymbolId) -> &Symbol {
&self.symbols[symbol.0]
}
/// Mutably get the symbol with the given `SymbolId`.
#[inline]
pub fn symbol_mut(&mut self, symbol: SymbolId) -> &mut Symbol {
&mut self.symbols[symbol.0]
}
/// Add a new symbol and return its `SymbolId`.
pub fn add_symbol(&mut self, mut symbol: Symbol) -> SymbolId {
// Defined symbols must have a scope.
debug_assert!(symbol.is_undefined() || symbol.scope != SymbolScope::Unknown);
if symbol.kind == SymbolKind::Section {
// There can only be one section symbol, but update its flags, since
// the automatically generated section symbol will have none.
let symbol_id = self.section_symbol(symbol.section.id().unwrap());
if symbol.flags != SymbolFlags::None {
self.symbol_mut(symbol_id).flags = symbol.flags;
}
return symbol_id;
}
if !symbol.name.is_empty()
&& (symbol.kind == SymbolKind::Text
|| symbol.kind == SymbolKind::Data
|| symbol.kind == SymbolKind::Tls)
{
let unmangled_name = symbol.name.clone();
if let Some(prefix) = self.mangling.global_prefix() {
symbol.name.insert(0, prefix);
}
let symbol_id = self.add_raw_symbol(symbol);
self.symbol_map.insert(unmangled_name, symbol_id);
symbol_id
} else {
self.add_raw_symbol(symbol)
}
}
fn add_raw_symbol(&mut self, symbol: Symbol) -> SymbolId {
let symbol_id = SymbolId(self.symbols.len());
self.symbols.push(symbol);
symbol_id
}
/// Return true if the file format supports `StandardSection::UninitializedTls`.
#[inline]
pub fn has_uninitialized_tls(&self) -> bool {
self.format != BinaryFormat::Coff
}
/// Return true if the file format supports `StandardSection::Common`.
#[inline]
pub fn has_common(&self) -> bool {
self.format == BinaryFormat::MachO
}
/// Add a new common symbol and return its `SymbolId`.
///
/// For Mach-O, this appends the symbol to the `__common` section.
pub fn add_common_symbol(&mut self, mut symbol: Symbol, size: u64, align: u64) -> SymbolId {
if self.has_common() {
let symbol_id = self.add_symbol(symbol);
let section = self.section_id(StandardSection::Common);
self.add_symbol_bss(symbol_id, section, size, align);
symbol_id
} else {
symbol.section = SymbolSection::Common;
symbol.size = size;
self.add_symbol(symbol)
}
}
/// Add a new file symbol and return its `SymbolId`.
pub fn add_file_symbol(&mut self, name: Vec<u8>) -> SymbolId {
self.add_raw_symbol(Symbol {
name,
value: 0,
size: 0,
kind: SymbolKind::File,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::None,
flags: SymbolFlags::None,
})
}
/// Get the symbol for a section.
pub fn section_symbol(&mut self, section_id: SectionId) -> SymbolId {
let section = &mut self.sections[section_id.0];
if let Some(symbol) = section.symbol {
return symbol;
}
let name = if self.format == BinaryFormat::Coff {
section.name.clone()
} else {
Vec::new()
};
let symbol_id = SymbolId(self.symbols.len());
self.symbols.push(Symbol {
name,
value: 0,
size: 0,
kind: SymbolKind::Section,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::Section(section_id),
flags: SymbolFlags::None,
});
section.symbol = Some(symbol_id);
symbol_id
}
/// Append data to an existing section, and update a symbol to refer to it.
///
/// For Mach-O, this also creates a `__thread_vars` entry for TLS symbols, and the
/// symbol will indirectly point to the added data via the `__thread_vars` entry.
///
/// Returns the section offset of the data.
pub fn add_symbol_data(
&mut self,
symbol_id: SymbolId,
section: SectionId,
data: &[u8],
align: u64,
) -> u64 {
let offset = self.append_section_data(section, data, align);
self.set_symbol_data(symbol_id, section, offset, data.len() as u64);
offset
}
/// Append zero-initialized data to an existing section, and update a symbol to refer to it.
///
/// For Mach-O, this also creates a `__thread_vars` entry for TLS symbols, and the
/// symbol will indirectly point to the added data via the `__thread_vars` entry.
///
/// Returns the section offset of the data.
pub fn add_symbol_bss(
&mut self,
symbol_id: SymbolId,
section: SectionId,
size: u64,
align: u64,
) -> u64 {
let offset = self.append_section_bss(section, size, align);
self.set_symbol_data(symbol_id, section, offset, size);
offset
}
/// Update a symbol to refer to the given data within a section.
///
/// For Mach-O, this also creates a `__thread_vars` entry for TLS symbols, and the
/// symbol will indirectly point to the data via the `__thread_vars` entry.
#[allow(unused_mut)]
pub fn set_symbol_data(
&mut self,
mut symbol_id: SymbolId,
section: SectionId,
offset: u64,
size: u64,
) {
// Defined symbols must have a scope.
debug_assert!(self.symbol(symbol_id).scope != SymbolScope::Unknown);
match self.format {
#[cfg(feature = "macho")]
BinaryFormat::MachO => symbol_id = self.macho_add_thread_var(symbol_id),
_ => {}
}
let symbol = self.symbol_mut(symbol_id);
symbol.value = offset;
symbol.size = size;
symbol.section = SymbolSection::Section(section);
}
/// Convert a symbol to a section symbol and offset.
///
/// Returns `None` if the symbol does not have a section.
pub fn symbol_section_and_offset(&mut self, symbol_id: SymbolId) -> Option<(SymbolId, u64)> {
let symbol = self.symbol(symbol_id);
if symbol.kind == SymbolKind::Section {
return Some((symbol_id, 0));
}
let symbol_offset = symbol.value;
let section = symbol.section.id()?;
let section_symbol = self.section_symbol(section);
Some((section_symbol, symbol_offset))
}
/// Add a relocation to a section.
///
/// Relocations must only be added after the referenced symbols have been added
/// and defined (if applicable).
pub fn add_relocation(&mut self, section: SectionId, mut relocation: Relocation) -> Result<()> {
let addend = match self.format {
#[cfg(feature = "coff")]
BinaryFormat::Coff => self.coff_fixup_relocation(&mut relocation),
#[cfg(feature = "elf")]
BinaryFormat::Elf => self.elf_fixup_relocation(&mut relocation)?,
#[cfg(feature = "macho")]
BinaryFormat::MachO => self.macho_fixup_relocation(&mut relocation),
#[cfg(feature = "xcoff")]
BinaryFormat::Xcoff => self.xcoff_fixup_relocation(&mut relocation),
_ => unimplemented!(),
};
if addend != 0 {
self.write_relocation_addend(section, &relocation, addend)?;
}
self.sections[section.0].relocations.push(relocation);
Ok(())
}
fn write_relocation_addend(
&mut self,
section: SectionId,
relocation: &Relocation,
addend: i64,
) -> Result<()> {
let data = self.sections[section.0].data_mut();
let offset = relocation.offset as usize;
match relocation.size {
32 => data.write_at(offset, &U32::new(self.endian, addend as u32)),
64 => data.write_at(offset, &U64::new(self.endian, addend as u64)),
_ => {
return Err(Error(format!(
"unimplemented relocation addend {:?}",
relocation
)));
}
}
.map_err(|_| {
Error(format!(
"invalid relocation offset {}+{} (max {})",
relocation.offset,
relocation.size,
data.len()
))
})
}
/// Write the object to a `Vec`.
pub fn write(&self) -> Result<Vec<u8>> {
let mut buffer = Vec::new();
self.emit(&mut buffer)?;
Ok(buffer)
}
/// Write the object to a `Write` implementation.
///
/// Also flushes the writer.
///
/// It is advisable to use a buffered writer like [`BufWriter`](std::io::BufWriter)
/// instead of an unbuffered writer like [`File`](std::fs::File).
#[cfg(feature = "std")]
pub fn write_stream<W: io::Write>(&self, w: W) -> result::Result<(), Box<dyn error::Error>> {
let mut stream = StreamingBuffer::new(w);
self.emit(&mut stream)?;
stream.result()?;
stream.into_inner().flush()?;
Ok(())
}
/// Write the object to a `WritableBuffer`.
pub fn emit(&self, buffer: &mut dyn WritableBuffer) -> Result<()> {
match self.format {
#[cfg(feature = "coff")]
BinaryFormat::Coff => self.coff_write(buffer),
#[cfg(feature = "elf")]
BinaryFormat::Elf => self.elf_write(buffer),
#[cfg(feature = "macho")]
BinaryFormat::MachO => self.macho_write(buffer),
#[cfg(feature = "xcoff")]
BinaryFormat::Xcoff => self.xcoff_write(buffer),
_ => unimplemented!(),
}
}
}
/// A standard segment kind.
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[non_exhaustive]
pub enum StandardSegment {
Text,
Data,
Debug,
}
/// A standard section kind.
#[allow(missing_docs)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[non_exhaustive]
pub enum StandardSection {
Text,
Data,
ReadOnlyData,
ReadOnlyDataWithRel,
ReadOnlyString,
UninitializedData,
Tls,
/// Zero-fill TLS initializers. Unsupported for COFF.
UninitializedTls,
/// TLS variable structures. Only supported for Mach-O.
TlsVariables,
/// Common data. Only supported for Mach-O.
Common,
/// Notes for GNU properties. Only supported for ELF.
GnuProperty,
}
impl StandardSection {
/// Return the section kind of a standard section.
pub fn kind(self) -> SectionKind {
match self {
StandardSection::Text => SectionKind::Text,
StandardSection::Data => SectionKind::Data,
StandardSection::ReadOnlyData => SectionKind::ReadOnlyData,
StandardSection::ReadOnlyDataWithRel => SectionKind::ReadOnlyDataWithRel,
StandardSection::ReadOnlyString => SectionKind::ReadOnlyString,
StandardSection::UninitializedData => SectionKind::UninitializedData,
StandardSection::Tls => SectionKind::Tls,
StandardSection::UninitializedTls => SectionKind::UninitializedTls,
StandardSection::TlsVariables => SectionKind::TlsVariables,
StandardSection::Common => SectionKind::Common,
StandardSection::GnuProperty => SectionKind::Note,
}
}
// TODO: remembering to update this is error-prone, can we do better?
fn all() -> &'static [StandardSection] {
&[
StandardSection::Text,
StandardSection::Data,
StandardSection::ReadOnlyData,
StandardSection::ReadOnlyDataWithRel,
StandardSection::ReadOnlyString,
StandardSection::UninitializedData,
StandardSection::Tls,
StandardSection::UninitializedTls,
StandardSection::TlsVariables,
StandardSection::Common,
StandardSection::GnuProperty,
]
}
}
/// An identifier used to reference a section.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SectionId(usize);
/// A section in an object file.
#[derive(Debug)]
pub struct Section<'a> {
segment: Vec<u8>,
name: Vec<u8>,
kind: SectionKind,
size: u64,
align: u64,
data: Cow<'a, [u8]>,
relocations: Vec<Relocation>,
symbol: Option<SymbolId>,
/// Section flags that are specific to each file format.
pub flags: SectionFlags,
}
impl<'a> Section<'a> {
/// Try to convert the name to a utf8 string.
#[inline]
pub fn name(&self) -> Option<&str> {
str::from_utf8(&self.name).ok()
}
/// Try to convert the segment to a utf8 string.
#[inline]
pub fn segment(&self) -> Option<&str> {
str::from_utf8(&self.segment).ok()
}
/// Return true if this section contains zerofill data.
#[inline]
pub fn is_bss(&self) -> bool {
self.kind.is_bss()
}
/// Set the data for a section.
///
/// Must not be called for sections that already have data, or that contain uninitialized data.
pub fn set_data<T>(&mut self, data: T, align: u64)
where
T: Into<Cow<'a, [u8]>>,
{
debug_assert!(!self.is_bss());
debug_assert_eq!(align & (align - 1), 0);
debug_assert!(self.data.is_empty());
self.data = data.into();
self.size = self.data.len() as u64;
self.align = align;
}
/// Append data to a section.
///
/// Must not be called for sections that contain uninitialized data.
pub fn append_data(&mut self, append_data: &[u8], align: u64) -> u64 {
debug_assert!(!self.is_bss());
debug_assert_eq!(align & (align - 1), 0);
if self.align < align {
self.align = align;
}
let align = align as usize;
let data = self.data.to_mut();
let mut offset = data.len();
if offset & (align - 1) != 0 {
offset += align - (offset & (align - 1));
data.resize(offset, 0);
}
data.extend_from_slice(append_data);
self.size = data.len() as u64;
offset as u64
}
/// Append uninitialized data to a section.
///
/// Must not be called for sections that contain initialized data.
pub fn append_bss(&mut self, size: u64, align: u64) -> u64 {
debug_assert!(self.is_bss());
debug_assert_eq!(align & (align - 1), 0);
if self.align < align {
self.align = align;
}
let mut offset = self.size;
if offset & (align - 1) != 0 {
offset += align - (offset & (align - 1));
self.size = offset;
}
self.size += size;
offset
}
/// Returns the section as-built so far.
///
/// This requires that the section is not a bss section.
pub fn data(&self) -> &[u8] {
debug_assert!(!self.is_bss());
&self.data
}
/// Returns the section as-built so far.
