Initial vendor packages
Signed-off-by: Valentin Popov <valentin@popov.link>
This commit is contained in:
35
vendor/zeroize/src/aarch64.rs
vendored
Normal file
35
vendor/zeroize/src/aarch64.rs
vendored
Normal file
@ -0,0 +1,35 @@
|
||||
//! [`Zeroize`] impls for ARM64 SIMD registers.
|
||||
//!
|
||||
//! Gated behind the `aarch64` feature: MSRV 1.59
|
||||
//! (the overall crate is MSRV 1.60)
|
||||
|
||||
use crate::{atomic_fence, volatile_write, Zeroize};
|
||||
|
||||
use core::arch::aarch64::*;
|
||||
|
||||
macro_rules! impl_zeroize_for_simd_register {
|
||||
($($type:ty),* $(,)?) => {
|
||||
$(
|
||||
#[cfg_attr(docsrs, doc(cfg(target_arch = "aarch64")))]
|
||||
impl Zeroize for $type {
|
||||
#[inline]
|
||||
fn zeroize(&mut self) {
|
||||
volatile_write(self, unsafe { core::mem::zeroed() });
|
||||
atomic_fence();
|
||||
}
|
||||
}
|
||||
)+
|
||||
};
|
||||
}
|
||||
|
||||
// TODO(tarcieri): other NEON register types?
|
||||
impl_zeroize_for_simd_register! {
|
||||
uint8x8_t,
|
||||
uint8x16_t,
|
||||
uint16x4_t,
|
||||
uint16x8_t,
|
||||
uint32x2_t,
|
||||
uint32x4_t,
|
||||
uint64x1_t,
|
||||
uint64x2_t,
|
||||
}
|
822
vendor/zeroize/src/lib.rs
vendored
Normal file
822
vendor/zeroize/src/lib.rs
vendored
Normal file
@ -0,0 +1,822 @@
|
||||
#![no_std]
|
||||
#![cfg_attr(docsrs, feature(doc_cfg))]
|
||||
#![doc(
|
||||
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg",
|
||||
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg"
|
||||
)]
|
||||
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]
|
||||
|
||||
//! Securely zero memory with a simple trait ([`Zeroize`]) built on stable Rust
|
||||
//! primitives which guarantee the operation will not be "optimized away".
|
||||
//!
|
||||
//! ## About
|
||||
//!
|
||||
//! [Zeroing memory securely is hard] - compilers optimize for performance, and
|
||||
//! in doing so they love to "optimize away" unnecessary zeroing calls. There are
|
||||
//! many documented "tricks" to attempt to avoid these optimizations and ensure
|
||||
//! that a zeroing routine is performed reliably.
|
||||
//!
|
||||
//! This crate isn't about tricks: it uses [`core::ptr::write_volatile`]
|
||||
//! and [`core::sync::atomic`] memory fences to provide easy-to-use, portable
|
||||
//! zeroing behavior which works on all of Rust's core number types and slices
|
||||
//! thereof, implemented in pure Rust with no usage of FFI or assembly.
|
||||
//!
|
||||
//! - No insecure fallbacks!
|
||||
//! - No dependencies!
|
||||
//! - No FFI or inline assembly! **WASM friendly** (and tested)!
|
||||
//! - `#![no_std]` i.e. **embedded-friendly**!
|
||||
//! - No functionality besides securely zeroing memory!
|
||||
//! - (Optional) Custom derive support for zeroing complex structures
|
||||
//!
|
||||
//! ## Minimum Supported Rust Version
|
||||
//!
|
||||
//! Requires Rust **1.60** or newer.
|
||||
//!
|
||||
//! In the future, we reserve the right to change MSRV (i.e. MSRV is out-of-scope
|
||||
//! for this crate's SemVer guarantees), however when we do it will be accompanied
|
||||
//! by a minor version bump.
|
||||
//!
|
||||
//! ## Usage
|
||||
//!
|
||||
//! ```
|
||||
//! use zeroize::Zeroize;
|
||||
//!
|
||||
//! fn main() {
|
||||
//! // Protip: don't embed secrets in your source code.
|
||||
//! // This is just an example.
|
||||
//! let mut secret = b"Air shield password: 1,2,3,4,5".to_vec();
|
||||
//! // [ ... ] open the air shield here
|
||||
//!
|
||||
//! // Now that we're done using the secret, zero it out.
|
||||
//! secret.zeroize();
|
||||
//! }
|
||||
//! ```
|
||||
//!
|
||||
//! The [`Zeroize`] trait is impl'd on all of Rust's core scalar types including
|
||||
//! integers, floats, `bool`, and `char`.
|
||||
//!
