0
mirror of https://github.com/sampletext32/ParkanPlayground.git synced 2025-05-19 03:41:18 +03:00

Refactored floating point instruction handlers for better organization and maintainability. Split generic handlers into specialized classes for DD and DF opcodes.

This commit is contained in:
bird_egop 2025-04-18 00:22:02 +03:00
parent ec56576116
commit d216c29315
62 changed files with 4985 additions and 376 deletions

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FADD ST(i), ST(0) instruction (DC C0-C7)
/// </summary>
public class FaddRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FaddRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FaddRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FADD ST(i), ST(0) is DC C0-C7
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 0
return reg == 0 && mod == 3;
}
/// <summary>
/// Decodes a FADD ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fadd;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FADDP ST(i), ST(0) instruction (DE C0-C7)
/// </summary>
public class FaddpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FaddpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FaddpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FADDP ST(i), ST(0) is DE C0-C7
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 0
return reg == 0 && mod == 3;
}
/// <summary>
/// Decodes a FADDP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Faddp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FDIV ST(i), ST(0) instruction (DC F0-F7)
/// </summary>
public class FdivRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FdivRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FdivRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FDIV ST(i), ST(0) is DC F0-F7
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 6
return reg == 6 && mod == 3;
}
/// <summary>
/// Decodes a FDIV ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fdiv;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FDIVP ST(i), ST(0) instruction (DE F0-F7)
/// </summary>
public class FdivpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FdivpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FdivpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FDIVP ST(i), ST(0) is DE F0-F7
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 6
return reg == 6 && mod == 3;
}
/// <summary>
/// Decodes a FDIVP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fdivp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FDIVR ST(i), ST(0) instruction (DC F8-FF)
/// </summary>
public class FdivrRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FdivrRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FdivrRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FDIVR ST(i), ST(0) is DC F8-FF
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 7
return reg == 7 && mod == 3;
}
/// <summary>
/// Decodes a FDIVR ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fdivr;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FDIVRP ST(i), ST(0) instruction (DE F8-FF)
/// </summary>
public class FdivrpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FdivrpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FdivrpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FDIVRP ST(i), ST(0) is DE F8-FF
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 7
return reg == 7 && mod == 3;
}
/// <summary>
/// Decodes a FDIVRP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fdivrp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIADD int16 instruction (DE /0)
/// </summary>
public class FiaddInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FiaddInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FiaddInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIADD int16 is DE /0
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 0
return reg == 0 && mod != 3;
}
/// <summary>
/// Decodes a FIADD int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fiadd;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIDIV int16 instruction (DE /6)
/// </summary>
public class FidivInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FidivInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FidivInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIDIV int16 is DE /6
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 6
return reg == 6 && mod != 3;
}
/// <summary>
/// Decodes a FIDIV int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fidiv;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIDIVR int16 instruction (DE /7)
/// </summary>
public class FidivrInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FidivrInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FidivrInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIDIVR int16 is DE /7
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 7
return reg == 7 && mod != 3;
}
/// <summary>
/// Decodes a FIDIVR int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fidivr;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIMUL int16 instruction (DE /1)
/// </summary>
public class FimulInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FimulInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FimulInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIMUL int16 is DE /1
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 1
return reg == 1 && mod != 3;
}
/// <summary>
/// Decodes a FIMUL int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fimul;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISUB int16 instruction (DE /4)
/// </summary>
public class FisubInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FisubInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FisubInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISUB int16 is DE /4
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 4
return reg == 4 && mod != 3;
}
/// <summary>
/// Decodes a FISUB int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fisub;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISUBR int16 instruction (DE /5)
/// </summary>
public class FisubrInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FisubrInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FisubrInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISUBR int16 is DE /5
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 5
return reg == 5 && mod != 3;
}
/// <summary>
/// Decodes a FISUBR int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Fisubr;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FMUL ST(i), ST(0) instruction (DC C8-CF)
/// </summary>
public class FmulRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FmulRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FmulRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FMUL ST(i), ST(0) is DC C8-CF
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 1
return reg == 1 && mod == 3;
}
/// <summary>
/// Decodes a FMUL ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fmul;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FMULP ST(i), ST(0) instruction (DE C8-CF)
/// </summary>
public class FmulpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FmulpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FmulpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FMULP ST(i), ST(0) is DE C8-CF
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 1
return reg == 1 && mod == 3;
}
/// <summary>
/// Decodes a FMULP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fmulp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSUB ST(i), ST(0) instruction (DC E0-E7)
/// </summary>
public class FsubRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FsubRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FsubRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSUB ST(i), ST(0) is DC E0-E7
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 4
return reg == 4 && mod == 3;
}
/// <summary>
/// Decodes a FSUB ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fsub;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSUBP ST(i), ST(0) instruction (DE E0-E7)
/// </summary>
public class FsubpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FsubpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FsubpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSUBP ST(i), ST(0) is DE E0-E7
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 4
return reg == 4 && mod == 3;
}
/// <summary>
/// Decodes a FSUBP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fsubp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSUBR ST(i), ST(0) instruction (DC E8-EF)
/// </summary>
public class FsubrRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FsubrRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FsubrRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSUBR ST(i), ST(0) is DC E8-EF
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 5
return reg == 5 && mod == 3;
}
/// <summary>
/// Decodes a FSUBR ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fsubr;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Arithmetic;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSUBRP ST(i), ST(0) instruction (DE E8-EF)
/// </summary>
public class FsubrpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FsubrpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FsubrpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSUBRP ST(i), ST(0) is DE E8-EF
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 5
return reg == 5 && mod == 3;
}
/// <summary>
/// Decodes a FSUBRP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fsubrp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCOM ST(i), ST(0) instruction (DC D0-D7)
/// </summary>
public class FcomRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcomRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcomRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCOM ST(i), ST(0) is DC D0-D7
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 2 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 2
return reg == 2 && mod == 3;
}
/// <summary>
/// Decodes a FCOM ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcom;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCOMI instruction (DB F0-F7)
/// </summary>
public class FcomiHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcomiHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcomiHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCOMI is DB F0-F7
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 7
return reg == 7 && mod == 3;
}
/// <summary>
/// Decodes a FCOMI instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcomi;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
var srcOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCOMIP ST(0), ST(i) instruction (DF F0-F7)
/// </summary>
public class FcomipHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcomipHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcomipHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCOMIP ST(0), ST(i) is DF F0-F7
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 6
return reg == 6 && mod == 3;
}
/// <summary>
/// Decodes a FCOMIP ST(0), ST(i) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcomip;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
var srcOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCOMP ST(i), ST(0) instruction (DC D8-DF)
/// </summary>
public class FcompRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcompRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcompRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCOMP ST(i), ST(0) is DC D8-DF
if (opcode != 0xDC) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 3 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 3
return reg == 3 && mod == 3;
}
/// <summary>
/// Decodes a FCOMP ST(i), ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcomp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var stiOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
var st0Operand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
stiOperand,
st0Operand
];
return true;
}
}