///
/// This requires that the section is not a bss section.
pub fn data_mut(&mut self) -> &mut [u8] {
debug_assert!(!self.is_bss());
self.data.to_mut()
}
}
/// The section where a symbol is defined.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum SymbolSection {
/// The section is not applicable for this symbol (such as file symbols).
None,
/// The symbol is undefined.
Undefined,
/// The symbol has an absolute value.
Absolute,
/// The symbol is a zero-initialized symbol that will be combined with duplicate definitions.
Common,
/// The symbol is defined in the given section.
Section(SectionId),
}
impl SymbolSection {
/// Returns the section id for the section where the symbol is defined.
///
/// May return `None` if the symbol is not defined in a section.
#[inline]
pub fn id(self) -> Option<SectionId> {
if let SymbolSection::Section(id) = self {
Some(id)
} else {
None
}
}
}
/// An identifier used to reference a symbol.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SymbolId(usize);
/// A symbol in an object file.
#[derive(Debug)]
pub struct Symbol {
/// The name of the symbol.
pub name: Vec<u8>,
/// The value of the symbol.
///
/// If the symbol defined in a section, then this is the section offset of the symbol.
pub value: u64,
/// The size of the symbol.
pub size: u64,
/// The kind of the symbol.
pub kind: SymbolKind,
/// The scope of the symbol.
pub scope: SymbolScope,
/// Whether the symbol has weak binding.
pub weak: bool,
/// The section containing the symbol.
pub section: SymbolSection,
/// Symbol flags that are specific to each file format.
pub flags: SymbolFlags<SectionId, SymbolId>,
}
impl Symbol {
/// Try to convert the name to a utf8 string.
#[inline]
pub fn name(&self) -> Option<&str> {
str::from_utf8(&self.name).ok()
}
/// Return true if the symbol is undefined.
#[inline]
pub fn is_undefined(&self) -> bool {
self.section == SymbolSection::Undefined
}
/// Return true if the symbol is common data.
///
/// Note: does not check for `SymbolSection::Section` with `SectionKind::Common`.
#[inline]
pub fn is_common(&self) -> bool {
self.section == SymbolSection::Common
}
/// Return true if the symbol scope is local.
#[inline]
pub fn is_local(&self) -> bool {
self.scope == SymbolScope::Compilation
}
}
/// A relocation in an object file.
#[derive(Debug)]
pub struct Relocation {
/// The section offset of the place of the relocation.
pub offset: u64,
/// The size in bits of the place of relocation.
pub size: u8,
/// The operation used to calculate the result of the relocation.
pub kind: RelocationKind,
/// Information about how the result of the relocation operation is encoded in the place.
pub encoding: RelocationEncoding,
/// The symbol referred to by the relocation.
///
/// This may be a section symbol.
pub symbol: SymbolId,
/// The addend to use in the relocation calculation.
///
/// This may be in addition to an implicit addend stored at the place of the relocation.
pub addend: i64,
}
/// An identifier used to reference a COMDAT section group.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ComdatId(usize);
/// A COMDAT section group.
#[derive(Debug)]
pub struct Comdat {
/// The COMDAT selection kind.
///
/// This determines the way in which the linker resolves multiple definitions of the COMDAT
/// sections.
pub kind: ComdatKind,
/// The COMDAT symbol.
///
/// If this symbol is referenced, then all sections in the group will be included by the
/// linker.
pub symbol: SymbolId,
/// The sections in the group.
pub sections: Vec<SectionId>,
}
/// The symbol name mangling scheme.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum Mangling {
/// No symbol mangling.
None,
/// Windows COFF symbol mangling.
Coff,
/// Windows COFF i386 symbol mangling.
CoffI386,
/// ELF symbol mangling.
Elf,
/// Mach-O symbol mangling.
MachO,
/// Xcoff symbol mangling.
Xcoff,
}
impl Mangling {
/// Return the default symboling mangling for the given format and architecture.
pub fn default(format: BinaryFormat, architecture: Architecture) -> Self {
match (format, architecture) {
(BinaryFormat::Coff, Architecture::I386) => Mangling::CoffI386,
(BinaryFormat::Coff, _) => Mangling::Coff,
(BinaryFormat::Elf, _) => Mangling::Elf,
(BinaryFormat::MachO, _) => Mangling::MachO,
(BinaryFormat::Xcoff, _) => Mangling::Xcoff,
_ => Mangling::None,
}
}
/// Return the prefix to use for global symbols.
pub fn global_prefix(self) -> Option<u8> {
match self {
Mangling::None | Mangling::Elf | Mangling::Coff | Mangling::Xcoff => None,
Mangling::CoffI386 | Mangling::MachO => Some(b'_'),
}
}
}

847
vendor/object/src/write/pe.rs vendored Normal file
View File

@ -0,0 +1,847 @@
//! Helper for writing PE files.
use alloc::string::String;
use alloc::vec::Vec;
use core::mem;
use crate::endian::{LittleEndian as LE, *};
use crate::pe;
use crate::write::util;
use crate::write::{Error, Result, WritableBuffer};
/// A helper for writing PE files.
///
/// Writing uses a two phase approach. The first phase reserves file ranges and virtual
/// address ranges for everything in the order that they will be written.
///
/// The second phase writes everything out in order. Thus the caller must ensure writing
/// is in the same order that file ranges were reserved.
#[allow(missing_debug_implementations)]
pub struct Writer<'a> {
is_64: bool,
section_alignment: u32,
file_alignment: u32,
buffer: &'a mut dyn WritableBuffer,
len: u32,
virtual_len: u32,
headers_len: u32,
code_address: u32,
data_address: u32,
code_len: u32,
data_len: u32,
bss_len: u32,
nt_headers_offset: u32,
data_directories: Vec<DataDirectory>,
section_header_num: u16,
sections: Vec<Section>,
symbol_offset: u32,
symbol_num: u32,
reloc_blocks: Vec<RelocBlock>,
relocs: Vec<U16<LE>>,
reloc_offset: u32,
}
impl<'a> Writer<'a> {
/// Create a new `Writer`.
pub fn new(
is_64: bool,
section_alignment: u32,
file_alignment: u32,
buffer: &'a mut dyn WritableBuffer,
) -> Self {
Writer {
is_64,
section_alignment,
file_alignment,
buffer,
len: 0,
virtual_len: 0,
headers_len: 0,
code_address: 0,
data_address: 0,
code_len: 0,
data_len: 0,
bss_len: 0,
nt_headers_offset: 0,
data_directories: Vec::new(),
section_header_num: 0,
sections: Vec::new(),
symbol_offset: 0,
symbol_num: 0,
reloc_blocks: Vec::new(),
relocs: Vec::new(),
reloc_offset: 0,
}
}
/// Return the current virtual address size that has been reserved.
///
/// This is only valid after section headers have been reserved.
pub fn virtual_len(&self) -> u32 {
self.virtual_len
}
/// Reserve a virtual address range with the given size.
///
/// The reserved length will be increased to match the section alignment.
///
/// Returns the aligned offset of the start of the range.
pub fn reserve_virtual(&mut self, len: u32) -> u32 {
let offset = self.virtual_len;
self.virtual_len += len;
self.virtual_len = util::align_u32(self.virtual_len, self.section_alignment);
offset
}
/// Reserve up to the given virtual address.
///
/// The reserved length will be increased to match the section alignment.
pub fn reserve_virtual_until(&mut self, address: u32) {
debug_assert!(self.virtual_len <= address);
self.virtual_len = util::align_u32(address, self.section_alignment);
}
/// Return the current file length that has been reserved.
pub fn reserved_len(&self) -> u32 {
self.len
}
/// Return the current file length that has been written.
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.buffer.len()
}
/// Reserve a file range with the given size and starting alignment.
///
/// Returns the aligned offset of the start of the range.
pub fn reserve(&mut self, len: u32, align_start: u32) -> u32 {
if len == 0 {
return self.len;
}
self.reserve_align(align_start);
let offset = self.len;
self.len += len;
offset
}
/// Reserve a file range with the given size and using the file alignment.
///
/// Returns the aligned offset of the start of the range.
pub fn reserve_file(&mut self, len: u32) -> u32 {
self.reserve(len, self.file_alignment)
}
/// Write data.
pub fn write(&mut self, data: &[u8]) {
self.buffer.write_bytes(data);
}
/// Reserve alignment padding bytes.
pub fn reserve_align(&mut self, align_start: u32) {
self.len = util::align_u32(self.len, align_start);
}
/// Write alignment padding bytes.
pub fn write_align(&mut self, align_start: u32) {
util::write_align(self.buffer, align_start as usize);
}
/// Write padding up to the next multiple of file alignment.
pub fn write_file_align(&mut self) {
self.write_align(self.file_alignment);
}
/// Reserve the file range up to the given file offset.
pub fn reserve_until(&mut self, offset: u32) {
debug_assert!(self.len <= offset);
self.len = offset;
}
/// Write padding up to the given file offset.
pub fn pad_until(&mut self, offset: u32) {
debug_assert!(self.buffer.len() <= offset as usize);
self.buffer.resize(offset as usize);
}
/// Reserve the range for the DOS header.
///
/// This must be at the start of the file.
///
/// When writing, you may use `write_custom_dos_header` or `write_empty_dos_header`.
pub fn reserve_dos_header(&mut self) {
debug_assert_eq!(self.len, 0);
self.reserve(mem::size_of::<pe::ImageDosHeader>() as u32, 1);
}
/// Write a custom DOS header.
///
/// This must be at the start of the file.
pub fn write_custom_dos_header(&mut self, dos_header: &pe::ImageDosHeader) -> Result<()> {
debug_assert_eq!(self.buffer.len(), 0);
// Start writing.
self.buffer
.reserve(self.len as usize)
.map_err(|_| Error(String::from("Cannot allocate buffer")))?;
self.buffer.write(dos_header);
Ok(())
}
/// Write the DOS header for a file without a stub.
///
/// This must be at the start of the file.
///
/// Uses default values for all fields.
pub fn write_empty_dos_header(&mut self) -> Result<()> {
self.write_custom_dos_header(&pe::ImageDosHeader {
e_magic: U16::new(LE, pe::IMAGE_DOS_SIGNATURE),
e_cblp: U16::new(LE, 0),
e_cp: U16::new(LE, 0),
e_crlc: U16::new(LE, 0),
e_cparhdr: U16::new(LE, 0),
e_minalloc: U16::new(LE, 0),
e_maxalloc: U16::new(LE, 0),
e_ss: U16::new(LE, 0),
e_sp: U16::new(LE, 0),
e_csum: U16::new(LE, 0),
e_ip: U16::new(LE, 0),
e_cs: U16::new(LE, 0),
e_lfarlc: U16::new(LE, 0),
e_ovno: U16::new(LE, 0),
e_res: [U16::new(LE, 0); 4],
e_oemid: U16::new(LE, 0),
e_oeminfo: U16::new(LE, 0),
e_res2: [U16::new(LE, 0); 10],
e_lfanew: U32::new(LE, self.nt_headers_offset),
})
}
/// Reserve a fixed DOS header and stub.
///
/// Use `reserve_dos_header` and `reserve` if you need a custom stub.
pub fn reserve_dos_header_and_stub(&mut self) {
self.reserve_dos_header();
self.reserve(64, 1);
}
/// Write a fixed DOS header and stub.
///
/// Use `write_custom_dos_header` and `write` if you need a custom stub.
pub fn write_dos_header_and_stub(&mut self) -> Result<()> {
self.write_custom_dos_header(&pe::ImageDosHeader {
e_magic: U16::new(LE, pe::IMAGE_DOS_SIGNATURE),
e_cblp: U16::new(LE, 0x90),
e_cp: U16::new(LE, 3),
e_crlc: U16::new(LE, 0),
e_cparhdr: U16::new(LE, 4),
e_minalloc: U16::new(LE, 0),
e_maxalloc: U16::new(LE, 0xffff),
e_ss: U16::new(LE, 0),
e_sp: U16::new(LE, 0xb8),
e_csum: U16::new(LE, 0),
e_ip: U16::new(LE, 0),
e_cs: U16::new(LE, 0),
e_lfarlc: U16::new(LE, 0x40),
e_ovno: U16::new(LE, 0),
e_res: [U16::new(LE, 0); 4],
e_oemid: U16::new(LE, 0),
e_oeminfo: U16::new(LE, 0),
e_res2: [U16::new(LE, 0); 10],
e_lfanew: U32::new(LE, self.nt_headers_offset),
})?;
#[rustfmt::skip]
self.buffer.write_bytes(&[
0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd,
0x21, 0xb8, 0x01, 0x4c, 0xcd, 0x21, 0x54, 0x68,
0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f,
0x74, 0x20, 0x62, 0x65, 0x20, 0x72, 0x75, 0x6e,
0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x0d, 0x0d, 0x0a,
0x24, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
]);
Ok(())
}
fn nt_headers_size(&self) -> u32 {
if self.is_64 {
mem::size_of::<pe::ImageNtHeaders64>() as u32
} else {
mem::size_of::<pe::ImageNtHeaders32>() as u32
}
}
fn optional_header_size(&self) -> u32 {
let size = if self.is_64 {
mem::size_of::<pe::ImageOptionalHeader64>() as u32
} else {
mem::size_of::<pe::ImageOptionalHeader32>() as u32
};
size + self.data_directories.len() as u32 * mem::size_of::<pe::ImageDataDirectory>() as u32
}
/// Return the offset of the NT headers, if reserved.