|
||||
//! Additionally, it's implemented on slices and `IterMut`s of the above types.
|
||||
//!
|
||||
//! When the `alloc` feature is enabled (which it is by default), it's also
|
||||
//! impl'd for `Vec<T>` for the above types as well as `String`, where it provides
|
||||
//! [`Vec::clear`] / [`String::clear`]-like behavior (truncating to zero-length)
|
||||
//! but ensures the backing memory is securely zeroed with some caveats.
|
||||
//!
|
||||
//! With the `std` feature enabled (which it is **not** by default), [`Zeroize`]
|
||||
//! is also implemented for [`CString`]. After calling `zeroize()` on a `CString`,
|
||||
//! its internal buffer will contain exactly one nul byte. The backing
|
||||
//! memory is zeroed by converting it to a `Vec<u8>` and back into a `CString`.
|
||||
//! (NOTE: see "Stack/Heap Zeroing Notes" for important `Vec`/`String`/`CString` details)
|
||||
//!
|
||||
//!
|
||||
//! The [`DefaultIsZeroes`] marker trait can be impl'd on types which also
|
||||
//! impl [`Default`], which implements [`Zeroize`] by overwriting a value with
|
||||
//! the default value.
|
||||
//!
|
||||
//! ## Custom Derive Support
|
||||
//!
|
||||
//! This crate has custom derive support for the `Zeroize` trait,
|
||||
//! gated under the `zeroize` crate's `zeroize_derive` Cargo feature,
|
||||
//! which automatically calls `zeroize()` on all members of a struct
|
||||
//! or tuple struct.
|
||||
//!
|
||||
//! Attributes supported for `Zeroize`:
|
||||
//!
|
||||
//! On the item level:
|
||||
//! - `#[zeroize(drop)]`: *deprecated* use `ZeroizeOnDrop` instead
|
||||
//! - `#[zeroize(bound = "T: MyTrait")]`: this replaces any trait bounds
|
||||
//! inferred by zeroize
|
||||
//!
|
||||
//! On the field level:
|
||||
//! - `#[zeroize(skip)]`: skips this field or variant when calling `zeroize()`
|
||||
//!
|
||||
//! Attributes supported for `ZeroizeOnDrop`:
|
||||
//!
|
||||
//! On the field level:
|
||||
//! - `#[zeroize(skip)]`: skips this field or variant when calling `zeroize()`
|
||||
//!
|
||||
//! Example which derives `Drop`:
|
||||
//!
|
||||
//! ```
|
||||
//! # #[cfg(feature = "zeroize_derive")]
|
||||
//! # {
|
||||
//! use zeroize::{Zeroize, ZeroizeOnDrop};
|
||||
//!
|
||||
//! // This struct will be zeroized on drop
|
||||
//! #[derive(Zeroize, ZeroizeOnDrop)]
|
||||
//! struct MyStruct([u8; 32]);
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! Example which does not derive `Drop` (useful for e.g. `Copy` types)
|
||||
//!
|
||||
//! ```
|
||||
//! #[cfg(feature = "zeroize_derive")]
|
||||
//! # {
|
||||
//! use zeroize::Zeroize;
|
||||
//!
|
||||
//! // This struct will *NOT* be zeroized on drop
|
||||
//! #[derive(Copy, Clone, Zeroize)]
|
||||
//! struct MyStruct([u8; 32]);
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! Example which only derives `Drop`:
|
||||
//!
|
||||
//! ```
|
||||
//! # #[cfg(feature = "zeroize_derive")]
|
||||
//! # {
|
||||
//! use zeroize::ZeroizeOnDrop;
|
||||
//!
|
||||
//! // This struct will be zeroized on drop
|
||||
//! #[derive(ZeroizeOnDrop)]
|
||||
//! struct MyStruct([u8; 32]);
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
//! ## `Zeroizing<Z>`: wrapper for zeroizing arbitrary values on drop
|
||||
//!
|
||||
//! `Zeroizing<Z: Zeroize>` is a generic wrapper type that impls `Deref`
|
||||
//! and `DerefMut`, allowing access to an inner value of type `Z`, and also
|
||||
//! impls a `Drop` handler which calls `zeroize()` on its contents:
|
||||
//!
|
||||
//! ```
|
||||
//! use zeroize::Zeroizing;
|
||||
//!
|
||||
//! fn main() {
|
||||
//! let mut secret = Zeroizing::new([0u8; 5]);
|
||||
//!
|
||||
//! // Set the air shield password
|
||||
//! // Protip (again): don't embed secrets in your source code.
|
||||
//! secret.copy_from_slice(&[1, 2, 3, 4, 5]);
|
||||
//! assert_eq!(secret.as_ref(), &[1, 2, 3, 4, 5]);
|
||||
//!