View File

@ -0,0 +1,69 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCOMP ST(0) instruction (DE D3)
/// </summary>
public class FcompStHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcompStHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcompStHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCOMP ST(0) is DE D3
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte is exactly D3 (reg = 2, rm = 3, mod = 3)
byte modRm = Decoder.PeakByte();
return modRm == 0xD3;
}
/// <summary>
/// Decodes a FCOMP ST(0) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcomp;
// Create the FPU register operand
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -0,0 +1,63 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCOMPP instruction (DE D9)
/// </summary>
public class FcomppHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcomppHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcomppHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCOMPP is DE D9
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte is exactly D9 (reg = 3, rm = 1, mod = 3)
byte modRm = Decoder.PeakByte();
return modRm == 0xD9;
}
/// <summary>
/// Decodes a FCOMPP instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcompp;
// FCOMPP has no operands
instruction.StructuredOperands = [];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FICOM int16 instruction (DE /2)
/// </summary>
public class FicomInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FicomInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FicomInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FICOM int16 is DE /2
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 2
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 2
return reg == 2 && mod != 3;
}
/// <summary>
/// Decodes a FICOM int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Ficom;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FICOMP int16 instruction (DE /3)
/// </summary>
public class FicompInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FicompInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FicompInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FICOMP int16 is DE /3
if (opcode != 0xDE) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 3
return reg == 3 && mod != 3;
}
/// <summary>
/// Decodes a FICOMP int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte, specifying that we're dealing with 16-bit operands
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM16();
// Set the instruction type
instruction.Type = InstructionType.Ficomp;
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,87 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FUCOM ST(i) instruction (DD E0-E7)
/// </summary>
public class FucomHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FucomHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FucomHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FUCOM ST(i) is DD E0-E7
if (opcode != 0xDD) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 4
return reg == 4 && mod == 3;
}
/// <summary>
/// Decodes a FUCOM ST(i) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fucom;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operand
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FUCOMI instruction (DB E8-EF)
/// </summary>
public class FucomiHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FucomiHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FucomiHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FUCOMI is DB E8-EF
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 6
return reg == 6 && mod == 3;
}
/// <summary>
/// Decodes a FUCOMI instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fucomi;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
var srcOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FUCOMIP ST(0), ST(i) instruction (DF E8-EF)
/// </summary>
public class FucomipHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FucomipHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FucomipHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FUCOMIP ST(0), ST(i) is DF E8-EF
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 5
return reg == 5 && mod == 3;
}
/// <summary>
/// Decodes a FUCOMIP ST(0), ST(i) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fucomip;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
var srcOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,87 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Comparison;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FUCOMP ST(i) instruction (DD E8-EF)
/// </summary>
public class FucompHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FucompHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FucompHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FUCOMP ST(i) is DD E8-EF
if (opcode != 0xDD) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 5
return reg == 5 && mod == 3;
}
/// <summary>
/// Decodes a FUCOMP ST(i) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fucomp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operand
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Conditional;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCMOVNB instruction (DB C0-C7)
/// </summary>
public class FcmovnbHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcmovnbHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcmovnbHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCMOVNB is DB C0-C7
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 0
return reg == 0 && mod == 3;
}
/// <summary>
/// Decodes a FCMOVNB instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcmovnb;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
var srcOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Conditional;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCMOVNBE instruction (DB D0-D7)
/// </summary>
public class FcmovnbeHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcmovnbeHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcmovnbeHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCMOVNBE is DB D0-D7
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 2 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 2
return reg == 2 && mod == 3;
}
/// <summary>
/// Decodes a FCMOVNBE instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcmovnbe;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
var srcOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Conditional;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCMOVNE instruction (DB C8-CF)
/// </summary>
public class FcmovneHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcmovneHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcmovneHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCMOVNE is DB C8-CF
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 1
return reg == 1 && mod == 3;
}
/// <summary>
/// Decodes a FCMOVNE instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcmovne;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
var srcOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,89 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Conditional;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCMOVNU instruction (DB D8-DF)
/// </summary>
public class FcmovnuHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FcmovnuHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FcmovnuHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCMOVNU is DB D8-DF
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 3 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 3
return reg == 3 && mod == 3;
}
/// <summary>
/// Decodes a FCMOVNU instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fcmovnu;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
var srcOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
return true;
}
}

View File

@ -0,0 +1,63 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Control;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FCLEX instruction (DB E2)
/// </summary>
public class FclexHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FclexHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FclexHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FCLEX is DB E2
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the next byte is E2
byte nextByte = Decoder.PeakByte();
return nextByte == 0xE2;
}
/// <summary>
/// Decodes a FCLEX instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the second byte of the opcode
byte secondByte = Decoder.ReadByte();
// Set the instruction type
instruction.Type = InstructionType.Fclex;
// FCLEX has no operands
instruction.StructuredOperands = [];
return true;
}
}

View File

@ -0,0 +1,87 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Control;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FFREE ST(i) instruction (DD C0-C7)
/// </summary>
public class FfreeHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FfreeHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FfreeHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FFREE ST(i) is DD C0-C7
if (opcode != 0xDD) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 0
return reg == 0 && mod == 3;
}
/// <summary>
/// Decodes a FFREE ST(i) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Ffree;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operand
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -0,0 +1,87 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Control;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FFREEP ST(i) instruction (DF C0-C7)
/// </summary>
public class FfreepHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FfreepHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FfreepHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FFREEP ST(i) is DF C0-C7
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 0
return reg == 0 && mod == 3;
}
/// <summary>
/// Decodes a FFREEP ST(i) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Ffreep;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operand
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -0,0 +1,63 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Control;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FINIT instruction (DB E3)
/// </summary>
public class FinitHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FinitHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FinitHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FINIT is DB E3
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the next byte is E3
byte nextByte = Decoder.PeakByte();
return nextByte == 0xE3;
}
/// <summary>
/// Decodes a FINIT instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the second byte of the opcode
byte secondByte = Decoder.ReadByte();
// Set the instruction type
instruction.Type = InstructionType.Finit;
// FINIT has no operands
instruction.StructuredOperands = [];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Control;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FNSAVE instruction (DD /6)
/// </summary>
public class FnsaveHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FnsaveHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FnsaveHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FNSAVE is DD /6
if (opcode != 0xDD) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 6 && mod != 3;
}
/// <summary>
/// Decodes a FNSAVE instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fnsave;
// Set the structured operands
instruction.StructuredOperands =
[
rawOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Control;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FNSTSW memory instruction (DD /7)
/// </summary>
public class FnstswMemoryHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FnstswMemoryHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FnstswMemoryHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FNSTSW is DD /7
if (opcode != 0xDD) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 7 && mod != 3;
}
/// <summary>
/// Decodes a FNSTSW memory instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fnstsw;
// Create a 16-bit memory operand for status word
Operand memoryOperand;
if (rawOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand16(directMemory.Address);
}
else if (rawOperand is BaseRegisterMemoryOperand baseRegMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand16(baseRegMemory.BaseRegister);
}
else if (rawOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand16(dispMemory.BaseRegister, dispMemory.Displacement);
}
else if (rawOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand16(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement);
}
else
{
memoryOperand = rawOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.Control;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FRSTOR instruction (DD /4)
/// </summary>
public class FrstorHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FrstorHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FrstorHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FRSTOR is DD /4
if (opcode != 0xDD) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 4 && mod != 3;
}
/// <summary>
/// Decodes a FRSTOR instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Frstor;
// Set the structured operands
instruction.StructuredOperands =
[
rawOperand
];
return true;
}
}