pub fn nt_headers_offset(&self) -> u32 {
self.nt_headers_offset
}
/// Reserve the range for the NT headers.
pub fn reserve_nt_headers(&mut self, data_directory_num: usize) {
debug_assert_eq!(self.nt_headers_offset, 0);
self.nt_headers_offset = self.reserve(self.nt_headers_size(), 8);
self.data_directories = vec![DataDirectory::default(); data_directory_num];
self.reserve(
data_directory_num as u32 * mem::size_of::<pe::ImageDataDirectory>() as u32,
1,
);
}
/// Set the virtual address and size of a data directory.
pub fn set_data_directory(&mut self, index: usize, virtual_address: u32, size: u32) {
self.data_directories[index] = DataDirectory {
virtual_address,
size,
}
}
/// Write the NT headers.
pub fn write_nt_headers(&mut self, nt_headers: NtHeaders) {
self.pad_until(self.nt_headers_offset);
self.buffer.write(&U32::new(LE, pe::IMAGE_NT_SIGNATURE));
let file_header = pe::ImageFileHeader {
machine: U16::new(LE, nt_headers.machine),
number_of_sections: U16::new(LE, self.section_header_num),
time_date_stamp: U32::new(LE, nt_headers.time_date_stamp),
pointer_to_symbol_table: U32::new(LE, self.symbol_offset),
number_of_symbols: U32::new(LE, self.symbol_num),
size_of_optional_header: U16::new(LE, self.optional_header_size() as u16),
characteristics: U16::new(LE, nt_headers.characteristics),
};
self.buffer.write(&file_header);
if self.is_64 {
let optional_header = pe::ImageOptionalHeader64 {
magic: U16::new(LE, pe::IMAGE_NT_OPTIONAL_HDR64_MAGIC),
major_linker_version: nt_headers.major_linker_version,
minor_linker_version: nt_headers.minor_linker_version,
size_of_code: U32::new(LE, self.code_len),
size_of_initialized_data: U32::new(LE, self.data_len),
size_of_uninitialized_data: U32::new(LE, self.bss_len),
address_of_entry_point: U32::new(LE, nt_headers.address_of_entry_point),
base_of_code: U32::new(LE, self.code_address),
image_base: U64::new(LE, nt_headers.image_base),
section_alignment: U32::new(LE, self.section_alignment),
file_alignment: U32::new(LE, self.file_alignment),
major_operating_system_version: U16::new(
LE,
nt_headers.major_operating_system_version,
),
minor_operating_system_version: U16::new(
LE,
nt_headers.minor_operating_system_version,
),
major_image_version: U16::new(LE, nt_headers.major_image_version),
minor_image_version: U16::new(LE, nt_headers.minor_image_version),
major_subsystem_version: U16::new(LE, nt_headers.major_subsystem_version),
minor_subsystem_version: U16::new(LE, nt_headers.minor_subsystem_version),
win32_version_value: U32::new(LE, 0),
size_of_image: U32::new(LE, self.virtual_len),
size_of_headers: U32::new(LE, self.headers_len),
check_sum: U32::new(LE, 0),
subsystem: U16::new(LE, nt_headers.subsystem),
dll_characteristics: U16::new(LE, nt_headers.dll_characteristics),
size_of_stack_reserve: U64::new(LE, nt_headers.size_of_stack_reserve),
size_of_stack_commit: U64::new(LE, nt_headers.size_of_stack_commit),
size_of_heap_reserve: U64::new(LE, nt_headers.size_of_heap_reserve),
size_of_heap_commit: U64::new(LE, nt_headers.size_of_heap_commit),
loader_flags: U32::new(LE, 0),
number_of_rva_and_sizes: U32::new(LE, self.data_directories.len() as u32),
};
self.buffer.write(&optional_header);
} else {
let optional_header = pe::ImageOptionalHeader32 {
magic: U16::new(LE, pe::IMAGE_NT_OPTIONAL_HDR32_MAGIC),
major_linker_version: nt_headers.major_linker_version,
minor_linker_version: nt_headers.minor_linker_version,
size_of_code: U32::new(LE, self.code_len),
size_of_initialized_data: U32::new(LE, self.data_len),
size_of_uninitialized_data: U32::new(LE, self.bss_len),
address_of_entry_point: U32::new(LE, nt_headers.address_of_entry_point),
base_of_code: U32::new(LE, self.code_address),
base_of_data: U32::new(LE, self.data_address),
image_base: U32::new(LE, nt_headers.image_base as u32),
section_alignment: U32::new(LE, self.section_alignment),
file_alignment: U32::new(LE, self.file_alignment),
major_operating_system_version: U16::new(
LE,
nt_headers.major_operating_system_version,
),
minor_operating_system_version: U16::new(
LE,
nt_headers.minor_operating_system_version,
),
major_image_version: U16::new(LE, nt_headers.major_image_version),
minor_image_version: U16::new(LE, nt_headers.minor_image_version),
major_subsystem_version: U16::new(LE, nt_headers.major_subsystem_version),
minor_subsystem_version: U16::new(LE, nt_headers.minor_subsystem_version),
win32_version_value: U32::new(LE, 0),
size_of_image: U32::new(LE, self.virtual_len),
size_of_headers: U32::new(LE, self.headers_len),
check_sum: U32::new(LE, 0),
subsystem: U16::new(LE, nt_headers.subsystem),
dll_characteristics: U16::new(LE, nt_headers.dll_characteristics),
size_of_stack_reserve: U32::new(LE, nt_headers.size_of_stack_reserve as u32),
size_of_stack_commit: U32::new(LE, nt_headers.size_of_stack_commit as u32),
size_of_heap_reserve: U32::new(LE, nt_headers.size_of_heap_reserve as u32),
size_of_heap_commit: U32::new(LE, nt_headers.size_of_heap_commit as u32),
loader_flags: U32::new(LE, 0),
number_of_rva_and_sizes: U32::new(LE, self.data_directories.len() as u32),
};
self.buffer.write(&optional_header);
}
for dir in &self.data_directories {
self.buffer.write(&pe::ImageDataDirectory {
virtual_address: U32::new(LE, dir.virtual_address),
size: U32::new(LE, dir.size),
})
}
}
/// Reserve the section headers.
///
/// The number of reserved section headers must be the same as the number of sections that
/// are later reserved.
// TODO: change this to a maximum number of sections?
pub fn reserve_section_headers(&mut self, section_header_num: u16) {
debug_assert_eq!(self.section_header_num, 0);
self.section_header_num = section_header_num;
self.reserve(
u32::from(section_header_num) * mem::size_of::<pe::ImageSectionHeader>() as u32,
1,
);
// Padding before sections must be included in headers_len.
self.reserve_align(self.file_alignment);
self.headers_len = self.len;
self.reserve_virtual(self.len);
}
/// Write the section headers.
///
/// This uses information that was recorded when the sections were reserved.
pub fn write_section_headers(&mut self) {
debug_assert_eq!(self.section_header_num as usize, self.sections.len());
for section in &self.sections {
let section_header = pe::ImageSectionHeader {
name: section.name,
virtual_size: U32::new(LE, section.range.virtual_size),
virtual_address: U32::new(LE, section.range.virtual_address),
size_of_raw_data: U32::new(LE, section.range.file_size),
pointer_to_raw_data: U32::new(LE, section.range.file_offset),
pointer_to_relocations: U32::new(LE, 0),
pointer_to_linenumbers: U32::new(LE, 0),
number_of_relocations: U16::new(LE, 0),
number_of_linenumbers: U16::new(LE, 0),
characteristics: U32::new(LE, section.characteristics),
};
self.buffer.write(&section_header);
}
}
/// Reserve a section.
///
/// Returns the file range and virtual address range that are reserved
/// for the section.
pub fn reserve_section(
&mut self,
name: [u8; 8],
characteristics: u32,
virtual_size: u32,
data_size: u32,
) -> SectionRange {
let virtual_address = self.reserve_virtual(virtual_size);
// Padding after section must be included in section file size.
let file_size = util::align_u32(data_size, self.file_alignment);
let file_offset = if file_size != 0 {
self.reserve(file_size, self.file_alignment)
} else {
0
};
// Sizes in optional header use the virtual size with the file alignment.
let aligned_virtual_size = util::align_u32(virtual_size, self.file_alignment);
if characteristics & pe::IMAGE_SCN_CNT_CODE != 0 {
if self.code_address == 0 {
self.code_address = virtual_address;
}
self.code_len += aligned_virtual_size;
} else if characteristics & pe::IMAGE_SCN_CNT_INITIALIZED_DATA != 0 {
if self.data_address == 0 {
self.data_address = virtual_address;
}
self.data_len += aligned_virtual_size;
} else if characteristics & pe::IMAGE_SCN_CNT_UNINITIALIZED_DATA != 0 {
if self.data_address == 0 {
self.data_address = virtual_address;
}
self.bss_len += aligned_virtual_size;
}
let range = SectionRange {
virtual_address,
virtual_size,
file_offset,
file_size,
};
self.sections.push(Section {
name,
characteristics,
range,
});
range
}
/// Write the data for a section.
pub fn write_section(&mut self, offset: u32, data: &[u8]) {
if data.is_empty() {
return;
}
self.pad_until(offset);
self.write(data);
self.write_align(self.file_alignment);
}
/// Reserve a `.text` section.
///
/// Contains executable code.
pub fn reserve_text_section(&mut self, size: u32) -> SectionRange {
self.reserve_section(
*b".text\0\0\0",
pe::IMAGE_SCN_CNT_CODE | pe::IMAGE_SCN_MEM_EXECUTE | pe::IMAGE_SCN_MEM_READ,
size,
size,
)
}
/// Reserve a `.data` section.
///
/// Contains initialized data.
///
/// May also contain uninitialized data if `virtual_size` is greater than `data_size`.
pub fn reserve_data_section(&mut self, virtual_size: u32, data_size: u32) -> SectionRange {
self.reserve_section(
*b".data\0\0\0",
pe::IMAGE_SCN_CNT_INITIALIZED_DATA | pe::IMAGE_SCN_MEM_READ | pe::IMAGE_SCN_MEM_WRITE,
virtual_size,
data_size,
)
}
/// Reserve a `.rdata` section.
///
/// Contains read-only initialized data.
pub fn reserve_rdata_section(&mut self, size: u32) -> SectionRange {
self.reserve_section(
*b".rdata\0\0",
pe::IMAGE_SCN_CNT_INITIALIZED_DATA | pe::IMAGE_SCN_MEM_READ,
size,
size,
)
}
/// Reserve a `.bss` section.
///
/// Contains uninitialized data.
pub fn reserve_bss_section(&mut self, size: u32) -> SectionRange {
self.reserve_section(
*b".bss\0\0\0\0",
pe::IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe::IMAGE_SCN_MEM_READ | pe::IMAGE_SCN_MEM_WRITE,
size,
0,
)
}
/// Reserve an `.idata` section.
///
/// Contains import tables. Note that it is permissible to store import tables in a different
/// section.
///
/// This also sets the `pe::IMAGE_DIRECTORY_ENTRY_IMPORT` data directory.
pub fn reserve_idata_section(&mut self, size: u32) -> SectionRange {
let range = self.reserve_section(
*b".idata\0\0",
pe::IMAGE_SCN_CNT_INITIALIZED_DATA | pe::IMAGE_SCN_MEM_READ | pe::IMAGE_SCN_MEM_WRITE,
size,
size,
);
let dir = &mut self.data_directories[pe::IMAGE_DIRECTORY_ENTRY_IMPORT];
debug_assert_eq!(dir.virtual_address, 0);
*dir = DataDirectory {
virtual_address: range.virtual_address,
size,
};
range
}
/// Reserve an `.edata` section.
///
/// Contains export tables.
///
/// This also sets the `pe::IMAGE_DIRECTORY_ENTRY_EXPORT` data directory.
pub fn reserve_edata_section(&mut self, size: u32) -> SectionRange {
let range = self.reserve_section(
*b".edata\0\0",
pe::IMAGE_SCN_CNT_INITIALIZED_DATA | pe::IMAGE_SCN_MEM_READ,
size,
size,
);
let dir = &mut self.data_directories[pe::IMAGE_DIRECTORY_ENTRY_EXPORT];
debug_assert_eq!(dir.virtual_address, 0);
*dir = DataDirectory {
virtual_address: range.virtual_address,
size,
};
range
}
/// Reserve a `.pdata` section.
///
/// Contains exception information.
///
/// This also sets the `pe::IMAGE_DIRECTORY_ENTRY_EXCEPTION` data directory.
pub fn reserve_pdata_section(&mut self, size: u32) -> SectionRange {
let range = self.reserve_section(
*b".pdata\0\0",
pe::IMAGE_SCN_CNT_INITIALIZED_DATA | pe::IMAGE_SCN_MEM_READ,
size,
size,
);
let dir = &mut self.data_directories[pe::IMAGE_DIRECTORY_ENTRY_EXCEPTION];
debug_assert_eq!(dir.virtual_address, 0);
*dir = DataDirectory {
virtual_address: range.virtual_address,
size,
};
range
}
/// Reserve a `.xdata` section.
///
/// Contains exception information.
pub fn reserve_xdata_section(&mut self, size: u32) -> SectionRange {
self.reserve_section(
*b".xdata\0\0",
pe::IMAGE_SCN_CNT_INITIALIZED_DATA | pe::IMAGE_SCN_MEM_READ,
size,
size,
)
}
/// Reserve a `.rsrc` section.