|
||||
//! // The contents of `secret` will be automatically zeroized on drop
|
||||
//! }
|
||||
//! ```
|
||||
//!
|
||||
//! ## What guarantees does this crate provide?
|
||||
//!
|
||||
//! This crate guarantees the following:
|
||||
//!
|
||||
//! 1. The zeroing operation can't be "optimized away" by the compiler.
|
||||
//! 2. All subsequent reads to memory will see "zeroized" values.
|
||||
//!
|
||||
//! LLVM's volatile semantics ensure #1 is true.
|
||||
//!
|
||||
//! Additionally, thanks to work by the [Unsafe Code Guidelines Working Group],
|
||||
//! we can now fairly confidently say #2 is true as well. Previously there were
|
||||
//! worries that the approach used by this crate (mixing volatile and
|
||||
//! non-volatile accesses) was undefined behavior due to language contained
|
||||
//! in the documentation for `write_volatile`, however after some discussion
|
||||
//! [these remarks have been removed] and the specific usage pattern in this
|
||||
//! crate is considered to be well-defined.
|
||||
//!
|
||||
//! Additionally this crate leverages [`core::sync::atomic::compiler_fence`]
|
||||
//! with the strictest ordering
|
||||
//! ([`Ordering::SeqCst`]) as a
|
||||
//! precaution to help ensure reads are not reordered before memory has been
|
||||
//! zeroed.
|
||||
//!
|
||||
//! All of that said, there is still potential for microarchitectural attacks
|
||||
//! (ala Spectre/Meltdown) to leak "zeroized" secrets through covert channels.
|
||||
//! This crate makes no guarantees that zeroized values cannot be leaked
|
||||
//! through such channels, as they represent flaws in the underlying hardware.
|
||||
//!
|
||||
//! ## Stack/Heap Zeroing Notes
|
||||
//!
|
||||
//! This crate can be used to zero values from either the stack or the heap.
|
||||
//!
|
||||
//! However, be aware several operations in Rust can unintentionally leave
|
||||
//! copies of data in memory. This includes but is not limited to:
|
||||
//!
|
||||
//! - Moves and [`Copy`]
|
||||
//! - Heap reallocation when using [`Vec`] and [`String`]
|
||||
//! - Borrowers of a reference making copies of the data
|
||||
//!
|
||||
//! [`Pin`][`core::pin::Pin`] can be leveraged in conjunction with this crate
|
||||
//! to ensure data kept on the stack isn't moved.
|
||||
//!
|
||||
//! The `Zeroize` impls for `Vec`, `String` and `CString` zeroize the entire
|
||||
//! capacity of their backing buffer, but cannot guarantee copies of the data
|
||||
//! were not previously made by buffer reallocation. It's therefore important
|
||||
//! when attempting to zeroize such buffers to initialize them to the correct
|
||||
//! capacity, and take care to prevent subsequent reallocation.
|
||||
//!
|
||||
//! The `secrecy` crate provides higher-level abstractions for eliminating
|
||||
//! usage patterns which can cause reallocations:
|
||||
//!
|
||||
//! <https://crates.io/crates/secrecy>
|
||||
//!
|
||||
//! ## What about: clearing registers, mlock, mprotect, etc?
|
||||
//!
|
||||
//! This crate is focused on providing simple, unobtrusive support for reliably
|
||||
//! zeroing memory using the best approach possible on stable Rust.
|
||||
//!
|
||||
//! Clearing registers is a difficult problem that can't easily be solved by
|
||||
//! something like a crate, and requires either inline ASM or rustc support.
|
||||
//! See <https://github.com/rust-lang/rust/issues/17046> for background on
|
||||
//! this particular problem.
|
||||
//!
|
||||
//! Other memory protection mechanisms are interesting and useful, but often
|
||||
//! overkill (e.g. defending against RAM scraping or attackers with swap access).
|
||||
//! In as much as there may be merit to these approaches, there are also many
|
||||
//! other crates that already implement more sophisticated memory protections.
|
||||
//! Such protections are explicitly out-of-scope for this crate.
|
||||
//!
|
||||
//! Zeroing memory is [good cryptographic hygiene] and this crate seeks to promote
|
||||
//! it in the most unobtrusive manner possible. This includes omitting complex
|
||||
//! `unsafe` memory protection systems and just trying to make the best memory
|
||||
//! zeroing crate available.
|
||||
//!