View File

@ -1,145 +0,0 @@
using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.FloatingPoint;
/// <summary>
/// Handler for floating-point operations on int32 (DA opcode)
/// </summary>
public class Int32OperationHandler : InstructionHandler
{
// Memory operand instruction types for DA opcode - operations on int32
private static readonly InstructionType[] MemoryInstructionTypes =
[
InstructionType.Fiadd, // fiadd dword ptr [r/m]
InstructionType.Fimul, // fimul dword ptr [r/m]
InstructionType.Ficom, // ficom dword ptr [r/m]
InstructionType.Ficomp, // ficomp dword ptr [r/m]
InstructionType.Fisub, // fisub dword ptr [r/m]
InstructionType.Fisubr, // fisubr dword ptr [r/m]
InstructionType.Fidiv, // fidiv dword ptr [r/m]
InstructionType.Fidivr // fidivr dword ptr [r/m]
];
// Register-register operations mapping (mod=3)
private static readonly Dictionary<(RegisterIndex Reg, RegisterIndex Rm), (InstructionType Type, FpuRegisterIndex DestIndex, FpuRegisterIndex SrcIndex)> RegisterOperations = new()
{
// FCMOVB st(0), st(i)
{ (RegisterIndex.A, RegisterIndex.A), (InstructionType.Fcmovb, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) },
{ (RegisterIndex.A, RegisterIndex.C), (InstructionType.Fcmovb, FpuRegisterIndex.ST0, FpuRegisterIndex.ST1) },
{ (RegisterIndex.A, RegisterIndex.D), (InstructionType.Fcmovb, FpuRegisterIndex.ST0, FpuRegisterIndex.ST2) },
{ (RegisterIndex.A, RegisterIndex.B), (InstructionType.Fcmovb, FpuRegisterIndex.ST0, FpuRegisterIndex.ST3) },
{ (RegisterIndex.A, RegisterIndex.Sp), (InstructionType.Fcmovb, FpuRegisterIndex.ST0, FpuRegisterIndex.ST4) },
{ (RegisterIndex.A, RegisterIndex.Bp), (InstructionType.Fcmovb, FpuRegisterIndex.ST0, FpuRegisterIndex.ST5) },
{ (RegisterIndex.A, RegisterIndex.Si), (InstructionType.Fcmovb, FpuRegisterIndex.ST0, FpuRegisterIndex.ST6) },
{ (RegisterIndex.A, RegisterIndex.Di), (InstructionType.Fcmovb, FpuRegisterIndex.ST0, FpuRegisterIndex.ST7) },
// FCMOVE st(0), st(i)
{ (RegisterIndex.B, RegisterIndex.A), (InstructionType.Fcmove, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) },
{ (RegisterIndex.B, RegisterIndex.C), (InstructionType.Fcmove, FpuRegisterIndex.ST0, FpuRegisterIndex.ST1) },
{ (RegisterIndex.B, RegisterIndex.D), (InstructionType.Fcmove, FpuRegisterIndex.ST0, FpuRegisterIndex.ST2) },
{ (RegisterIndex.B, RegisterIndex.B), (InstructionType.Fcmove, FpuRegisterIndex.ST0, FpuRegisterIndex.ST3) },
{ (RegisterIndex.B, RegisterIndex.Sp), (InstructionType.Fcmove, FpuRegisterIndex.ST0, FpuRegisterIndex.ST4) },
{ (RegisterIndex.B, RegisterIndex.Bp), (InstructionType.Fcmove, FpuRegisterIndex.ST0, FpuRegisterIndex.ST5) },
{ (RegisterIndex.B, RegisterIndex.Si), (InstructionType.Fcmove, FpuRegisterIndex.ST0, FpuRegisterIndex.ST6) },
{ (RegisterIndex.B, RegisterIndex.Di), (InstructionType.Fcmove, FpuRegisterIndex.ST0, FpuRegisterIndex.ST7) },
// FCMOVBE st(0), st(i)
{ (RegisterIndex.C, RegisterIndex.A), (InstructionType.Fcmovbe, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) },
{ (RegisterIndex.C, RegisterIndex.C), (InstructionType.Fcmovbe, FpuRegisterIndex.ST0, FpuRegisterIndex.ST1) },
{ (RegisterIndex.C, RegisterIndex.D), (InstructionType.Fcmovbe, FpuRegisterIndex.ST0, FpuRegisterIndex.ST2) },
{ (RegisterIndex.C, RegisterIndex.B), (InstructionType.Fcmovbe, FpuRegisterIndex.ST0, FpuRegisterIndex.ST3) },
{ (RegisterIndex.C, RegisterIndex.Sp), (InstructionType.Fcmovbe, FpuRegisterIndex.ST0, FpuRegisterIndex.ST4) },
{ (RegisterIndex.C, RegisterIndex.Bp), (InstructionType.Fcmovbe, FpuRegisterIndex.ST0, FpuRegisterIndex.ST5) },
{ (RegisterIndex.C, RegisterIndex.Si), (InstructionType.Fcmovbe, FpuRegisterIndex.ST0, FpuRegisterIndex.ST6) },
{ (RegisterIndex.C, RegisterIndex.Di), (InstructionType.Fcmovbe, FpuRegisterIndex.ST0, FpuRegisterIndex.ST7) },
// FCMOVU st(0), st(i)
{ (RegisterIndex.D, RegisterIndex.A), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) },
{ (RegisterIndex.D, RegisterIndex.C), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST1) },
{ (RegisterIndex.D, RegisterIndex.D), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST2) },
{ (RegisterIndex.D, RegisterIndex.B), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST3) },
{ (RegisterIndex.D, RegisterIndex.Sp), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST4) },
{ (RegisterIndex.D, RegisterIndex.Bp), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST5) },
{ (RegisterIndex.D, RegisterIndex.Si), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST6) },
{ (RegisterIndex.D, RegisterIndex.Di), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST7) },
// Special case
{ (RegisterIndex.Di, RegisterIndex.B), (InstructionType.Fcmovu, FpuRegisterIndex.ST0, FpuRegisterIndex.ST0) }
};
/// <summary>
/// Initializes a new instance of the Int32OperationHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public Int32OperationHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
return opcode == 0xDA;
}
/// <summary>
/// Decodes a floating-point instruction for int32 operations
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, memoryOperand) = ModRMDecoder.ReadModRM();
// Handle based on addressing mode
if (mod != 3) // Memory operand
{
// Set the instruction type based on the reg field
instruction.Type = MemoryInstructionTypes[(int)reg];
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
}
else // Register operand (ST(i))
{
// Look up the instruction type in the register operations dictionary
if (RegisterOperations.TryGetValue((reg, rm), out var operation))
{
instruction.Type = operation.Type;
// Create the FPU register operands
var destOperand = OperandFactory.CreateFPURegisterOperand(operation.DestIndex);
var srcOperand = OperandFactory.CreateFPURegisterOperand(operation.SrcIndex);
// Set the structured operands
instruction.StructuredOperands =
[
destOperand,
srcOperand
];
}
else
{
// Unknown instruction
instruction.Type = InstructionType.Unknown;
instruction.StructuredOperands = [];
}
}
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FBLD packed BCD instruction (DF /4)
/// </summary>
public class FbldHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FbldHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FbldHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FBLD is DF /4
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 4
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 4
return reg == 4 && mod != 3;
}
/// <summary>
/// Decodes a FBLD packed BCD instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fbld;
// Create an 80-bit memory operand for packed BCD
Operand memoryOperand;
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 80);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseMemory.BaseRegister, 80);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 80);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 80);
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FBSTP packed BCD instruction (DF /6)
/// </summary>
public class FbstpHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FbstpHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FbstpHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FBSTP is DF /6
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 6
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 6
return reg == 6 && mod != 3;
}
/// <summary>
/// Decodes a FBSTP packed BCD instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fbstp;
// Create an 80-bit memory operand for packed BCD
Operand memoryOperand;
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 80);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseMemory.BaseRegister, 80);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 80);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 80);
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FILD int16 instruction (DF /0)
/// </summary>
public class FildInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FildInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FildInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FILD int16 is DF /0
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 0
return reg == 0 && mod != 3;
}
/// <summary>
/// Decodes a FILD int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fild;
// Create a 16-bit memory operand
Operand memoryOperand;
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 16);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseMemory.BaseRegister, 16);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 16);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 16);
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FILD int32 instruction (DB /0)
/// </summary>
public class FildInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FildInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FildInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FILD is DB /0
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 0
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 0 && mod != 3;
}
/// <summary>
/// Decodes a FILD int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fild;
// Create a 32-bit memory operand for integer operations
Operand memoryOperand;
if (rawOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 32);
}
else if (rawOperand is BaseRegisterMemoryOperand baseRegMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseRegMemory.BaseRegister, 32);
}
else if (rawOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 32);
}
else if (rawOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 32);
}
else
{
memoryOperand = rawOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FILD int64 instruction (DF /5)
/// </summary>
public class FildInt64Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FildInt64Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FildInt64Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FILD int64 is DF /5