///
/// Contains the resource directory.
///
/// This also sets the `pe::IMAGE_DIRECTORY_ENTRY_RESOURCE` data directory.
pub fn reserve_rsrc_section(&mut self, size: u32) -> SectionRange {
let range = self.reserve_section(
*b".rsrc\0\0\0",
pe::IMAGE_SCN_CNT_INITIALIZED_DATA | pe::IMAGE_SCN_MEM_READ,
size,
size,
);
let dir = &mut self.data_directories[pe::IMAGE_DIRECTORY_ENTRY_RESOURCE];
debug_assert_eq!(dir.virtual_address, 0);
*dir = DataDirectory {
virtual_address: range.virtual_address,
size,
};
range
}
/// Add a base relocation.
///
/// `typ` must be one of the `IMAGE_REL_BASED_*` constants.
pub fn add_reloc(&mut self, mut virtual_address: u32, typ: u16) {
let reloc = U16::new(LE, typ << 12 | (virtual_address & 0xfff) as u16);
virtual_address &= !0xfff;
if let Some(block) = self.reloc_blocks.last_mut() {
if block.virtual_address == virtual_address {
self.relocs.push(reloc);
block.count += 1;
return;
}
// Blocks must have an even number of relocations.
if block.count & 1 != 0 {
self.relocs.push(U16::new(LE, 0));
block.count += 1;
}
debug_assert!(block.virtual_address < virtual_address);
}
self.relocs.push(reloc);
self.reloc_blocks.push(RelocBlock {
virtual_address,
count: 1,
});
}
/// Return true if a base relocation has been added.
pub fn has_relocs(&mut self) -> bool {
!self.relocs.is_empty()
}
/// Reserve a `.reloc` section.
///
/// This contains the base relocations that were added with `add_reloc`.
///
/// This also sets the `pe::IMAGE_DIRECTORY_ENTRY_BASERELOC` data directory.
pub fn reserve_reloc_section(&mut self) -> SectionRange {
if let Some(block) = self.reloc_blocks.last_mut() {
// Blocks must have an even number of relocations.
if block.count & 1 != 0 {
self.relocs.push(U16::new(LE, 0));
block.count += 1;
}
}
let size = self.reloc_blocks.iter().map(RelocBlock::size).sum();
let range = self.reserve_section(
*b".reloc\0\0",
pe::IMAGE_SCN_CNT_INITIALIZED_DATA
| pe::IMAGE_SCN_MEM_READ
| pe::IMAGE_SCN_MEM_DISCARDABLE,
size,
size,
);
let dir = &mut self.data_directories[pe::IMAGE_DIRECTORY_ENTRY_BASERELOC];
debug_assert_eq!(dir.virtual_address, 0);
*dir = DataDirectory {
virtual_address: range.virtual_address,
size,
};
self.reloc_offset = range.file_offset;
range
}
/// Write a `.reloc` section.
///
/// This contains the base relocations that were added with `add_reloc`.
pub fn write_reloc_section(&mut self) {
if self.reloc_offset == 0 {
return;
}
self.pad_until(self.reloc_offset);
let mut total = 0;
for block in &self.reloc_blocks {
self.buffer.write(&pe::ImageBaseRelocation {
virtual_address: U32::new(LE, block.virtual_address),
size_of_block: U32::new(LE, block.size()),
});
self.buffer
.write_slice(&self.relocs[total..][..block.count as usize]);
total += block.count as usize;
}
debug_assert_eq!(total, self.relocs.len());
self.write_align(self.file_alignment);
}
/// Reserve the certificate table.
///
/// This also sets the `pe::IMAGE_DIRECTORY_ENTRY_SECURITY` data directory.
// TODO: reserve individual certificates
pub fn reserve_certificate_table(&mut self, size: u32) {
let size = util::align_u32(size, 8);
let offset = self.reserve(size, 8);
let dir = &mut self.data_directories[pe::IMAGE_DIRECTORY_ENTRY_SECURITY];
debug_assert_eq!(dir.virtual_address, 0);
*dir = DataDirectory {
virtual_address: offset,
size,
};
}
/// Write the certificate table.
// TODO: write individual certificates
pub fn write_certificate_table(&mut self, data: &[u8]) {
let dir = self.data_directories[pe::IMAGE_DIRECTORY_ENTRY_SECURITY];
self.pad_until(dir.virtual_address);
self.write(data);
self.pad_until(dir.virtual_address + dir.size);
}
}
/// Information required for writing [`pe::ImageNtHeaders32`] or [`pe::ImageNtHeaders64`].
#[allow(missing_docs)]
#[derive(Debug, Clone)]
pub struct NtHeaders {
// ImageFileHeader
pub machine: u16,
pub time_date_stamp: u32,
pub characteristics: u16,
// ImageOptionalHeader
pub major_linker_version: u8,
pub minor_linker_version: u8,
pub address_of_entry_point: u32,
pub image_base: u64,
pub major_operating_system_version: u16,
pub minor_operating_system_version: u16,
pub major_image_version: u16,
pub minor_image_version: u16,
pub major_subsystem_version: u16,
pub minor_subsystem_version: u16,
pub subsystem: u16,
pub dll_characteristics: u16,
pub size_of_stack_reserve: u64,
pub size_of_stack_commit: u64,
pub size_of_heap_reserve: u64,
pub size_of_heap_commit: u64,
}
#[derive(Default, Clone, Copy)]
struct DataDirectory {
virtual_address: u32,
size: u32,
}
/// Information required for writing [`pe::ImageSectionHeader`].
#[allow(missing_docs)]
#[derive(Debug, Clone)]
pub struct Section {
pub name: [u8; pe::IMAGE_SIZEOF_SHORT_NAME],
pub characteristics: u32,
pub range: SectionRange,
}
/// The file range and virtual address range for a section.
#[allow(missing_docs)]
#[derive(Debug, Default, Clone, Copy)]
pub struct SectionRange {
pub virtual_address: u32,
pub virtual_size: u32,
pub file_offset: u32,
pub file_size: u32,
}
struct RelocBlock {
virtual_address: u32,
count: u32,
}
impl RelocBlock {
fn size(&self) -> u32 {
mem::size_of::<pe::ImageBaseRelocation>() as u32 + self.count * mem::size_of::<u16>() as u32
}
}

159
vendor/object/src/write/string.rs vendored Normal file
View File

@ -0,0 +1,159 @@
use alloc::vec::Vec;
#[cfg(feature = "std")]
type IndexSet<K> = indexmap::IndexSet<K>;
#[cfg(not(feature = "std"))]
type IndexSet<K> = indexmap::IndexSet<K, hashbrown::hash_map::DefaultHashBuilder>;
/// An identifier for an entry in a string table.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct StringId(usize);
#[derive(Debug, Default)]
pub(crate) struct StringTable<'a> {
strings: IndexSet<&'a [u8]>,
offsets: Vec<usize>,
}
impl<'a> StringTable<'a> {
/// Add a string to the string table.
///
/// Panics if the string table has already been written, or
/// if the string contains a null byte.
pub fn add(&mut self, string: &'a [u8]) -> StringId {
assert!(self.offsets.is_empty());
assert!(!string.contains(&0));
let id = self.strings.insert_full(string).0;
StringId(id)
}
/// Return the id of the given string.
///
/// Panics if the string is not in the string table.
pub fn get_id(&self, string: &[u8]) -> StringId {
let id = self.strings.get_index_of(string).unwrap();
StringId(id)
}
/// Return the string for the given id.
///
/// Panics if the string is not in the string table.
pub fn get_string(&self, id: StringId) -> &'a [u8] {
self.strings.get_index(id.0).unwrap()
}
/// Return the offset of the given string.
///
/// Panics if the string table has not been written, or
/// if the string is not in the string table.
pub fn get_offset(&self, id: StringId) -> usize {
self.offsets[id.0]
}
/// Append the string table to the given `Vec`, and
/// calculate the list of string offsets.
///
/// `base` is the initial string table offset. For example,
/// this should be 1 for ELF, to account for the initial
/// null byte (which must have been written by the caller).
pub fn write(&mut self, base: usize, w: &mut Vec<u8>) {
assert!(self.offsets.is_empty());
let mut ids: Vec<_> = (0..self.strings.len()).collect();
sort(&mut ids, 1, &self.strings);
self.offsets = vec![0; ids.len()];
let mut offset = base;
let mut previous = &[][..];
for id in ids {
let string = self.strings.get_index(id).unwrap();
if previous.ends_with(string) {
self.offsets[id] = offset - string.len() - 1;
} else {
self.offsets[id] = offset;
w.extend_from_slice(string);
w.push(0);
offset += string.len() + 1;
previous = string;
}
}
}
}
// Multi-key quicksort.
//
// Ordering is such that if a string is a suffix of at least one other string,
// then it is placed immediately after one of those strings. That is:
// - comparison starts at the end of the string
// - shorter strings come later
//
// Based on the implementation in LLVM.
fn sort(mut ids: &mut [usize], mut pos: usize, strings: &IndexSet<&[u8]>) {
loop {
if ids.len() <= 1 {
return;
}
let pivot = byte(ids[0], pos, strings);
let mut lower = 0;
let mut upper = ids.len();
let mut i = 1;
while i < upper {
let b = byte(ids[i], pos, strings);
if b > pivot {
ids.swap(lower, i);
lower += 1;
i += 1;
} else if b < pivot {
upper -= 1;
ids.swap(upper, i);
} else {
i += 1;
}
}
sort(&mut ids[..lower], pos, strings);
sort(&mut ids[upper..], pos, strings);
if pivot == 0 {
return;
}
ids = &mut ids[lower..upper];
pos += 1;
}
}
fn byte(id: usize, pos: usize, strings: &IndexSet<&[u8]>) -> u8 {
let string = strings.get_index(id).unwrap();
let len = string.len();
if len >= pos {
string[len - pos]
} else {
// We know the strings don't contain null bytes.
0
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn string_table() {
let mut table = StringTable::default();
let id0 = table.add(b"");
let id1 = table.add(b"foo");
let id2 = table.add(b"bar");
let id3 = table.add(b"foobar");
let mut data = Vec::new();
data.push(0);
table.write(1, &mut data);
assert_eq!(data, b"\0foobar\0foo\0");
assert_eq!(table.get_offset(id0), 11);
assert_eq!(table.get_offset(id1), 8);
assert_eq!(table.get_offset(id2), 4);
assert_eq!(table.get_offset(id3), 1);
}
}

260
vendor/object/src/write/util.rs vendored Normal file
View File

@ -0,0 +1,260 @@
use alloc::vec::Vec;
#[cfg(feature = "std")]
use std::{io, mem};
use crate::pod::{bytes_of, bytes_of_slice, Pod};
/// Trait for writable buffer.
#[allow(clippy::len_without_is_empty)]
pub trait WritableBuffer {
/// Returns position/offset for data to be written at.
///
/// Should only be used in debug assertions
fn len(&self) -> usize;
/// Reserves specified number of bytes in the buffer.
///
/// This will be called exactly once before writing anything to the buffer,
/// and the given size is the exact total number of bytes that will be written.
fn reserve(&mut self, size: usize) -> Result<(), ()>;
/// Writes zero bytes at the end of the buffer until the buffer
/// has the specified length.
fn resize(&mut self, new_len: usize);
/// Writes the specified slice of bytes at the end of the buffer.
fn write_bytes(&mut self, val: &[u8]);
/// Writes the specified `Pod` type at the end of the buffer.
fn write_pod<T: Pod>(&mut self, val: &T)
where
Self: Sized,
{
self.write_bytes(bytes_of(val))
}
/// Writes the specified `Pod` slice at the end of the buffer.
fn write_pod_slice<T: Pod>(&mut self, val: &[T])
where
Self: Sized,
{
self.write_bytes(bytes_of_slice(val))
}
}
impl<'a> dyn WritableBuffer + 'a {
/// Writes the specified `Pod` type at the end of the buffer.
pub fn write<T: Pod>(&mut self, val: &T) {
self.write_bytes(bytes_of(val))
}
/// Writes the specified `Pod` slice at the end of the buffer.
pub fn write_slice<T: Pod>(&mut self, val: &[T]) {
self.write_bytes(bytes_of_slice(val))
}
}
impl WritableBuffer for Vec<u8> {
#[inline]
fn len(&self) -> usize {
self.len()
}
#[inline]
fn reserve(&mut self, size: usize) -> Result<(), ()> {
debug_assert!(self.is_empty());
self.reserve(size);
Ok(())
}
#[inline]
fn resize(&mut self, new_len: usize) {
debug_assert!(new_len >= self.len());
self.resize(new_len, 0);
}
#[inline]
fn write_bytes(&mut self, val: &[u8]) {
debug_assert!(self.len() + val.len() <= self.capacity());
self.extend_from_slice(val)
}
}
/// A [`WritableBuffer`] that streams data to a [`Write`](std::io::Write) implementation.
///
/// [`Self::result`] must be called to determine if an I/O error occurred during writing.
///
/// It is advisable to use a buffered writer like [`BufWriter`](std::io::BufWriter)
/// instead of an unbuffered writer like [`File`](std::fs::File).