|
||||
//! [Zeroing memory securely is hard]: http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
|
||||
//! [Unsafe Code Guidelines Working Group]: https://github.com/rust-lang/unsafe-code-guidelines
|
||||
//! [these remarks have been removed]: https://github.com/rust-lang/rust/pull/60972
|
||||
//! [good cryptographic hygiene]: https://github.com/veorq/cryptocoding#clean-memory-of-secret-data
|
||||
//! [`Ordering::SeqCst`]: core::sync::atomic::Ordering::SeqCst
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
extern crate alloc;
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
extern crate std;
|
||||
|
||||
#[cfg(feature = "zeroize_derive")]
|
||||
#[cfg_attr(docsrs, doc(cfg(feature = "zeroize_derive")))]
|
||||
pub use zeroize_derive::{Zeroize, ZeroizeOnDrop};
|
||||
|
||||
#[cfg(all(feature = "aarch64", target_arch = "aarch64"))]
|
||||
mod aarch64;
|
||||
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
|
||||
mod x86;
|
||||
|
||||
use core::{
|
||||
marker::{PhantomData, PhantomPinned},
|
||||
mem::{self, MaybeUninit},
|
||||
num::{
|
||||
self, NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize,
|
||||
NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize,
|
||||
},
|
||||
ops, ptr,
|
||||
slice::IterMut,
|
||||
sync::atomic,
|
||||
};
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
use alloc::{boxed::Box, string::String, vec::Vec};
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
use std::ffi::CString;
|
||||
|
||||
/// Trait for securely erasing values from memory.
|
||||
pub trait Zeroize {
|
||||
/// Zero out this object from memory using Rust intrinsics which ensure the
|
||||
/// zeroization operation is not "optimized away" by the compiler.
|
||||
fn zeroize(&mut self);
|
||||
}
|
||||
|
||||
/// Marker trait signifying that this type will [`Zeroize::zeroize`] itself on [`Drop`].
|
||||
pub trait ZeroizeOnDrop {}
|
||||
|
||||
/// Marker trait for types whose [`Default`] is the desired zeroization result
|
||||
pub trait DefaultIsZeroes: Copy + Default + Sized {}
|
||||
|
||||
/// Fallible trait for representing cases where zeroization may or may not be
|
||||
/// possible.
|
||||
///
|
||||
/// This is primarily useful for scenarios like reference counted data, where
|
||||
/// zeroization is only possible when the last reference is dropped.
|
||||
pub trait TryZeroize {
|
||||
/// Try to zero out this object from memory using Rust intrinsics which
|
||||
/// ensure the zeroization operation is not "optimized away" by the
|
||||
/// compiler.
|
||||
#[must_use]
|
||||
fn try_zeroize(&mut self) -> bool;
|
||||
}
|
||||
|
||||
impl<Z> Zeroize for Z
|
||||
where
|
||||
Z: DefaultIsZeroes,
|
||||
{
|
||||
fn zeroize(&mut self) {
|
||||
volatile_write(self, Z::default());
|
||||
atomic_fence();
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_zeroize_with_default {
|
||||
($($type:ty),+) => {
|
||||
$(impl DefaultIsZeroes for $type {})+
|
||||
};
|
||||
}
|
||||
|
||||
#[rustfmt::skip]
|
||||
impl_zeroize_with_default! {
|
||||
PhantomPinned, (), bool, char,
|
||||
f32, f64,
|
||||
i8, i16, i32, i64, i128, isize,
|
||||
u8, u16, u32, u64, u128, usize
|
||||
}
|
||||
|
||||
/// `PhantomPinned` is zero sized so provide a ZeroizeOnDrop implementation.
|
||||
impl ZeroizeOnDrop for PhantomPinned {}
|
||||
|
||||
/// `()` is zero sized so provide a ZeroizeOnDrop implementation.
|
||||
impl ZeroizeOnDrop for () {}
|
||||
|
||||
macro_rules! impl_zeroize_for_non_zero {
|
||||
($($type:ty),+) => {
|
||||
$(
|
||||
impl Zeroize for $type {
|
||||
fn zeroize(&mut self) {
|
||||
const ONE: $type = match <$type>::new(1) {
|
||||
Some(one) => one,
|
||||
None => unreachable!(),
|
||||
};
|
||||
volatile_write(self, ONE);
|
||||
atomic_fence();
|
||||
}
|
||||
}
|
||||
)+
|
||||
};
|
||||
}
|
||||
|
||||
impl_zeroize_for_non_zero!(
|
||||
NonZeroI8,
|
||||
NonZeroI16,
|
||||
NonZeroI32,
|
||||
NonZeroI64,
|
||||
NonZeroI128,
|
||||
NonZeroIsize,
|
||||
NonZeroU8,
|
||||
NonZeroU16,
|
||||
NonZeroU32,
|
||||
NonZeroU64,
|
||||
NonZeroU128,
|
||||
NonZeroUsize
|
||||
);
|
||||
|
||||
impl<Z> Zeroize for num::Wrapping<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
fn zeroize(&mut self) {
|
||||
self.0.zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
/// Impl [`Zeroize`] on arrays of types that impl [`Zeroize`].