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 5
return reg == 5 && mod != 3;
}
/// <summary>
/// Decodes a FILD int64 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fild;
// Create a 64-bit memory operand
Operand memoryOperand;
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 64);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseMemory.BaseRegister, 64);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 64);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 64);
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIST int16 instruction (DF /2)
/// </summary>
public class FistInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FistInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FistInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIST int16 is DF /2
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 2
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 2
return reg == 2 && mod != 3;
}
/// <summary>
/// Decodes a FIST int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fist;
// Create a 16-bit memory operand
Operand memoryOperand;
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 16);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseMemory.BaseRegister, 16);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 16);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 16);
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FIST int32 instruction (DB /2)
/// </summary>
public class FistInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FistInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FistInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FIST is DB /2
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 2
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 2 && mod != 3;
}
/// <summary>
/// Decodes a FIST int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fist;
// Create a 32-bit memory operand for integer operations
Operand memoryOperand;
if (rawOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 32);
}
else if (rawOperand is BaseRegisterMemoryOperand baseRegMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseRegMemory.BaseRegister, 32);
}
else if (rawOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 32);
}
else if (rawOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 32);
}
else
{
memoryOperand = rawOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISTP int16 instruction (DF /3)
/// </summary>
public class FistpInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FistpInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FistpInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISTP int16 is DF /3
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 3
return reg == 3 && mod != 3;
}
/// <summary>
/// Decodes a FISTP int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fistp;
// Create a 16-bit memory operand
Operand memoryOperand;
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 16);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseMemory.BaseRegister, 16);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 16);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 16);
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISTP int32 instruction (DB /3)
/// </summary>
public class FistpInt32Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FistpInt32Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FistpInt32Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISTP is DB /3
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 3 && mod != 3;
}
/// <summary>
/// Decodes a FISTP int32 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fistp;
// Create a 32-bit memory operand for integer operations
Operand memoryOperand;
if (rawOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 32);
}
else if (rawOperand is BaseRegisterMemoryOperand baseRegMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseRegMemory.BaseRegister, 32);
}
else if (rawOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 32);
}
else if (rawOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 32);
}
else
{
memoryOperand = rawOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISTP int64 instruction (DF /7)
/// </summary>
public class FistpInt64Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FistpInt64Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FistpInt64Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISTP int64 is DF /7
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 7
return reg == 7 && mod != 3;
}
/// <summary>
/// Decodes a FISTP int64 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fistp;
// Create a 64-bit memory operand
Operand memoryOperand;
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 64);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseMemory.BaseRegister, 64);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 64);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 64);
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FISTTP int16 instruction (DF /1)
/// </summary>
public class FisttpInt16Handler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FisttpInt16Handler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FisttpInt16Handler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FISTTP int16 is DF /1
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 1
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3) with reg = 1
return reg == 1 && mod != 3;
}
/// <summary>
/// Decodes a FISTTP int16 instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fisttp;
// Create a 16-bit memory operand
Operand memoryOperand;
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 16);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseMemory.BaseRegister, 16);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 16);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 16);
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FLD extended-precision instruction (DB /5)
/// </summary>
public class FldExtendedHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FldExtendedHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FldExtendedHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FLD extended-precision is DB /5
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 5
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 5 && mod != 3;
}
/// <summary>
/// Decodes a FLD extended-precision instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fld;
// Create an 80-bit memory operand for extended precision operations
Operand memoryOperand;
if (rawOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 80);
}
else if (rawOperand is BaseRegisterMemoryOperand baseRegMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseRegMemory.BaseRegister, 80);
}
else if (rawOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 80);
}
else if (rawOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 80);
}
else
{
memoryOperand = rawOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,87 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FST ST(i) instruction (DD D0-D7)
/// </summary>
public class FstRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FstRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FstRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FST ST(i) is DD D0-D7
if (opcode != 0xDD) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 2 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 2
return reg == 2 && mod == 3;
}
/// <summary>
/// Decodes a FST ST(i) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fst;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operand
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -0,0 +1,70 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSTP instruction with DF opcode (DF D0-D8)
/// </summary>
public class FstpDfHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FstpDfHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FstpDfHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSTP with DF opcode is DF D0 or DF D8
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte is D0 (reg = 2, rm = 0, mod = 3) or D8 (reg = 3, rm = 0, mod = 3)
byte modRm = Decoder.PeakByte();
return modRm == 0xD0 || modRm == 0xD8;
}
/// <summary>
/// Decodes a FSTP instruction with DF opcode
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fstp;
// Create the FPU register operand
// For both D0 and D8, the operand is ST1
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST1);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -0,0 +1,94 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSTP extended-precision instruction (DB /7)
/// </summary>
public class FstpExtendedHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FstpExtendedHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FstpExtendedHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSTP extended-precision is DB /7
if (opcode != 0xDB) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 7
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle memory operands (mod != 3)
return reg == 7 && mod != 3;
}
/// <summary>
/// Decodes a FSTP extended-precision instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawOperand) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fstp;
// Create an 80-bit memory operand for extended precision operations
Operand memoryOperand;
if (rawOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 80);
}
else if (rawOperand is BaseRegisterMemoryOperand baseRegMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseRegMemory.BaseRegister, 80);
}
else if (rawOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 80);
}
else if (rawOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 80);
}
else
{
memoryOperand = rawOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
return true;
}
}