#[cfg(feature = "std")]
#[derive(Debug)]
pub struct StreamingBuffer<W> {
writer: W,
len: usize,
result: Result<(), io::Error>,
}
#[cfg(feature = "std")]
impl<W> StreamingBuffer<W> {
/// Create a new `StreamingBuffer` backed by the given writer.
pub fn new(writer: W) -> Self {
StreamingBuffer {
writer,
len: 0,
result: Ok(()),
}
}
/// Unwraps this [`StreamingBuffer`] giving back the original writer.
pub fn into_inner(self) -> W {
self.writer
}
/// Returns any error that occurred during writing.
pub fn result(&mut self) -> Result<(), io::Error> {
mem::replace(&mut self.result, Ok(()))
}
}
#[cfg(feature = "std")]
impl<W: io::Write> WritableBuffer for StreamingBuffer<W> {
#[inline]
fn len(&self) -> usize {
self.len
}
#[inline]
fn reserve(&mut self, _size: usize) -> Result<(), ()> {
Ok(())
}
#[inline]
fn resize(&mut self, new_len: usize) {
debug_assert!(self.len <= new_len);
while self.len < new_len {
let write_amt = (new_len - self.len - 1) % 1024 + 1;
self.write_bytes(&[0; 1024][..write_amt]);
}
}
#[inline]
fn write_bytes(&mut self, val: &[u8]) {
if self.result.is_ok() {
self.result = self.writer.write_all(val);
}
self.len += val.len();
}
}
/// A trait for mutable byte slices.
///
/// It provides convenience methods for `Pod` types.
pub(crate) trait BytesMut {
fn write_at<T: Pod>(self, offset: usize, val: &T) -> Result<(), ()>;
}
impl<'a> BytesMut for &'a mut [u8] {
#[inline]
fn write_at<T: Pod>(self, offset: usize, val: &T) -> Result<(), ()> {
let src = bytes_of(val);
let dest = self.get_mut(offset..).ok_or(())?;
let dest = dest.get_mut(..src.len()).ok_or(())?;
dest.copy_from_slice(src);
Ok(())
}
}
/// Write an unsigned number using the LEB128 encoding to a buffer.
///
/// Returns the number of bytes written.
pub(crate) fn write_uleb128(buf: &mut Vec<u8>, mut val: u64) -> usize {
let mut len = 0;
loop {
let mut byte = (val & 0x7f) as u8;
val >>= 7;
let done = val == 0;
if !done {
byte |= 0x80;
}
buf.push(byte);
len += 1;
if done {
return len;
}
}
}
/// Write a signed number using the LEB128 encoding to a buffer.
///
/// Returns the number of bytes written.
#[allow(dead_code)]
pub(crate) fn write_sleb128(buf: &mut Vec<u8>, mut val: i64) -> usize {
let mut len = 0;
loop {
let mut byte = val as u8;
// Keep the sign bit for testing
val >>= 6;
let done = val == 0 || val == -1;
if done {
byte &= !0x80;
} else {
// Remove the sign bit
val >>= 1;
byte |= 0x80;
}
buf.push(byte);
len += 1;
if done {
return len;
}
}
}
pub(crate) fn align(offset: usize, size: usize) -> usize {
(offset + (size - 1)) & !(size - 1)
}
#[allow(dead_code)]
pub(crate) fn align_u32(offset: u32, size: u32) -> u32 {
(offset + (size - 1)) & !(size - 1)
}
#[allow(dead_code)]
pub(crate) fn align_u64(offset: u64, size: u64) -> u64 {
(offset + (size - 1)) & !(size - 1)
}
pub(crate) fn write_align(buffer: &mut dyn WritableBuffer, size: usize) {
let new_len = align(buffer.len(), size);
buffer.resize(new_len);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn bytes_mut() {
let data = vec![0x01, 0x23, 0x45, 0x67];
let mut bytes = data.clone();
bytes.extend_from_slice(bytes_of(&u16::to_be(0x89ab)));
assert_eq!(bytes, [0x01, 0x23, 0x45, 0x67, 0x89, 0xab]);
let mut bytes = data.clone();
assert_eq!(bytes.write_at(0, &u16::to_be(0x89ab)), Ok(()));
assert_eq!(bytes, [0x89, 0xab, 0x45, 0x67]);
let mut bytes = data.clone();
assert_eq!(bytes.write_at(2, &u16::to_be(0x89ab)), Ok(()));
assert_eq!(bytes, [0x01, 0x23, 0x89, 0xab]);
assert_eq!(bytes.write_at(3, &u16::to_be(0x89ab)), Err(()));
assert_eq!(bytes.write_at(4, &u16::to_be(0x89ab)), Err(()));
assert_eq!(vec![].write_at(0, &u32::to_be(0x89ab)), Err(()));
}
}

556
vendor/object/src/write/xcoff.rs vendored Normal file
View File

@ -0,0 +1,556 @@
use core::mem;
use crate::endian::{BigEndian as BE, I16, U16, U32};
use crate::write::string::*;
use crate::write::util::*;
use crate::write::*;
use crate::{xcoff, AddressSize};
#[derive(Default, Clone, Copy)]
struct SectionOffsets {
address: u64,
data_offset: usize,
reloc_offset: usize,
}
#[derive(Default, Clone, Copy)]
struct SymbolOffsets {
index: usize,
str_id: Option<StringId>,
aux_count: u8,
storage_class: u8,
}
impl<'a> Object<'a> {
pub(crate) fn xcoff_section_info(
&self,
section: StandardSection,
) -> (&'static [u8], &'static [u8], SectionKind, SectionFlags) {
match section {
StandardSection::Text => (&[], &b".text"[..], SectionKind::Text, SectionFlags::None),
StandardSection::Data => (&[], &b".data"[..], SectionKind::Data, SectionFlags::None),
StandardSection::ReadOnlyData
| StandardSection::ReadOnlyDataWithRel
| StandardSection::ReadOnlyString => (
&[],
&b".rdata"[..],
SectionKind::ReadOnlyData,
SectionFlags::None,
),
StandardSection::UninitializedData => (
&[],
&b".bss"[..],
SectionKind::UninitializedData,
SectionFlags::None,
),
StandardSection::Tls => (&[], &b".tdata"[..], SectionKind::Tls, SectionFlags::None),
StandardSection::UninitializedTls => (
&[],
&b".tbss"[..],
SectionKind::UninitializedTls,
SectionFlags::None,
),
StandardSection::TlsVariables => {
// Unsupported section.
(&[], &[], SectionKind::TlsVariables, SectionFlags::None)
}
StandardSection::Common => {
// Unsupported section.
(&[], &[], SectionKind::Common, SectionFlags::None)
}
StandardSection::GnuProperty => {
// Unsupported section.
(&[], &[], SectionKind::Note, SectionFlags::None)
}
}
}
pub(crate) fn xcoff_fixup_relocation(&mut self, relocation: &mut Relocation) -> i64 {
let constant = match relocation.kind {
RelocationKind::Relative => relocation.addend + 4,
_ => relocation.addend,
};
relocation.addend -= constant;
constant
}
pub(crate) fn xcoff_write(&self, buffer: &mut dyn WritableBuffer) -> Result<()> {
let is_64 = match self.architecture.address_size().unwrap() {
AddressSize::U8 | AddressSize::U16 | AddressSize::U32 => false,
AddressSize::U64 => true,
};
let (hdr_size, sechdr_size, rel_size, sym_size) = if is_64 {
(
mem::size_of::<xcoff::FileHeader64>(),
mem::size_of::<xcoff::SectionHeader64>(),
mem::size_of::<xcoff::Rel64>(),
mem::size_of::<xcoff::Symbol64>(),
)
} else {
(
mem::size_of::<xcoff::FileHeader32>(),
mem::size_of::<xcoff::SectionHeader32>(),
mem::size_of::<xcoff::Rel32>(),
mem::size_of::<xcoff::Symbol32>(),
)
};
// Calculate offsets and build strtab.
let mut offset = 0;
let mut strtab = StringTable::default();
// We place the shared address 0 immediately after the section header table.
let mut address = 0;
// XCOFF file header.
offset += hdr_size;
// Section headers.
offset += self.sections.len() * sechdr_size;
// Calculate size of section data.
let mut section_offsets = vec![SectionOffsets::default(); self.sections.len()];
for (index, section) in self.sections.iter().enumerate() {
let len = section.data.len();
let sectype = section.kind;
// Section address should be 0 for all sections except the .text, .data, and .bss sections.
if sectype == SectionKind::Data
|| sectype == SectionKind::Text
|| sectype == SectionKind::UninitializedData
{
section_offsets[index].address = address as u64;
address += len;
address = align(address, 4);
} else {
section_offsets[index].address = 0;
}
if len != 0 {
// Set the default section alignment as 4.
offset = align(offset, 4);
section_offsets[index].data_offset = offset;
offset += len;
} else {
section_offsets[index].data_offset = 0;
}
}
// Calculate size of relocations.
for (index, section) in self.sections.iter().enumerate() {
let count = section.relocations.len();
if count != 0 {
section_offsets[index].reloc_offset = offset;
offset += count * rel_size;
} else {
section_offsets[index].reloc_offset = 0;
}
}
// Calculate size of symbols.
let mut file_str_id = None;
let mut symbol_offsets = vec![SymbolOffsets::default(); self.symbols.len()];
let mut symtab_count = 0;
for (index, symbol) in self.symbols.iter().enumerate() {
symbol_offsets[index].index = symtab_count;
symtab_count += 1;
let storage_class = if let SymbolFlags::Xcoff { n_sclass, .. } = symbol.flags {
n_sclass
} else {
match symbol.kind {
SymbolKind::Null => xcoff::C_NULL,
SymbolKind::File => xcoff::C_FILE,
SymbolKind::Text | SymbolKind::Data | SymbolKind::Tls => {
if symbol.is_local() {
xcoff::C_STAT
} else if symbol.weak {
xcoff::C_WEAKEXT
} else {
xcoff::C_EXT
}
}
SymbolKind::Section | SymbolKind::Label | SymbolKind::Unknown => {
return Err(Error(format!(
"unimplemented symbol `{}` kind {:?}",
symbol.name().unwrap_or(""),
symbol.kind
)));
}
}
};
symbol_offsets[index].storage_class = storage_class;
if storage_class == xcoff::C_FILE {
if is_64 && file_str_id.is_none() {
file_str_id = Some(strtab.add(b".file"));
}
if symbol.name.len() > 8 {
symbol_offsets[index].str_id = Some(strtab.add(&symbol.name));
}
} else if is_64 || symbol.name.len() > 8 {
symbol_offsets[index].str_id = Some(strtab.add(&symbol.name));
}
symbol_offsets[index].aux_count = 0;
match storage_class {
xcoff::C_FILE => {
symbol_offsets[index].aux_count = 1;
symtab_count += 1;
}
xcoff::C_EXT | xcoff::C_WEAKEXT | xcoff::C_HIDEXT => {
symbol_offsets[index].aux_count = 1;
symtab_count += 1;
}
// TODO: support auxiliary entry for other types of symbol.
_ => {}
}
}
let symtab_offset = offset;
let symtab_len = symtab_count * sym_size;
offset += symtab_len;
// Calculate size of strtab.
let strtab_offset = offset;
let mut strtab_data = Vec::new();
// First 4 bytes of strtab are the length.
strtab.write(4, &mut strtab_data);
let strtab_len = strtab_data.len() + 4;
offset += strtab_len;
// Start writing.
buffer
.reserve(offset)
.map_err(|_| Error(String::from("Cannot allocate buffer")))?;
// Write file header.
if is_64 {
let header = xcoff::FileHeader64 {
f_magic: U16::new(BE, xcoff::MAGIC_64),
f_nscns: U16::new(BE, self.sections.len() as u16),
f_timdat: U32::new(BE, 0),
f_symptr: U64::new(BE, symtab_offset as u64),
f_nsyms: U32::new(BE, symtab_count as u32),
f_opthdr: U16::new(BE, 0),
f_flags: match self.flags {
FileFlags::Xcoff { f_flags } => U16::new(BE, f_flags),
_ => U16::default(),
},
};
buffer.write(&header);
} else {
let header = xcoff::FileHeader32 {
f_magic: U16::new(BE, xcoff::MAGIC_32),
f_nscns: U16::new(BE, self.sections.len() as u16),
f_timdat: U32::new(BE, 0),
f_symptr: U32::new(BE, symtab_offset as u32),
f_nsyms: U32::new(BE, symtab_count as u32),
f_opthdr: U16::new(BE, 0),
f_flags: match self.flags {
FileFlags::Xcoff { f_flags } => U16::new(BE, f_flags),
_ => U16::default(),
},
};
buffer.write(&header);
}
// Write section headers.
for (index, section) in self.sections.iter().enumerate() {
let mut sectname = [0; 8];
sectname
.get_mut(..section.name.len())
.ok_or_else(|| {
Error(format!(
"section name `{}` is too long",
section.name().unwrap_or(""),
))
})?