|
||||
impl<Z, const N: usize> Zeroize for [Z; N]
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
fn zeroize(&mut self) {
|
||||
self.iter_mut().zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
/// Impl [`ZeroizeOnDrop`] on arrays of types that impl [`ZeroizeOnDrop`].
|
||||
impl<Z, const N: usize> ZeroizeOnDrop for [Z; N] where Z: ZeroizeOnDrop {}
|
||||
|
||||
impl<Z> Zeroize for IterMut<'_, Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
fn zeroize(&mut self) {
|
||||
for elem in self {
|
||||
elem.zeroize();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<Z> Zeroize for Option<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
fn zeroize(&mut self) {
|
||||
if let Some(value) = self {
|
||||
value.zeroize();
|
||||
|
||||
// Ensures self is None and that the value was dropped. Without the take, the drop
|
||||
// of the (zeroized) value isn't called, which might lead to a leak or other
|
||||
// unexpected behavior. For example, if this were Option<Vec<T>>, the above call to
|
||||
// zeroize would not free the allocated memory, but the the `take` call will.
|
||||
self.take();
|
||||
}
|
||||
|
||||
// Ensure that if the `Option` were previously `Some` but a value was copied/moved out
|
||||
// that the remaining space in the `Option` is zeroized.
|
||||
//
|
||||
// Safety:
|
||||
//
|
||||
// The memory pointed to by `self` is valid for `mem::size_of::<Self>()` bytes.
|
||||
// It is also properly aligned, because `u8` has an alignment of `1`.
|
||||
unsafe {
|
||||
volatile_set((self as *mut Self).cast::<u8>(), 0, mem::size_of::<Self>());
|
||||
}
|
||||
|
||||
// Ensures self is overwritten with the `None` bit pattern. volatile_write can't be
|
||||
// used because Option<Z> is not copy.
|
||||
//
|
||||
// Safety:
|
||||
//
|
||||
// self is safe to replace with `None`, which the take() call above should have
|
||||
// already done semantically. Any value which needed to be dropped will have been
|
||||
// done so by take().
|
||||
unsafe { ptr::write_volatile(self, None) }
|
||||
|
||||
atomic_fence();
|
||||
}
|
||||
}
|
||||
|
||||
impl<Z> ZeroizeOnDrop for Option<Z> where Z: ZeroizeOnDrop {}
|
||||
|
||||
/// Impl [`Zeroize`] on [`MaybeUninit`] types.
|
||||
///
|
||||
/// This fills the memory with zeroes.
|
||||
/// Note that this ignore invariants that `Z` might have, because
|
||||
/// [`MaybeUninit`] removes all invariants.
|
||||
impl<Z> Zeroize for MaybeUninit<Z> {
|
||||
fn zeroize(&mut self) {
|
||||
// Safety:
|
||||
// `MaybeUninit` is valid for any byte pattern, including zeros.
|
||||
unsafe { ptr::write_volatile(self, MaybeUninit::zeroed()) }
|
||||
atomic_fence();
|
||||
}
|
||||
}
|
||||
|
||||
/// Impl [`Zeroize`] on slices of [`MaybeUninit`] types.
|
||||
///
|
||||
/// This impl can eventually be optimized using an memset intrinsic,
|
||||
/// such as [`core::intrinsics::volatile_set_memory`].
|
||||
///
|
||||
/// This fills the slice with zeroes.
|
||||
///
|
||||
/// Note that this ignore invariants that `Z` might have, because
|
||||
/// [`MaybeUninit`] removes all invariants.
|
||||
impl<Z> Zeroize for [MaybeUninit<Z>] {
|
||||
fn zeroize(&mut self) {
|
||||
let ptr = self.as_mut_ptr().cast::<MaybeUninit<u8>>();
|
||||
let size = self.len().checked_mul(mem::size_of::<Z>()).unwrap();
|
||||
assert!(size <= isize::MAX as usize);
|
||||
|
||||
// Safety:
|
||||
//
|
||||
// This is safe, because every valid pointer is well aligned for u8
|
||||
// and it is backed by a single allocated object for at least `self.len() * size_pf::<Z>()` bytes.
|
||||
// and 0 is a valid value for `MaybeUninit<Z>`
|
||||
// The memory of the slice should not wrap around the address space.
|
||||
unsafe { volatile_set(ptr, MaybeUninit::zeroed(), size) }
|
||||
atomic_fence();
|
||||
}
|
||||
}
|
||||
|
||||
/// Impl [`Zeroize`] on slices of types that can be zeroized with [`Default`].