View File

@ -0,0 +1,87 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FSTP ST(i) instruction (DD D8-DF)
/// </summary>
public class FstpRegisterHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FstpRegisterHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FstpRegisterHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FSTP ST(i) is DD D8-DF
if (opcode != 0xDD) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte has reg field = 3 and mod = 3
byte modRm = Decoder.PeakByte();
byte reg = (byte)((modRm >> 3) & 0x7);
byte mod = (byte)((modRm >> 6) & 0x3);
// Only handle register operands (mod = 3) with reg = 3
return reg == 3 && mod == 3;
}
/// <summary>
/// Decodes a FSTP ST(i) instruction
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fstp;
// Map rm field to FPU register index
FpuRegisterIndex stIndex = rm switch
{
RegisterIndex.A => FpuRegisterIndex.ST0,
RegisterIndex.C => FpuRegisterIndex.ST1,
RegisterIndex.D => FpuRegisterIndex.ST2,
RegisterIndex.B => FpuRegisterIndex.ST3,
RegisterIndex.Sp => FpuRegisterIndex.ST4,
RegisterIndex.Bp => FpuRegisterIndex.ST5,
RegisterIndex.Si => FpuRegisterIndex.ST6,
RegisterIndex.Di => FpuRegisterIndex.ST7,
_ => FpuRegisterIndex.ST0 // Default case, should not happen
};
// Create the FPU register operand
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(stIndex);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -0,0 +1,69 @@
namespace X86Disassembler.X86.Handlers.FloatingPoint.LoadStore;
using X86Disassembler.X86.Operands;
/// <summary>
/// Handler for FXCH instruction with DF opcode (DF C8)
/// </summary>
public class FxchDfHandler : InstructionHandler
{
/// <summary>
/// Initializes a new instance of the FxchDfHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public FxchDfHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
// FXCH with DF opcode is DF C8
if (opcode != 0xDF) return false;
if (!Decoder.CanReadByte())
{
return false;
}
// Check if the ModR/M byte is exactly C8 (reg = 1, rm = 0, mod = 3)
byte modRm = Decoder.PeakByte();
return modRm == 0xC8;
}
/// <summary>
/// Decodes a FXCH instruction with DF opcode
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, _) = ModRMDecoder.ReadModRM();
// Set the instruction type
instruction.Type = InstructionType.Fxch;
// Create the FPU register operand
var fpuRegisterOperand = OperandFactory.CreateFPURegisterOperand(FpuRegisterIndex.ST0);
// Set the structured operands
instruction.StructuredOperands =
[
fpuRegisterOperand
];
return true;
}
}