.copy_from_slice(&section.name);
let flags = if let SectionFlags::Xcoff { s_flags } = section.flags {
s_flags
} else {
match section.kind {
SectionKind::Text
| SectionKind::ReadOnlyData
| SectionKind::ReadOnlyString
| SectionKind::ReadOnlyDataWithRel => xcoff::STYP_TEXT,
SectionKind::Data => xcoff::STYP_DATA,
SectionKind::UninitializedData => xcoff::STYP_BSS,
SectionKind::Tls => xcoff::STYP_TDATA,
SectionKind::UninitializedTls => xcoff::STYP_TBSS,
SectionKind::OtherString => xcoff::STYP_INFO,
SectionKind::Debug => xcoff::STYP_DEBUG,
SectionKind::Other | SectionKind::Metadata => 0,
SectionKind::Note
| SectionKind::Linker
| SectionKind::Common
| SectionKind::Unknown
| SectionKind::TlsVariables
| SectionKind::Elf(_) => {
return Err(Error(format!(
"unimplemented section `{}` kind {:?}",
section.name().unwrap_or(""),
section.kind
)));
}
}
.into()
};
if is_64 {
let section_header = xcoff::SectionHeader64 {
s_name: sectname,
s_paddr: U64::new(BE, section_offsets[index].address),
// This field has the same value as the s_paddr field.
s_vaddr: U64::new(BE, section_offsets[index].address),
s_size: U64::new(BE, section.data.len() as u64),
s_scnptr: U64::new(BE, section_offsets[index].data_offset as u64),
s_relptr: U64::new(BE, section_offsets[index].reloc_offset as u64),
s_lnnoptr: U64::new(BE, 0),
s_nreloc: U32::new(BE, section.relocations.len() as u32),
s_nlnno: U32::new(BE, 0),
s_flags: U32::new(BE, flags),
s_reserve: U32::new(BE, 0),
};
buffer.write(&section_header);
} else {
let section_header = xcoff::SectionHeader32 {
s_name: sectname,
s_paddr: U32::new(BE, section_offsets[index].address as u32),
// This field has the same value as the s_paddr field.
s_vaddr: U32::new(BE, section_offsets[index].address as u32),
s_size: U32::new(BE, section.data.len() as u32),
s_scnptr: U32::new(BE, section_offsets[index].data_offset as u32),
s_relptr: U32::new(BE, section_offsets[index].reloc_offset as u32),
s_lnnoptr: U32::new(BE, 0),
// TODO: If more than 65,534 relocation entries are required, the field
// value will be 65535, and an STYP_OVRFLO section header will contain
// the actual count of relocation entries in the s_paddr field.
s_nreloc: U16::new(BE, section.relocations.len() as u16),
s_nlnno: U16::new(BE, 0),
s_flags: U32::new(BE, flags),
};
buffer.write(&section_header);
}
}
// Write section data.
for (index, section) in self.sections.iter().enumerate() {
let len = section.data.len();
if len != 0 {
write_align(buffer, 4);
debug_assert_eq!(section_offsets[index].data_offset, buffer.len());
buffer.write_bytes(&section.data);
}
}
// Write relocations.
for (index, section) in self.sections.iter().enumerate() {
if !section.relocations.is_empty() {
debug_assert_eq!(section_offsets[index].reloc_offset, buffer.len());
for reloc in &section.relocations {
let rtype = match reloc.kind {
RelocationKind::Absolute => xcoff::R_POS,
RelocationKind::Relative => xcoff::R_REL,
RelocationKind::Got => xcoff::R_TOC,
RelocationKind::Xcoff(x) => x,
_ => {
return Err(Error(format!("unimplemented relocation {:?}", reloc)));
}
};
if is_64 {
let xcoff_rel = xcoff::Rel64 {
r_vaddr: U64::new(BE, reloc.offset),
r_symndx: U32::new(BE, symbol_offsets[reloc.symbol.0].index as u32),
// Specifies the bit length of the relocatable reference minus one.
r_rsize: (reloc.size - 1),
r_rtype: rtype,
};
buffer.write(&xcoff_rel);
} else {
let xcoff_rel = xcoff::Rel32 {
r_vaddr: U32::new(BE, reloc.offset as u32),
r_symndx: U32::new(BE, symbol_offsets[reloc.symbol.0].index as u32),
r_rsize: (reloc.size - 1),
r_rtype: rtype,
};
buffer.write(&xcoff_rel);
}
}
}
}
// Write symbols.
debug_assert_eq!(symtab_offset, buffer.len());
for (index, symbol) in self.symbols.iter().enumerate() {
let (n_value, section_kind) = if let SymbolSection::Section(id) = symbol.section {
(
section_offsets[id.0].address + symbol.value,
self.sections[id.0].kind,
)
} else {
(symbol.value, SectionKind::Unknown)
};
let n_scnum = match symbol.section {
SymbolSection::None => {
debug_assert_eq!(symbol.kind, SymbolKind::File);
xcoff::N_DEBUG
}
SymbolSection::Undefined | SymbolSection::Common => xcoff::N_UNDEF,
SymbolSection::Absolute => xcoff::N_ABS,
SymbolSection::Section(id) => id.0 as i16 + 1,
};
let n_sclass = symbol_offsets[index].storage_class;
let n_type = if (symbol.scope == SymbolScope::Linkage)
&& (n_sclass == xcoff::C_EXT
|| n_sclass == xcoff::C_WEAKEXT
|| n_sclass == xcoff::C_HIDEXT)
{
xcoff::SYM_V_HIDDEN
} else {
0
};
let n_numaux = symbol_offsets[index].aux_count;
if is_64 {
let str_id = if n_sclass == xcoff::C_FILE {
file_str_id.unwrap()
} else {
symbol_offsets[index].str_id.unwrap()
};
let xcoff_sym = xcoff::Symbol64 {
n_value: U64::new(BE, n_value),
n_offset: U32::new(BE, strtab.get_offset(str_id) as u32),
n_scnum: I16::new(BE, n_scnum),
n_type: U16::new(BE, n_type),
n_sclass,
n_numaux,
};
buffer.write(&xcoff_sym);
} else {
let mut sym_name = [0; 8];
if n_sclass == xcoff::C_FILE {
sym_name[..5].copy_from_slice(b".file");
} else if symbol.name.len() <= 8 {
sym_name[..symbol.name.len()].copy_from_slice(&symbol.name[..]);
} else {
let str_offset = strtab.get_offset(symbol_offsets[index].str_id.unwrap());
sym_name[4..8].copy_from_slice(&u32::to_be_bytes(str_offset as u32));
}
let xcoff_sym = xcoff::Symbol32 {
n_name: sym_name,
n_value: U32::new(BE, n_value as u32),
n_scnum: I16::new(BE, n_scnum),
n_type: U16::new(BE, n_type),
n_sclass,
n_numaux,
};
buffer.write(&xcoff_sym);
}
// Generate auxiliary entries.
if n_sclass == xcoff::C_FILE {
debug_assert_eq!(n_numaux, 1);
let mut x_fname = [0; 8];
if symbol.name.len() <= 8 {
x_fname[..symbol.name.len()].copy_from_slice(&symbol.name[..]);
} else {
let str_offset = strtab.get_offset(symbol_offsets[index].str_id.unwrap());
x_fname[4..8].copy_from_slice(&u32::to_be_bytes(str_offset as u32));
}
if is_64 {
let file_aux = xcoff::FileAux64 {
x_fname,
x_fpad: Default::default(),
x_ftype: xcoff::XFT_FN,
x_freserve: Default::default(),
x_auxtype: xcoff::AUX_FILE,
};
buffer.write(&file_aux);
} else {
let file_aux = xcoff::FileAux32 {
x_fname,
x_fpad: Default::default(),
x_ftype: xcoff::XFT_FN,
x_freserve: Default::default(),
};
buffer.write(&file_aux);
}
} else if n_sclass == xcoff::C_EXT
|| n_sclass == xcoff::C_WEAKEXT
|| n_sclass == xcoff::C_HIDEXT
{
debug_assert_eq!(n_numaux, 1);
let (x_smtyp, x_smclas) = if let SymbolFlags::Xcoff {
x_smtyp, x_smclas, ..
} = symbol.flags
{
(x_smtyp, x_smclas)
} else {
match symbol.kind {
SymbolKind::Text => (xcoff::XTY_SD, xcoff::XMC_PR),
SymbolKind::Data => {
if section_kind == SectionKind::UninitializedData {
(xcoff::XTY_CM, xcoff::XMC_BS)
} else if section_kind == SectionKind::ReadOnlyData {
(xcoff::XTY_SD, xcoff::XMC_RO)
} else {
(xcoff::XTY_SD, xcoff::XMC_RW)
}
}
SymbolKind::Tls => {
if section_kind == SectionKind::UninitializedTls {
(xcoff::XTY_CM, xcoff::XMC_UL)
} else {
(xcoff::XTY_SD, xcoff::XMC_TL)
}
}
_ => {
return Err(Error(format!(
"unimplemented symbol `{}` kind {:?}",
symbol.name().unwrap_or(""),
symbol.kind
)));
}
}
};
let scnlen = if let SymbolFlags::Xcoff {
containing_csect: Some(containing_csect),
..
} = symbol.flags
{
symbol_offsets[containing_csect.0].index as u64
} else {
symbol.size
};
if is_64 {
let csect_aux = xcoff::CsectAux64 {
x_scnlen_lo: U32::new(BE, (scnlen & 0xFFFFFFFF) as u32),
x_scnlen_hi: U32::new(BE, ((scnlen >> 32) & 0xFFFFFFFF) as u32),
x_parmhash: U32::new(BE, 0),
x_snhash: U16::new(BE, 0),
x_smtyp,
x_smclas,
pad: 0,
x_auxtype: xcoff::AUX_CSECT,
};
buffer.write(&csect_aux);
} else {
let csect_aux = xcoff::CsectAux32 {
x_scnlen: U32::new(BE, scnlen as u32),
x_parmhash: U32::new(BE, 0),
x_snhash: U16::new(BE, 0),
x_smtyp,
x_smclas,
x_stab: U32::new(BE, 0),
x_snstab: U16::new(BE, 0),
};
buffer.write(&csect_aux);
}
}
}
// Write string table.
debug_assert_eq!(strtab_offset, buffer.len());
buffer.write_bytes(&u32::to_be_bytes(strtab_len as u32));
buffer.write_bytes(&strtab_data);
debug_assert_eq!(offset, buffer.len());
Ok(())
}
}

905
vendor/object/src/xcoff.rs vendored Normal file
View File

@ -0,0 +1,905 @@
//! XCOFF definitions
//!
//! These definitions are independent of read/write support, although we do implement
//! some traits useful for those.
//!
//! This module is the equivalent of /usr/include/xcoff.h, and is based heavily on it.
#![allow(missing_docs)]
use crate::endian::{BigEndian as BE, I16, U16, U32, U64};
use crate::pod::Pod;
/// The header at the start of every 32-bit XCOFF file.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct FileHeader32 {
/// Magic number. Must be 0x01DF.
pub f_magic: U16<BE>,
/// Number of sections.
pub f_nscns: U16<BE>,
/// Time and date of file creation.
pub f_timdat: U32<BE>,
/// Byte offset to symbol table start.
pub f_symptr: U32<BE>,
/// Number of entries in symbol table.
pub f_nsyms: U32<BE>,
/// Number of bytes in optional header
pub f_opthdr: U16<BE>,
/// Extra flags.
pub f_flags: U16<BE>,
}
/// The header at the start of every 64-bit XCOFF file.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct FileHeader64 {
/// Magic number. Must be 0x01F7.
pub f_magic: U16<BE>,
/// Number of sections.
pub f_nscns: U16<BE>,
/// Time and date of file creation
pub f_timdat: U32<BE>,
/// Byte offset to symbol table start.
pub f_symptr: U64<BE>,
/// Number of bytes in optional header
pub f_opthdr: U16<BE>,
/// Extra flags.
pub f_flags: U16<BE>,
/// Number of entries in symbol table.
pub f_nsyms: U32<BE>,
}
// Values for `f_magic`.
//
/// the 64-bit mach magic number
pub const MAGIC_64: u16 = 0x01F7;
/// the 32-bit mach magic number
pub const MAGIC_32: u16 = 0x01DF;
// Values for `f_flags`.