|
||||
///
|
||||
/// This impl can eventually be optimized using an memset intrinsic,
|
||||
/// such as [`core::intrinsics::volatile_set_memory`]. For that reason the
|
||||
/// blanket impl on slices is bounded by [`DefaultIsZeroes`].
|
||||
///
|
||||
/// To zeroize a mut slice of `Z: Zeroize` which does not impl
|
||||
/// [`DefaultIsZeroes`], call `iter_mut().zeroize()`.
|
||||
impl<Z> Zeroize for [Z]
|
||||
where
|
||||
Z: DefaultIsZeroes,
|
||||
{
|
||||
fn zeroize(&mut self) {
|
||||
assert!(self.len() <= isize::MAX as usize);
|
||||
|
||||
// Safety:
|
||||
//
|
||||
// This is safe, because the slice is well aligned and is backed by a single allocated
|
||||
// object for at least `self.len()` elements of type `Z`.
|
||||
// `self.len()` is also not larger than an `isize`, because of the assertion above.
|
||||
// The memory of the slice should not wrap around the address space.
|
||||
unsafe { volatile_set(self.as_mut_ptr(), Z::default(), self.len()) };
|
||||
atomic_fence();
|
||||
}
|
||||
}
|
||||
|
||||
impl Zeroize for str {
|
||||
fn zeroize(&mut self) {
|
||||
// Safety:
|
||||
// A zeroized byte slice is a valid UTF-8 string.
|
||||
unsafe { self.as_bytes_mut().zeroize() }
|
||||
}
|
||||
}
|
||||
|
||||
/// [`PhantomData`] is always zero sized so provide a [`Zeroize`] implementation.
|
||||
impl<Z> Zeroize for PhantomData<Z> {
|
||||
fn zeroize(&mut self) {}
|
||||
}
|
||||
|
||||
/// [`PhantomData` is always zero sized so provide a ZeroizeOnDrop implementation.
|
||||
impl<Z> ZeroizeOnDrop for PhantomData<Z> {}
|
||||
|
||||
macro_rules! impl_zeroize_tuple {
|
||||
( $( $type_name:ident ),+ ) => {
|
||||
impl<$($type_name: Zeroize),+> Zeroize for ($($type_name,)+) {
|
||||
fn zeroize(&mut self) {
|
||||
#[allow(non_snake_case)]
|
||||
let ($($type_name,)+) = self;
|
||||
$($type_name.zeroize());+
|
||||
}
|
||||
}
|
||||
|
||||
impl<$($type_name: ZeroizeOnDrop),+> ZeroizeOnDrop for ($($type_name,)+) { }
|
||||
}
|
||||
}
|
||||
|
||||
// Generic implementations for tuples up to 10 parameters.
|
||||
impl_zeroize_tuple!(A);
|
||||
impl_zeroize_tuple!(A, B);
|
||||
impl_zeroize_tuple!(A, B, C);
|
||||
impl_zeroize_tuple!(A, B, C, D);
|
||||
impl_zeroize_tuple!(A, B, C, D, E);
|
||||
impl_zeroize_tuple!(A, B, C, D, E, F);
|
||||
impl_zeroize_tuple!(A, B, C, D, E, F, G);
|
||||
impl_zeroize_tuple!(A, B, C, D, E, F, G, H);
|
||||
impl_zeroize_tuple!(A, B, C, D, E, F, G, H, I);
|
||||
impl_zeroize_tuple!(A, B, C, D, E, F, G, H, I, J);
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
||||
impl<Z> Zeroize for Vec<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
/// "Best effort" zeroization for `Vec`.
|
||||
///
|
||||
/// Ensures the entire capacity of the `Vec` is zeroed. Cannot ensure that
|
||||
/// previous reallocations did not leave values on the heap.
|
||||
fn zeroize(&mut self) {
|
||||
// Zeroize all the initialized elements.
|
||||
self.iter_mut().zeroize();
|
||||
|
||||
// Set the Vec's length to 0 and drop all the elements.
|
||||
self.clear();
|
||||
|
||||
// Zero the full capacity of `Vec`.
|
||||
self.spare_capacity_mut().zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
||||
impl<Z> ZeroizeOnDrop for Vec<Z> where Z: ZeroizeOnDrop {}
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
||||
impl<Z> Zeroize for Box<[Z]>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
/// Unlike `Vec`, `Box<[Z]>` cannot reallocate, so we can be sure that we are not leaving
|
||||
/// values on the heap.