View File

@ -1,212 +0,0 @@
using X86Disassembler.X86.Operands;
namespace X86Disassembler.X86.Handlers.FloatingPoint;
/// <summary>
/// Handler for floating-point load, store, and control operations (D9 opcode)
/// </summary>
public class LoadStoreControlHandler : InstructionHandler
{
// Memory operand instruction types for D9 opcode - load, store, and control operations
private static readonly InstructionType[] MemoryInstructionTypes =
[
InstructionType.Fld, // 0 - fld dword ptr [r/m]
InstructionType.Unknown, // 1 - (reserved)
InstructionType.Fst, // 2 - fst dword ptr [r/m]
InstructionType.Fstp, // 3 - fstp dword ptr [r/m]
InstructionType.Fldenv, // 4 - fldenv [r/m]
InstructionType.Fldcw, // 5 - fldcw [r/m]
InstructionType.Fnstenv, // 6 - fnstenv [r/m]
InstructionType.Fnstcw // 7 - fnstcw [r/m]
];
// Register-register operations mapping (mod=3)
private static readonly Dictionary<(RegisterIndex Reg, RegisterIndex Rm), (InstructionType Type, FpuRegisterIndex? OperandIndex)> RegisterOperations = new()
{
// FLD ST(i)
{ (RegisterIndex.A, RegisterIndex.A), (InstructionType.Fld, FpuRegisterIndex.ST0) },
{ (RegisterIndex.A, RegisterIndex.C), (InstructionType.Fld, FpuRegisterIndex.ST1) },
{ (RegisterIndex.A, RegisterIndex.D), (InstructionType.Fld, FpuRegisterIndex.ST2) },
{ (RegisterIndex.A, RegisterIndex.B), (InstructionType.Fld, FpuRegisterIndex.ST3) },
{ (RegisterIndex.A, RegisterIndex.Sp), (InstructionType.Fld, FpuRegisterIndex.ST4) },
{ (RegisterIndex.A, RegisterIndex.Bp), (InstructionType.Fld, FpuRegisterIndex.ST5) },
{ (RegisterIndex.A, RegisterIndex.Si), (InstructionType.Fld, FpuRegisterIndex.ST6) },
{ (RegisterIndex.A, RegisterIndex.Di), (InstructionType.Fld, FpuRegisterIndex.ST7) },
// FXCH ST(i)
{ (RegisterIndex.B, RegisterIndex.A), (InstructionType.Fxch, FpuRegisterIndex.ST0) },
{ (RegisterIndex.B, RegisterIndex.C), (InstructionType.Fxch, FpuRegisterIndex.ST1) },
{ (RegisterIndex.B, RegisterIndex.D), (InstructionType.Fxch, FpuRegisterIndex.ST2) },
{ (RegisterIndex.B, RegisterIndex.B), (InstructionType.Fxch, FpuRegisterIndex.ST3) },
{ (RegisterIndex.B, RegisterIndex.Sp), (InstructionType.Fxch, FpuRegisterIndex.ST4) },
{ (RegisterIndex.B, RegisterIndex.Bp), (InstructionType.Fxch, FpuRegisterIndex.ST5) },
{ (RegisterIndex.B, RegisterIndex.Si), (InstructionType.Fxch, FpuRegisterIndex.ST6) },
{ (RegisterIndex.B, RegisterIndex.Di), (InstructionType.Fxch, FpuRegisterIndex.ST7) },
// D9E0-D9EF special instructions (reg=6)
{ (RegisterIndex.Si, RegisterIndex.A), (InstructionType.Fchs, null) },
{ (RegisterIndex.Si, RegisterIndex.B), (InstructionType.Fabs, null) },
{ (RegisterIndex.Si, RegisterIndex.Si), (InstructionType.Ftst, null) },
{ (RegisterIndex.Si, RegisterIndex.Di), (InstructionType.Fxam, null) },
// D9F0-D9FF special instructions (reg=7)
{ (RegisterIndex.Di, RegisterIndex.A), (InstructionType.F2xm1, null) },
{ (RegisterIndex.Di, RegisterIndex.B), (InstructionType.Fyl2x, null) },
{ (RegisterIndex.Di, RegisterIndex.C), (InstructionType.Fptan, null) },
{ (RegisterIndex.Di, RegisterIndex.D), (InstructionType.Fpatan, null) },
{ (RegisterIndex.Di, RegisterIndex.Si), (InstructionType.Fxtract, null) },
{ (RegisterIndex.Di, RegisterIndex.Di), (InstructionType.Fprem1, null) },
{ (RegisterIndex.Di, RegisterIndex.Sp), (InstructionType.Fdecstp, null) },
{ (RegisterIndex.Di, RegisterIndex.Bp), (InstructionType.Fincstp, null) },
// D9D0-D9DF special instructions (reg=5)
{ (RegisterIndex.Sp, RegisterIndex.A), (InstructionType.Fprem, null) },
{ (RegisterIndex.Sp, RegisterIndex.B), (InstructionType.Fyl2xp1, null) },
{ (RegisterIndex.Sp, RegisterIndex.C), (InstructionType.Fsqrt, null) },
{ (RegisterIndex.Sp, RegisterIndex.D), (InstructionType.Fsincos, null) },
{ (RegisterIndex.Sp, RegisterIndex.Si), (InstructionType.Frndint, null) },
{ (RegisterIndex.Sp, RegisterIndex.Di), (InstructionType.Fscale, null) },
{ (RegisterIndex.Sp, RegisterIndex.Sp), (InstructionType.Fsin, null) },
{ (RegisterIndex.Sp, RegisterIndex.Bp), (InstructionType.Fcos, null) },
// D9C8-D9CF special instructions (reg=4)
{ (RegisterIndex.Bp, RegisterIndex.A), (InstructionType.Fnop, null) },
{ (RegisterIndex.Bp, RegisterIndex.C), (InstructionType.Fwait, null) }
};
/// <summary>
/// Initializes a new instance of the LoadStoreControlHandler class
/// </summary>
/// <param name="decoder">The instruction decoder that owns this handler</param>
public LoadStoreControlHandler(InstructionDecoder decoder)
: base(decoder)
{
}
/// <summary>
/// Checks if this handler can decode the given opcode
/// </summary>
/// <param name="opcode">The opcode to check</param>
/// <returns>True if this handler can decode the opcode</returns>
public override bool CanHandle(byte opcode)
{
return opcode == 0xD9;
}
/// <summary>
/// Decodes a floating-point instruction for load, store, and control operations
/// </summary>
/// <param name="opcode">The opcode of the instruction</param>
/// <param name="instruction">The instruction object to populate</param>
/// <returns>True if the instruction was successfully decoded</returns>
public override bool Decode(byte opcode, Instruction instruction)
{
if (!Decoder.CanReadByte())
{
return false;
}
// Read the ModR/M byte
var (mod, reg, rm, rawMemoryOperand) = ModRMDecoder.ReadModRM();
// Handle based on addressing mode
if (mod != 3) // Memory operand
{
// Set the instruction type based on the reg field
instruction.Type = MemoryInstructionTypes[(int)reg];
// Create a new memory operand with the appropriate size based on the operation
Operand memoryOperand;
if (reg == RegisterIndex.A || reg == RegisterIndex.C || reg == RegisterIndex.D) // fld, fst, fstp
{
// Create a 32-bit memory operand for floating point operations
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand(directMemory.Address, 32);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseRegMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand(baseRegMemory.BaseRegister, 32);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand(dispMemory.BaseRegister, dispMemory.Displacement, 32);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement, 32);
}
else
{
memoryOperand = rawMemoryOperand;
}
}
else if (reg == RegisterIndex.Di || reg == RegisterIndex.Bp) // fldcw, fnstcw
{
// Create a 16-bit memory operand for control word operations
if (rawMemoryOperand is DirectMemoryOperand directMemory)
{
memoryOperand = OperandFactory.CreateDirectMemoryOperand16(directMemory.Address);
}
else if (rawMemoryOperand is BaseRegisterMemoryOperand baseRegMemory)
{
memoryOperand = OperandFactory.CreateBaseRegisterMemoryOperand16(baseRegMemory.BaseRegister);
}
else if (rawMemoryOperand is DisplacementMemoryOperand dispMemory)
{
memoryOperand = OperandFactory.CreateDisplacementMemoryOperand16(dispMemory.BaseRegister, dispMemory.Displacement);
}
else if (rawMemoryOperand is ScaledIndexMemoryOperand scaledMemory)
{
memoryOperand = OperandFactory.CreateScaledIndexMemoryOperand16(scaledMemory.IndexRegister, scaledMemory.Scale, scaledMemory.BaseRegister, scaledMemory.Displacement);
}
else
{
memoryOperand = rawMemoryOperand;
}
}
else
{
memoryOperand = rawMemoryOperand;
}
// Set the structured operands
instruction.StructuredOperands =
[
memoryOperand
];
}
else // Register operand (ST(i))
{
// Look up the instruction type in the register operations dictionary
if (RegisterOperations.TryGetValue((reg, rm), out var operation))
{
instruction.Type = operation.Type;
// Set the structured operands
if (operation.OperandIndex.HasValue)
{
var operand = OperandFactory.CreateFPURegisterOperand(operation.OperandIndex.Value);
instruction.StructuredOperands =
[
operand
];
}
else
{
// No operands for instructions like fchs, fabs, etc.
instruction.StructuredOperands = [];
}
}
else
{
// Unknown instruction
instruction.Type = InstructionType.Unknown;
instruction.StructuredOperands = [];
}
}
return true;
}
}