//
/// Indicates that the relocation information for binding has been removed from
/// the file.
pub const F_RELFLG: u16 = 0x0001;
/// Indicates that the file is executable. No unresolved external references exist.
pub const F_EXEC: u16 = 0x0002;
/// Indicates that line numbers have been stripped from the file by a utility program.
pub const F_LNNO: u16 = 0x0004;
/// Indicates that the file was profiled with the fdpr command.
pub const F_FDPR_PROF: u16 = 0x0010;
/// Indicates that the file was reordered with the fdpr command.
pub const F_FDPR_OPTI: u16 = 0x0020;
/// Indicates that the file uses Very Large Program Support.
pub const F_DSA: u16 = 0x0040;
/// Indicates that one of the members of the auxiliary header specifying the
/// medium page sizes is non-zero.
pub const F_VARPG: u16 = 0x0100;
/// Indicates the file is dynamically loadable and executable. External references
/// are resolved by way of imports, and the file might contain exports and loader
/// relocation.
pub const F_DYNLOAD: u16 = 0x1000;
/// Indicates the file is a shared object (shared library). The file is separately
/// loadable. That is, it is not normally bound with other objects, and its loader
/// exports symbols are used as automatic import symbols for other object files.
pub const F_SHROBJ: u16 = 0x2000;
/// If the object file is a member of an archive, it can be loaded by the system
/// loader, but the member is ignored by the binder. If the object file is not in
/// an archive, this flag has no effect.
pub const F_LOADONLY: u16 = 0x4000;
/// The auxiliary header immediately following file header. If the value of the
/// f_opthdr field in the file header is 0, the auxiliary header does not exist.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct AuxHeader32 {
/// Flags.
pub o_mflag: U16<BE>,
/// Version.
pub o_vstamp: U16<BE>,
/// Text size in bytes.
pub o_tsize: U32<BE>,
/// Initialized data size in bytes.
pub o_dsize: U32<BE>,
/// Uninitialized data size in bytes.
pub o_bsize: U32<BE>,
/// Entry point descriptor (virtual address).
pub o_entry: U32<BE>,
/// Base address of text (virtual address).
pub o_text_start: U32<BE>,
/// Base address of data (virtual address).
pub o_data_start: U32<BE>,
/// Address of TOC anchor.
pub o_toc: U32<BE>,
/// Section number for entry point.
pub o_snentry: U16<BE>,
/// Section number for .text.
pub o_sntext: U16<BE>,
/// Section number for .data.
pub o_sndata: U16<BE>,
/// Section number for TOC.
pub o_sntoc: U16<BE>,
/// Section number for loader data.
pub o_snloader: U16<BE>,
/// Section number for .bss.
pub o_snbss: U16<BE>,
/// Maximum alignment for .text.
pub o_algntext: U16<BE>,
/// Maximum alignment for .data.
pub o_algndata: U16<BE>,
/// Module type field.
pub o_modtype: U16<BE>,
/// Bit flags - cpu types of objects.
pub o_cpuflag: u8,
/// Reserved for CPU type.
pub o_cputype: u8,
/// Maximum stack size allowed (bytes).
pub o_maxstack: U32<BE>,
/// Maximum data size allowed (bytes).
pub o_maxdata: U32<BE>,
/// Reserved for debuggers.
pub o_debugger: U32<BE>,
/// Requested text page size.
pub o_textpsize: u8,
/// Requested data page size.
pub o_datapsize: u8,
/// Requested stack page size.
pub o_stackpsize: u8,
/// Flags and thread-local storage alignment.
pub o_flags: u8,
/// Section number for .tdata.
pub o_sntdata: U16<BE>,
/// Section number for .tbss.
pub o_sntbss: U16<BE>,
}
/// The auxiliary header immediately following file header. If the value of the
/// f_opthdr field in the file header is 0, the auxiliary header does not exist.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct AuxHeader64 {
/// Flags.
pub o_mflag: U16<BE>,
/// Version.
pub o_vstamp: U16<BE>,
/// Reserved for debuggers.
pub o_debugger: U32<BE>,
/// Base address of text (virtual address).
pub o_text_start: U64<BE>,
/// Base address of data (virtual address).
pub o_data_start: U64<BE>,
/// Address of TOC anchor.
pub o_toc: U64<BE>,
/// Section number for entry point.
pub o_snentry: U16<BE>,
/// Section number for .text.
pub o_sntext: U16<BE>,
/// Section number for .data.
pub o_sndata: U16<BE>,
/// Section number for TOC.
pub o_sntoc: U16<BE>,
/// Section number for loader data.
pub o_snloader: U16<BE>,
/// Section number for .bss.
pub o_snbss: U16<BE>,
/// Maximum alignment for .text.
pub o_algntext: U16<BE>,
/// Maximum alignment for .data.
pub o_algndata: U16<BE>,
/// Module type field.
pub o_modtype: U16<BE>,
/// Bit flags - cpu types of objects.
pub o_cpuflag: u8,
/// Reserved for CPU type.
pub o_cputype: u8,
/// Requested text page size.
pub o_textpsize: u8,
/// Requested data page size.
pub o_datapsize: u8,
/// Requested stack page size.
pub o_stackpsize: u8,
/// Flags and thread-local storage alignment.
pub o_flags: u8,
/// Text size in bytes.
pub o_tsize: U64<BE>,
/// Initialized data size in bytes.
pub o_dsize: U64<BE>,
/// Uninitialized data size in bytes.
pub o_bsize: U64<BE>,
/// Entry point descriptor (virtual address).
pub o_entry: U64<BE>,
/// Maximum stack size allowed (bytes).
pub o_maxstack: U64<BE>,
/// Maximum data size allowed (bytes).
pub o_maxdata: U64<BE>,
/// Section number for .tdata.
pub o_sntdata: U16<BE>,
/// Section number for .tbss.
pub o_sntbss: U16<BE>,
/// XCOFF64 flags.
pub o_x64flags: U16<BE>,
/// Reserved.
pub o_resv3a: U16<BE>,
/// Reserved.
pub o_resv3: [U32<BE>; 2],
}
/// Some AIX programs generate auxiliary headers for 32-bit object files that
/// end after the data_start field.
pub const AOUTHSZ_SHORT: u16 = 28;
/// Section header.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct SectionHeader32 {
/// Section name.
pub s_name: [u8; 8],
/// Physical address.
pub s_paddr: U32<BE>,
/// Virtual address (same as physical address).
pub s_vaddr: U32<BE>,
/// Section size.
pub s_size: U32<BE>,
/// Offset in file to raw data for section.
pub s_scnptr: U32<BE>,
/// Offset in file to relocation entries for section.
pub s_relptr: U32<BE>,
/// Offset in file to line number entries for section.
pub s_lnnoptr: U32<BE>,
/// Number of relocation entries.
pub s_nreloc: U16<BE>,
/// Number of line number entries.
pub s_nlnno: U16<BE>,
/// Flags to define the section type.
pub s_flags: U32<BE>,
}
/// Section header.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct SectionHeader64 {
/// Section name.
pub s_name: [u8; 8],
/// Physical address.
pub s_paddr: U64<BE>,
/// Virtual address (same as physical address).
pub s_vaddr: U64<BE>,
/// Section size.
pub s_size: U64<BE>,
/// Offset in file to raw data for section.
pub s_scnptr: U64<BE>,
/// Offset in file to relocation entries for section.
pub s_relptr: U64<BE>,
/// Offset in file to line number entries for section.
pub s_lnnoptr: U64<BE>,
/// Number of relocation entries.
pub s_nreloc: U32<BE>,
/// Number of line number entries.
pub s_nlnno: U32<BE>,
/// Flags to define the section type.
pub s_flags: U32<BE>,
/// Reserved.
pub s_reserve: U32<BE>,
}
// Values for `s_flags`.
//
/// "regular" section
pub const STYP_REG: u16 = 0x00;
/// Specifies a pad section. A section of this type is used to provide alignment
/// padding between sections within an XCOFF executable object file. This section
/// header type is obsolete since padding is allowed in an XCOFF file without a
/// corresponding pad section header.
pub const STYP_PAD: u16 = 0x08;
/// Specifies a DWARF debugging section, which provide source file and symbol
/// information for the symbolic debugger.
pub const STYP_DWARF: u16 = 0x10;
/// Specifies an executable text (code) section. A section of this type contains
/// the executable instructions of a program.
pub const STYP_TEXT: u16 = 0x20;
/// Specifies an initialized data section. A section of this type contains the
/// initialized data and the TOC of a program.
pub const STYP_DATA: u16 = 0x40;
/// Specifies an uninitialized data section. A section header of this type
/// defines the uninitialized data of a program.
pub const STYP_BSS: u16 = 0x80;
/// Specifies an exception section. A section of this type provides information
/// to identify the reason that a trap or exception occurred within an executable
/// object program.
pub const STYP_EXCEPT: u16 = 0x0100;
/// Specifies a comment section. A section of this type provides comments or data
/// to special processing utility programs.
pub const STYP_INFO: u16 = 0x0200;
/// Specifies an initialized thread-local data section.
pub const STYP_TDATA: u16 = 0x0400;
/// Specifies an uninitialized thread-local data section.
pub const STYP_TBSS: u16 = 0x0800;
/// Specifies a loader section. A section of this type contains object file
/// information for the system loader to load an XCOFF executable. The information
/// includes imported symbols, exported symbols, relocation data, type-check
/// information, and shared object names.
pub const STYP_LOADER: u16 = 0x1000;
/// Specifies a debug section. A section of this type contains stabstring
/// information used by the symbolic debugger.
pub const STYP_DEBUG: u16 = 0x2000;
/// Specifies a type-check section. A section of this type contains
/// parameter/argument type-check strings used by the binder.
pub const STYP_TYPCHK: u16 = 0x4000;
/// Specifies a relocation or line-number field overflow section. A section
/// header of this type contains the count of relocation entries and line
/// number entries for some other section. This section header is required
/// when either of the counts exceeds 65,534.
pub const STYP_OVRFLO: u16 = 0x8000;
pub const SSUBTYP_DWINFO: u32 = 0x10000;
pub const SSUBTYP_DWLINE: u32 = 0x20000;
pub const SSUBTYP_DWPBNMS: u32 = 0x30000;
pub const SSUBTYP_DWPBTYP: u32 = 0x40000;
pub const SSUBTYP_DWARNGE: u32 = 0x50000;
pub const SSUBTYP_DWABREV: u32 = 0x60000;
pub const SSUBTYP_DWSTR: u32 = 0x70000;
pub const SSUBTYP_DWRNGES: u32 = 0x80000;
pub const SSUBTYP_DWLOC: u32 = 0x90000;
pub const SSUBTYP_DWFRAME: u32 = 0xA0000;
pub const SSUBTYP_DWMAC: u32 = 0xB0000;
pub const SIZEOF_SYMBOL: usize = 18;
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct SymbolBytes(pub [u8; SIZEOF_SYMBOL]);
/// Symbol table entry.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct Symbol32 {
/// Symbol name.
///
/// If first 4 bytes are 0, then second 4 bytes are offset into string table.
pub n_name: [u8; 8],
/// Symbol value; storage class-dependent.
pub n_value: U32<BE>,
/// Section number of symbol.
pub n_scnum: I16<BE>,
/// Basic and derived type specification.
pub n_type: U16<BE>,
/// Storage class of symbol.
pub n_sclass: u8,
/// Number of auxiliary entries.
pub n_numaux: u8,
}
/// Symbol table entry.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct Symbol64 {
/// Symbol value; storage class-dependent.
pub n_value: U64<BE>,
/// Offset of the name in string table or .debug section.
pub n_offset: U32<BE>,
/// Section number of symbol.
pub n_scnum: I16<BE>,
/// Basic and derived type specification.
pub n_type: U16<BE>,
/// Storage class of symbol.
pub n_sclass: u8,
/// Number of auxiliary entries.
pub n_numaux: u8,
}
// Values for `n_scnum`.
//
/// A special symbolic debugging symbol.
pub const N_DEBUG: i16 = -2;
/// An absolute symbol. The symbol has a value but is not relocatable.
pub const N_ABS: i16 = -1;
/// An undefined external symbol.
pub const N_UNDEF: i16 = 0;
// Vlaues for `n_type`.
//
/// Values for visibility as they would appear when encoded in the high 4 bits
/// of the 16-bit unsigned n_type field of symbol table entries. Valid for
/// 32-bit XCOFF only when the o_vstamp in the auxiliary header is greater than 1.
pub const SYM_V_MASK: u16 = 0xF000;
pub const SYM_V_INTERNAL: u16 = 0x1000;
pub const SYM_V_HIDDEN: u16 = 0x2000;
pub const SYM_V_PROTECTED: u16 = 0x3000;
pub const SYM_V_EXPORTED: u16 = 0x4000;
// Values for `n_sclass`.
//
// Storage classes used for symbolic debugging symbols.
//
/// Source file name and compiler information.
pub const C_FILE: u8 = 103;
/// Beginning of include file.
pub const C_BINCL: u8 = 108;
/// Ending of include file.
pub const C_EINCL: u8 = 109;
/// Global variable.
pub const C_GSYM: u8 = 128;
/// Statically allocated symbol.
pub const C_STSYM: u8 = 133;
/// Beginning of common block.
pub const C_BCOMM: u8 = 135;
/// End of common block.
pub const C_ECOMM: u8 = 137;
/// Alternate entry.
pub const C_ENTRY: u8 = 141;
/// Beginning of static block.
pub const C_BSTAT: u8 = 143;
/// End of static block.
pub const C_ESTAT: u8 = 144;
/// Global thread-local variable.
pub const C_GTLS: u8 = 145;
/// Static thread-local variable.
pub const C_STTLS: u8 = 146;
/// DWARF section symbol.
pub const C_DWARF: u8 = 112;
//
// Storage classes used for absolute symbols.
//
/// Automatic variable allocated on stack.
pub const C_LSYM: u8 = 129;
/// Argument to subroutine allocated on stack.
pub const C_PSYM: u8 = 130;
/// Register variable.
pub const C_RSYM: u8 = 131;
/// Argument to function or procedure stored in register.
pub const C_RPSYM: u8 = 132;
/// Local member of common block.
pub const C_ECOML: u8 = 136;
/// Function or procedure.
pub const C_FUN: u8 = 142;
//
// Storage classes used for undefined external symbols or symbols of general sections.
//
/// External symbol.
pub const C_EXT: u8 = 2;
/// Weak external symbol.
pub const C_WEAKEXT: u8 = 111;
//
// Storage classes used for symbols of general sections.
//
/// Symbol table entry marked for deletion.
pub const C_NULL: u8 = 0;
/// Static.
pub const C_STAT: u8 = 3;
/// Beginning or end of inner block.
pub const C_BLOCK: u8 = 100;
/// Beginning or end of function.
pub const C_FCN: u8 = 101;
/// Un-named external symbol.
pub const C_HIDEXT: u8 = 107;
/// Comment string in .info section.
pub const C_INFO: u8 = 110;
/// Declaration of object (type).
pub const C_DECL: u8 = 140;
//
// Storage classes - Obsolete/Undocumented.