|
||||
fn zeroize(&mut self) {
|
||||
self.iter_mut().zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
||||
impl<Z> ZeroizeOnDrop for Box<[Z]> where Z: ZeroizeOnDrop {}
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
||||
impl Zeroize for Box<str> {
|
||||
fn zeroize(&mut self) {
|
||||
self.as_mut().zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
||||
impl Zeroize for String {
|
||||
fn zeroize(&mut self) {
|
||||
unsafe { self.as_mut_vec() }.zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "std")]
|
||||
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
|
||||
impl Zeroize for CString {
|
||||
fn zeroize(&mut self) {
|
||||
// mem::take uses replace internally to swap the pointer
|
||||
// Unfortunately this results in an allocation for a Box::new(&[0]) as CString must
|
||||
// contain a trailing zero byte
|
||||
let this = mem::take(self);
|
||||
|
||||
// - CString::into_bytes_with_nul calls ::into_vec which takes ownership of the heap pointer
|
||||
// as a Vec<u8>
|
||||
// - Calling .zeroize() on the resulting vector clears out the bytes
|
||||
// From: https://github.com/RustCrypto/utils/pull/759#issuecomment-1087976570
|
||||
let mut buf = this.into_bytes_with_nul();
|
||||
buf.zeroize();
|
||||
|
||||
// expect() should never fail, because zeroize() truncates the Vec
|
||||
let zeroed = CString::new(buf).expect("buf not truncated");
|
||||
|
||||
// Replace self by the zeroed CString to maintain the original ptr of the buffer
|
||||
let _ = mem::replace(self, zeroed);
|
||||
}
|
||||
}
|
||||
|
||||
/// `Zeroizing` is a a wrapper for any `Z: Zeroize` type which implements a
|
||||
/// `Drop` handler which zeroizes dropped values.
|
||||
#[derive(Debug, Default, Eq, PartialEq)]
|
||||
pub struct Zeroizing<Z: Zeroize>(Z);
|
||||
|
||||
impl<Z> Zeroizing<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
/// Move value inside a `Zeroizing` wrapper which ensures it will be
|
||||
/// zeroized when it's dropped.
|
||||
#[inline(always)]
|
||||
pub fn new(value: Z) -> Self {
|
||||
Self(value)
|
||||
}
|
||||
}
|
||||
|
||||
impl<Z: Zeroize + Clone> Clone for Zeroizing<Z> {
|
||||
#[inline(always)]
|
||||
fn clone(&self) -> Self {
|
||||
Self(self.0.clone())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn clone_from(&mut self, source: &Self) {
|
||||
self.0.zeroize();
|
||||
self.0.clone_from(&source.0);
|
||||
}
|
||||
}
|
||||
|
||||
impl<Z> From<Z> for Zeroizing<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn from(value: Z) -> Zeroizing<Z> {
|
||||
Zeroizing(value)
|
||||
}
|
||||
}
|
||||
|
||||
impl<Z> ops::Deref for Zeroizing<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
type Target = Z;
|
||||
|
||||
#[inline(always)]
|
||||
fn deref(&self) -> &Z {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<Z> ops::DerefMut for Zeroizing<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn deref_mut(&mut self) -> &mut Z {
|
||||
&mut self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, Z> AsRef<T> for Zeroizing<Z>
|
||||
where
|
||||
T: ?Sized,
|
||||
Z: AsRef<T> + Zeroize,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn as_ref(&self) -> &T {
|
||||
self.0.as_ref()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, Z> AsMut<T> for Zeroizing<Z>
|
||||
where
|
||||
T: ?Sized,
|
||||
Z: AsMut<T> + Zeroize,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn as_mut(&mut self) -> &mut T {
|
||||
self.0.as_mut()
|
||||
}
|
||||
}
|
||||
|
||||
impl<Z> Zeroize for Zeroizing<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
fn zeroize(&mut self) {
|
||||
self.0.zeroize();
|
||||
}
|
||||
}
|
||||
|
||||
impl<Z> ZeroizeOnDrop for Zeroizing<Z> where Z: Zeroize {}
|
||||
|
||||
impl<Z> Drop for Zeroizing<Z>
|
||||
where
|
||||
Z: Zeroize,
|
||||
{
|
||||
fn drop(&mut self) {
|
||||
self.0.zeroize()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "serde")]
|
||||
impl<Z> serde::Serialize for Zeroizing<Z>
|
||||
where
|
||||
Z: Zeroize + serde::Serialize,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where
|
||||
S: serde::Serializer,
|
||||
{
|
||||
self.0.serialize(serializer)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "serde")]
|
||||
impl<'de, Z> serde::Deserialize<'de> for Zeroizing<Z>
|
||||
where
|
||||
Z: Zeroize + serde::Deserialize<'de>,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where
|
||||
D: serde::Deserializer<'de>,
|
||||
{
|
||||
Ok(Self(Z::deserialize(deserializer)?))