View File

@ -437,12 +437,85 @@ public class InstructionHandlerFactory
// Other floating point handlers
_handlers.Add(new FloatingPoint.Control.FnstswHandler(_decoder)); // FNSTSW AX (DF E0)
// Keep the existing handlers for operations not yet migrated to specialized handlers
_handlers.Add(new LoadStoreInt32Handler(_decoder)); // Load and store 32-bit values
_handlers.Add(new Float64OperationHandler(_decoder)); // Remaining float64 operations
_handlers.Add(new LoadStoreFloat64Handler(_decoder)); // Load and store 64-bit values
_handlers.Add(new Int16OperationHandler(_decoder)); // Integer operations on 16-bit values
_handlers.Add(new LoadStoreInt16Handler(_decoder)); // Load and store 16-bit values
// DB opcode handlers (int32 operations and extended precision)
_handlers.Add(new FloatingPoint.LoadStore.FildInt32Handler(_decoder)); // FILD int32 (DB /0)
_handlers.Add(new FloatingPoint.LoadStore.FistInt32Handler(_decoder)); // FIST int32 (DB /2)
_handlers.Add(new FloatingPoint.LoadStore.FistpInt32Handler(_decoder)); // FISTP int32 (DB /3)
_handlers.Add(new FloatingPoint.LoadStore.FldExtendedHandler(_decoder)); // FLD extended-precision (DB /5)
_handlers.Add(new FloatingPoint.LoadStore.FstpExtendedHandler(_decoder)); // FSTP extended-precision (DB /7)
// DB opcode handlers (conditional move instructions)
_handlers.Add(new FloatingPoint.Conditional.FcmovnbHandler(_decoder)); // FCMOVNB (DB C0-C7)
_handlers.Add(new FloatingPoint.Conditional.FcmovneHandler(_decoder)); // FCMOVNE (DB C8-CF)
_handlers.Add(new FloatingPoint.Conditional.FcmovnbeHandler(_decoder)); // FCMOVNBE (DB D0-D7)
_handlers.Add(new FloatingPoint.Conditional.FcmovnuHandler(_decoder)); // FCMOVNU (DB D8-DF)
// DB opcode handlers (control instructions)
_handlers.Add(new FloatingPoint.Control.FclexHandler(_decoder)); // FCLEX (DB E2)
_handlers.Add(new FloatingPoint.Control.FinitHandler(_decoder)); // FINIT (DB E3)
// DB opcode handlers (comparison instructions)
_handlers.Add(new FloatingPoint.Comparison.FucomiHandler(_decoder)); // FUCOMI (DB E8-EF)
_handlers.Add(new FloatingPoint.Comparison.FcomiHandler(_decoder)); // FCOMI (DB F0-F7)
// DC opcode handlers (register-register operations)
_handlers.Add(new FloatingPoint.Arithmetic.FaddRegisterHandler(_decoder)); // FADD ST(i), ST(0) (DC C0-C7)
_handlers.Add(new FloatingPoint.Arithmetic.FmulRegisterHandler(_decoder)); // FMUL ST(i), ST(0) (DC C8-CF)
_handlers.Add(new FloatingPoint.Comparison.FcomRegisterHandler(_decoder)); // FCOM ST(i), ST(0) (DC D0-D7)
_handlers.Add(new FloatingPoint.Comparison.FcompRegisterHandler(_decoder)); // FCOMP ST(i), ST(0) (DC D8-DF)
_handlers.Add(new FloatingPoint.Arithmetic.FsubRegisterHandler(_decoder)); // FSUB ST(i), ST(0) (DC E0-E7)
_handlers.Add(new FloatingPoint.Arithmetic.FsubrRegisterHandler(_decoder)); // FSUBR ST(i), ST(0) (DC E8-EF)
_handlers.Add(new FloatingPoint.Arithmetic.FdivRegisterHandler(_decoder)); // FDIV ST(i), ST(0) (DC F0-F7)
_handlers.Add(new FloatingPoint.Arithmetic.FdivrRegisterHandler(_decoder)); // FDIVR ST(i), ST(0) (DC F8-FF)
// DD opcode handlers (register operations)
_handlers.Add(new FloatingPoint.Control.FfreeHandler(_decoder)); // FFREE ST(i) (DD C0-C7)
_handlers.Add(new FloatingPoint.LoadStore.FstRegisterHandler(_decoder)); // FST ST(i) (DD D0-D7)
_handlers.Add(new FloatingPoint.LoadStore.FstpRegisterHandler(_decoder)); // FSTP ST(i) (DD D8-DF)
_handlers.Add(new FloatingPoint.Comparison.FucomHandler(_decoder)); // FUCOM ST(i) (DD E0-E7)
_handlers.Add(new FloatingPoint.Comparison.FucompHandler(_decoder)); // FUCOMP ST(i) (DD E8-EF)
// DD opcode handlers (memory operations)
_handlers.Add(new FloatingPoint.Control.FrstorHandler(_decoder)); // FRSTOR (DD /4)
_handlers.Add(new FloatingPoint.Control.FnsaveHandler(_decoder)); // FNSAVE (DD /6)
_handlers.Add(new FloatingPoint.Control.FnstswMemoryHandler(_decoder)); // FNSTSW memory (DD /7)
// DE opcode handlers (memory operations)
_handlers.Add(new FloatingPoint.Arithmetic.FiaddInt16Handler(_decoder)); // FIADD int16 (DE /0)
_handlers.Add(new FloatingPoint.Arithmetic.FimulInt16Handler(_decoder)); // FIMUL int16 (DE /1)
_handlers.Add(new FloatingPoint.Comparison.FicomInt16Handler(_decoder)); // FICOM int16 (DE /2)
_handlers.Add(new FloatingPoint.Comparison.FicompInt16Handler(_decoder)); // FICOMP int16 (DE /3)
_handlers.Add(new FloatingPoint.Arithmetic.FisubInt16Handler(_decoder)); // FISUB int16 (DE /4)
_handlers.Add(new FloatingPoint.Arithmetic.FisubrInt16Handler(_decoder)); // FISUBR int16 (DE /5)
_handlers.Add(new FloatingPoint.Arithmetic.FidivInt16Handler(_decoder)); // FIDIV int16 (DE /6)
_handlers.Add(new FloatingPoint.Arithmetic.FidivrInt16Handler(_decoder)); // FIDIVR int16 (DE /7)
// DE opcode handlers (register operations)
_handlers.Add(new FloatingPoint.Arithmetic.FaddpHandler(_decoder)); // FADDP ST(i), ST(0) (DE C0-C7)
_handlers.Add(new FloatingPoint.Arithmetic.FmulpHandler(_decoder)); // FMULP ST(i), ST(0) (DE C8-CF)
_handlers.Add(new FloatingPoint.Comparison.FcompStHandler(_decoder)); // FCOMP ST(0) (DE D3)
_handlers.Add(new FloatingPoint.Comparison.FcomppHandler(_decoder)); // FCOMPP (DE D9)
_handlers.Add(new FloatingPoint.Arithmetic.FsubpHandler(_decoder)); // FSUBP ST(i), ST(0) (DE E0-E7)
_handlers.Add(new FloatingPoint.Arithmetic.FsubrpHandler(_decoder)); // FSUBRP ST(i), ST(0) (DE E8-EF)
_handlers.Add(new FloatingPoint.Arithmetic.FdivpHandler(_decoder)); // FDIVP ST(i), ST(0) (DE F0-F7)
_handlers.Add(new FloatingPoint.Arithmetic.FdivrpHandler(_decoder)); // FDIVRP ST(i), ST(0) (DE F8-FF)
// DF opcode handlers (memory operations)
_handlers.Add(new FloatingPoint.LoadStore.FildInt16Handler(_decoder)); // FILD int16 (DF /0)
_handlers.Add(new FloatingPoint.LoadStore.FisttpInt16Handler(_decoder)); // FISTTP int16 (DF /1)
_handlers.Add(new FloatingPoint.LoadStore.FistInt16Handler(_decoder)); // FIST int16 (DF /2)
_handlers.Add(new FloatingPoint.LoadStore.FistpInt16Handler(_decoder)); // FISTP int16 (DF /3)
_handlers.Add(new FloatingPoint.LoadStore.FbldHandler(_decoder)); // FBLD packed BCD (DF /4)
_handlers.Add(new FloatingPoint.LoadStore.FildInt64Handler(_decoder)); // FILD int64 (DF /5)
_handlers.Add(new FloatingPoint.LoadStore.FbstpHandler(_decoder)); // FBSTP packed BCD (DF /6)
_handlers.Add(new FloatingPoint.LoadStore.FistpInt64Handler(_decoder)); // FISTP int64 (DF /7)
// DF opcode handlers (register operations)
_handlers.Add(new FloatingPoint.Control.FfreepHandler(_decoder)); // FFREEP ST(i) (DF C0-C7)
_handlers.Add(new FloatingPoint.LoadStore.FxchDfHandler(_decoder)); // FXCH (DF C8)
_handlers.Add(new FloatingPoint.LoadStore.FstpDfHandler(_decoder)); // FSTP ST(1) (DF D0, DF D8)
_handlers.Add(new FloatingPoint.Comparison.FucomipHandler(_decoder)); // FUCOMIP ST(0), ST(i) (DF E8-EF)
_handlers.Add(new FloatingPoint.Comparison.FcomipHandler(_decoder)); // FCOMIP ST(0), ST(i) (DF F0-F7)
}
/// <summary>