//
/// Automatic variable.
pub const C_AUTO: u8 = 1;
/// Register variable.
pub const C_REG: u8 = 4;
/// External definition.
pub const C_EXTDEF: u8 = 5;
/// Label.
pub const C_LABEL: u8 = 6;
/// Undefined label.
pub const C_ULABEL: u8 = 7;
/// Member of structure.
pub const C_MOS: u8 = 8;
/// Function argument.
pub const C_ARG: u8 = 9;
/// Structure tag.
pub const C_STRTAG: u8 = 10;
/// Member of union.
pub const C_MOU: u8 = 11;
/// Union tag.
pub const C_UNTAG: u8 = 12;
/// Type definition.
pub const C_TPDEF: u8 = 13;
/// Undefined static.
pub const C_USTATIC: u8 = 14;
/// Enumeration tag.
pub const C_ENTAG: u8 = 15;
/// Member of enumeration.
pub const C_MOE: u8 = 16;
/// Register parameter.
pub const C_REGPARM: u8 = 17;
/// Bit field.
pub const C_FIELD: u8 = 18;
/// End of structure.
pub const C_EOS: u8 = 102;
/// Duplicate tag.
pub const C_ALIAS: u8 = 105;
/// Special storage class for external.
pub const C_HIDDEN: u8 = 106;
/// Physical end of function.
pub const C_EFCN: u8 = 255;
/// Reserved.
pub const C_TCSYM: u8 = 134;
/// File Auxiliary Entry for C_FILE Symbols.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct FileAux32 {
/// The source file name or compiler-related string.
///
/// If first 4 bytes are 0, then second 4 bytes are offset into string table.
pub x_fname: [u8; 8],
/// Pad size for file name.
pub x_fpad: [u8; 6],
/// The source-file string type.
pub x_ftype: u8,
/// Reserved.
pub x_freserve: [u8; 3],
}
/// File Auxiliary Entry for C_FILE Symbols.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct FileAux64 {
/// The source file name or compiler-related string.
///
/// If first 4 bytes are 0, then second 4 bytes are offset into string table.
pub x_fname: [u8; 8],
/// Pad size for file name.
pub x_fpad: [u8; 6],
/// The source-file string type.
pub x_ftype: u8,
/// Reserved.
pub x_freserve: [u8; 2],
/// Specifies the type of auxiliary entry. Contains _AUX_FILE for this auxiliary entry.
pub x_auxtype: u8,
}
// Values for `x_ftype`.
//
/// Specifies the source-file name.
pub const XFT_FN: u8 = 0;
/// Specifies the compiler time stamp.
pub const XFT_CT: u8 = 1;
/// Specifies the compiler version number.
pub const XFT_CV: u8 = 2;
/// Specifies compiler-defined information.
pub const XFT_CD: u8 = 128;
/// Csect auxiliary entry for C_EXT, C_WEAKEXT, and C_HIDEXT symbols.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct CsectAux32 {
/// Section length.
pub x_scnlen: U32<BE>,
/// Offset of parameter type-check hash in .typchk section.
pub x_parmhash: U32<BE>,
/// .typchk section number.
pub x_snhash: U16<BE>,
/// Symbol alignment and type.
pub x_smtyp: u8,
/// Storage mapping class.
pub x_smclas: u8,
/// Reserved.
pub x_stab: U32<BE>,
/// x_snstab.
pub x_snstab: U16<BE>,
}
/// Csect auxiliary entry for C_EXT, C_WEAKEXT, and C_HIDEXT symbols.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct CsectAux64 {
/// Low 4 bytes of section length.
pub x_scnlen_lo: U32<BE>,
/// Offset of parameter type-check hash in .typchk section.
pub x_parmhash: U32<BE>,
/// .typchk section number.
pub x_snhash: U16<BE>,
/// Symbol alignment and type.
pub x_smtyp: u8,
/// Storage mapping class.
pub x_smclas: u8,
/// High 4 bytes of section length.
pub x_scnlen_hi: U32<BE>,
/// Reserved.
pub pad: u8,
/// Contains _AUX_CSECT; indicates type of auxiliary entry.
pub x_auxtype: u8,
}
// Values for `x_smtyp`.
//
/// External reference.
pub const XTY_ER: u8 = 0;
/// Csect definition for initialized storage.
pub const XTY_SD: u8 = 1;
/// Defines an entry point to an initialized csect.
pub const XTY_LD: u8 = 2;
/// Common csect definition. For uninitialized storage.
pub const XTY_CM: u8 = 3;
// Values for `x_smclas`.
//
// READ ONLY CLASSES
//
/// Program Code
pub const XMC_PR: u8 = 0;
/// Read Only Constant
pub const XMC_RO: u8 = 1;
/// Debug Dictionary Table
pub const XMC_DB: u8 = 2;
/// Global Linkage (Interfile Interface Code)
pub const XMC_GL: u8 = 6;
/// Extended Operation (Pseudo Machine Instruction)
pub const XMC_XO: u8 = 7;
/// Supervisor Call (32-bit process only)
pub const XMC_SV: u8 = 8;
/// Supervisor Call for 64-bit process
pub const XMC_SV64: u8 = 17;
/// Supervisor Call for both 32- and 64-bit processes
pub const XMC_SV3264: u8 = 18;
/// Traceback Index csect
pub const XMC_TI: u8 = 12;
/// Traceback Table csect
pub const XMC_TB: u8 = 13;
//
// READ WRITE CLASSES
//
/// Read Write Data
pub const XMC_RW: u8 = 5;
/// TOC Anchor for TOC Addressability
pub const XMC_TC0: u8 = 15;
/// General TOC item
pub const XMC_TC: u8 = 3;
/// Scalar data item in the TOC
pub const XMC_TD: u8 = 16;
/// Descriptor csect
pub const XMC_DS: u8 = 10;
/// Unclassified - Treated as Read Write
pub const XMC_UA: u8 = 4;
/// BSS class (uninitialized static internal)
pub const XMC_BS: u8 = 9;
/// Un-named Fortran Common
pub const XMC_UC: u8 = 11;
/// Initialized thread-local variable
pub const XMC_TL: u8 = 20;
/// Uninitialized thread-local variable
pub const XMC_UL: u8 = 21;
/// Symbol mapped at the end of TOC
pub const XMC_TE: u8 = 22;
/// Function auxiliary entry.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct FunAux32 {
/// File offset to exception table entry.
pub x_exptr: U32<BE>,
/// Size of function in bytes.
pub x_fsize: U32<BE>,
/// File pointer to line number
pub x_lnnoptr: U32<BE>,
/// Symbol table index of next entry beyond this function.
pub x_endndx: U32<BE>,
/// Pad
pub pad: U16<BE>,
}
/// Function auxiliary entry.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct FunAux64 {
/// File pointer to line number
pub x_lnnoptr: U64<BE>,
/// Size of function in bytes.
pub x_fsize: U32<BE>,
/// Symbol table index of next entry beyond this function.
pub x_endndx: U32<BE>,
/// Pad
pub pad: u8,
/// Contains _AUX_FCN; Type of auxiliary entry.
pub x_auxtype: u8,
}
/// Exception auxiliary entry. (XCOFF64 only)
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct ExpAux {
/// File offset to exception table entry.
pub x_exptr: U64<BE>,
/// Size of function in bytes.
pub x_fsize: U32<BE>,
/// Symbol table index of next entry beyond this function.
pub x_endndx: U32<BE>,
/// Pad
pub pad: u8,
/// Contains _AUX_EXCEPT; Type of auxiliary entry
pub x_auxtype: u8,
}
/// Block auxiliary entry for the C_BLOCK and C_FCN Symbols.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct BlockAux32 {
/// Reserved.
pub pad: [u8; 2],
/// High-order 2 bytes of the source line number.
pub x_lnnohi: U16<BE>,
/// Low-order 2 bytes of the source line number.
pub x_lnnolo: U16<BE>,
/// Reserved.
pub pad2: [u8; 12],
}
/// Block auxiliary entry for the C_BLOCK and C_FCN Symbols.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct BlockAux64 {
/// Source line number.
pub x_lnno: U32<BE>,
/// Reserved.
pub pad: [u8; 13],
/// Contains _AUX_SYM; Type of auxiliary entry.
pub x_auxtype: u8,
}
/// Section auxiliary entry for the C_STAT Symbol. (XCOFF32 Only)
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct StatAux {
/// Section length.
pub x_scnlen: U32<BE>,
/// Number of relocation entries.
pub x_nreloc: U16<BE>,
/// Number of line numbers.
pub x_nlinno: U16<BE>,
/// Reserved.
pub pad: [u8; 10],
}
/// Section auxiliary entry Format for C_DWARF symbols.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct DwarfAux32 {
/// Length of portion of section represented by symbol.
pub x_scnlen: U32<BE>,
/// Reserved.
pub pad: [u8; 4],
/// Number of relocation entries in section.
pub x_nreloc: U32<BE>,
/// Reserved.
pub pad2: [u8; 6],
}
/// Section auxiliary entry Format for C_DWARF symbols.
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct DwarfAux64 {
/// Length of portion of section represented by symbol.
pub x_scnlen: U64<BE>,
/// Number of relocation entries in section.
pub x_nreloc: U64<BE>,
/// Reserved.
pub pad: u8,
/// Contains _AUX_SECT; Type of Auxiliary entry.
pub x_auxtype: u8,
}
// Values for `x_auxtype`
//
/// Identifies an exception auxiliary entry.
pub const AUX_EXCEPT: u8 = 255;
/// Identifies a function auxiliary entry.
pub const AUX_FCN: u8 = 254;
/// Identifies a symbol auxiliary entry.
pub const AUX_SYM: u8 = 253;
/// Identifies a file auxiliary entry.
pub const AUX_FILE: u8 = 252;
/// Identifies a csect auxiliary entry.
pub const AUX_CSECT: u8 = 251;
/// Identifies a SECT auxiliary entry.
pub const AUX_SECT: u8 = 250;
/// Relocation table entry
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct Rel32 {
/// Virtual address (position) in section to be relocated.
pub r_vaddr: U32<BE>,
/// Symbol table index of item that is referenced.
pub r_symndx: U32<BE>,
/// Relocation size and information.
pub r_rsize: u8,
/// Relocation type.
pub r_rtype: u8,
}
/// Relocation table entry
#[derive(Debug, Clone, Copy)]
#[repr(C)]
pub struct Rel64 {
/// Virtual address (position) in section to be relocated.
pub r_vaddr: U64<BE>,
/// Symbol table index of item that is referenced.
pub r_symndx: U32<BE>,
/// Relocation size and information.
pub r_rsize: u8,
/// Relocation type.
pub r_rtype: u8,
}
// Values for `r_rtype`.
//
/// Positive relocation.
pub const R_POS: u8 = 0x00;
/// Positive indirect load relocation.
pub const R_RL: u8 = 0x0c;
/// Positive load address relocation. Modifiable instruction.
pub const R_RLA: u8 = 0x0d;
/// Negative relocation.
pub const R_NEG: u8 = 0x01;
/// Relative to self relocation.
pub const R_REL: u8 = 0x02;
/// Relative to the TOC relocation.
pub const R_TOC: u8 = 0x03;
/// TOC relative indirect load relocation.
pub const R_TRL: u8 = 0x12;
/// Relative to the TOC or to the thread-local storage base relocation.
pub const R_TRLA: u8 = 0x13;
/// Global linkage-external TOC address relocation.
pub const R_GL: u8 = 0x05;
/// Local object TOC address relocation.
pub const R_TCL: u8 = 0x06;
/// A non-relocating relocation.
pub const R_REF: u8 = 0x0f;
/// Branch absolute relocation. References a non-modifiable instruction.
pub const R_BA: u8 = 0x08;
/// Branch relative to self relocation. References a non-modifiable instruction.
pub const R_BR: u8 = 0x0a;
/// Branch absolute relocation. References a modifiable instruction.
pub const R_RBA: u8 = 0x18;
/// Branch relative to self relocation. References a modifiable instruction.
pub const R_RBR: u8 = 0x1a;
/// General-dynamic reference to TLS symbol.
pub const R_TLS: u8 = 0x20;
/// Initial-exec reference to TLS symbol.
pub const R_TLS_IE: u8 = 0x21;
/// Local-dynamic reference to TLS symbol.
pub const R_TLS_LD: u8 = 0x22;
/// Local-exec reference to TLS symbol.
pub const R_TLS_LE: u8 = 0x23;
/// Module reference to TLS.
pub const R_TLSM: u8 = 0x24;
/// Module reference to the local TLS storage.
pub const R_TLSML: u8 = 0x25;
/// Relative to TOC upper.
pub const R_TOCU: u8 = 0x30;
/// Relative to TOC lower.
pub const R_TOCL: u8 = 0x31;
unsafe_impl_pod!(
FileHeader32,
FileHeader64,
AuxHeader32,
AuxHeader64,
SectionHeader32,
SectionHeader64,
SymbolBytes,
Symbol32,
Symbol64,
FileAux32,
FileAux64,
CsectAux32,
CsectAux64,
FunAux32,
FunAux64,
ExpAux,
BlockAux32,
BlockAux64,
StatAux,
DwarfAux32,
DwarfAux64,
Rel32,
Rel64,
);