|
||||
}
|
||||
}
|
||||
|
||||
/// Use fences to prevent accesses from being reordered before this
|
||||
/// point, which should hopefully help ensure that all accessors
|
||||
/// see zeroes after this point.
|
||||
#[inline(always)]
|
||||
fn atomic_fence() {
|
||||
atomic::compiler_fence(atomic::Ordering::SeqCst);
|
||||
}
|
||||
|
||||
/// Perform a volatile write to the destination
|
||||
#[inline(always)]
|
||||
fn volatile_write<T: Copy + Sized>(dst: &mut T, src: T) {
|
||||
unsafe { ptr::write_volatile(dst, src) }
|
||||
}
|
||||
|
||||
/// Perform a volatile `memset` operation which fills a slice with a value
|
||||
///
|
||||
/// Safety:
|
||||
/// The memory pointed to by `dst` must be a single allocated object that is valid for `count`
|
||||
/// contiguous elements of `T`.
|
||||
/// `count` must not be larger than an `isize`.
|
||||
/// `dst` being offset by `mem::size_of::<T> * count` bytes must not wrap around the address space.
|
||||
/// Also `dst` must be properly aligned.
|
||||
#[inline(always)]
|
||||
unsafe fn volatile_set<T: Copy + Sized>(dst: *mut T, src: T, count: usize) {
|
||||
// TODO(tarcieri): use `volatile_set_memory` when stabilized
|
||||
for i in 0..count {
|
||||
// Safety:
|
||||
//
|
||||
// This is safe because there is room for at least `count` objects of type `T` in the
|
||||
// allocation pointed to by `dst`, because `count <= isize::MAX` and because
|
||||
// `dst.add(count)` must not wrap around the address space.
|
||||
let ptr = dst.add(i);
|
||||
|
||||
// Safety:
|
||||
//
|
||||
// This is safe, because the pointer is valid and because `dst` is well aligned for `T` and
|
||||
// `ptr` is an offset of `dst` by a multiple of `mem::size_of::<T>()` bytes.
|
||||
ptr::write_volatile(ptr, src);
|
||||
}
|
||||
}
|
||||
|
||||
/// Internal module used as support for `AssertZeroizeOnDrop`.
|
||||
#[doc(hidden)]
|
||||
pub mod __internal {
|
||||
use super::*;
|
||||
|
||||
/// Auto-deref workaround for deriving `ZeroizeOnDrop`.
|
||||
pub trait AssertZeroizeOnDrop {
|
||||
fn zeroize_or_on_drop(self);
|
||||
}
|
||||
|
||||
impl<T: ZeroizeOnDrop + ?Sized> AssertZeroizeOnDrop for &&mut T {
|
||||
fn zeroize_or_on_drop(self) {}
|
||||
}
|
||||
|
||||
/// Auto-deref workaround for deriving `ZeroizeOnDrop`.
|
||||
pub trait AssertZeroize {
|
||||
fn zeroize_or_on_drop(&mut self);
|
||||
}
|
||||
|
||||
impl<T: Zeroize + ?Sized> AssertZeroize for T {
|
||||
fn zeroize_or_on_drop(&mut self) {
|
||||
self.zeroize()
|
||||
}
|
||||
}
|
||||
}
|
26
vendor/zeroize/src/x86.rs
vendored
Normal file
26
vendor/zeroize/src/x86.rs
vendored
Normal file
@ -0,0 +1,26 @@
|
||||
//! [`Zeroize`] impls for x86 SIMD registers
|
||||
|
||||
use crate::{atomic_fence, volatile_write, Zeroize};
|
||||
|
||||
#[cfg(target_arch = "x86")]
|
||||
use core::arch::x86::*;
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
use core::arch::x86_64::*;
|
||||
|
||||
macro_rules! impl_zeroize_for_simd_register {
|
||||
($($type:ty),* $(,)?) => {
|
||||
$(
|
||||
#[cfg_attr(docsrs, doc(cfg(any(target_arch = "x86", target_arch = "x86_64"))))]
|
||||
impl Zeroize for $type {
|
||||
#[inline]
|
||||
fn zeroize(&mut self) {
|
||||
volatile_write(self, unsafe { core::mem::zeroed() });
|
||||
atomic_fence();
|
||||
}
|
||||
}
|
||||
)*
|
||||
};
|
||||
}
|
||||
|
||||
impl_zeroize_for_simd_register!(__m128, __m128d, __m128i, __m256, __m256d, __m256i);
|
Reference in New Issue
Block a user