View File

@ -5,12 +5,12 @@ RawBytes;Instructions
# MOVS - Move string
A4;[{ "Type": "MovsB", "Operands": ["byte ptr es:[edi]", "byte ptr ds:[esi]"] }]
A5;[{ "Type": "MovsD", "Operands": ["dword ptr es:[edi]", "dword ptr ds:[esi]"] }]
66A5;[{ "Type": "MovsW", "Operands": ["word ptr es:[edi]", "byte ptr es:[esi]"] }]
66A5;[{ "Type": "MovsW", "Operands": ["word ptr es:[edi]", "word ptr ds:[esi]"] }]
# CMPS - Compare string
A6;[{ "Type": "CmpsB", "Operands": ["byte ptr es:[esi]", "byte ptr es:[edi]"] }]
A7;[{ "Type": "CmpsD", "Operands": ["dword ptr es:[esi]", "dword ptr es:[edi]"] }]
66A7;[{ "Type": "CmpsW", "Operands": ["word ptr es:[esi]", "word ptr es:[edi]"] }]
A6;[{ "Type": "CmpsB", "Operands": ["byte ptr ds:[esi]", "byte ptr es:[edi]"] }]
A7;[{ "Type": "CmpsD", "Operands": ["dword ptr ds:[esi]", "dword ptr es:[edi]"] }]
66A7;[{ "Type": "CmpsW", "Operands": ["word ptr ds:[esi]", "word ptr es:[edi]"] }]
# SCAS - Scan string
AE;[{ "Type": "ScasB", "Operands": ["al", "byte ptr es:[edi]"] }]
@ -20,7 +20,7 @@ AF;[{ "Type": "ScasD", "Operands": ["eax", "dword ptr es:[edi]"] }]
# LODS - Load string
AC;[{ "Type": "LodsB", "Operands": ["al", "byte ptr ds:[esi]"] }]
AD;[{ "Type": "LodsD", "Operands": ["eax", "dword ptr ds:[esi]"] }]
66AD;[{ "Type": "LodsW", "Operands": ["ax", "byte ptr ds:[esi]"] }]
66AD;[{ "Type": "LodsW", "Operands": ["ax", "word ptr ds:[esi]"] }]
# STOS - Store string
AA;[{ "Type": "StosB", "Operands": ["byte ptr es:[edi]", "al"] }]
@ -36,17 +36,17 @@ F3AB;[{ "Type": "RepStosD", "Operands": ["dword ptr es:[edi]", "eax"] }]
F366AB;[{ "Type": "RepStosW", "Operands": ["word ptr es:[edi]", "ax"] }]
# REPE/REPZ prefix with string instructions
F3A6;[{ "Type": "RepeCmpsB", "Operands": ["byte ptr es:[esi]", "byte ptr es:[edi]"] }]
F3A7;[{ "Type": "RepeCmpsD", "Operands": ["dword ptr es:[esi]", "byte ptr es:[edi]"] }]
F366A7;[{ "Type": "RepeCmpsW", "Operands": ["word ptr es:[esi]", "word ptr es:[edi]"] }]
F3A6;[{ "Type": "RepeCmpsB", "Operands": ["byte ptr ds:[esi]", "byte ptr es:[edi]"] }]
F3A7;[{ "Type": "RepeCmpsD", "Operands": ["dword ptr ds:[esi]", "dword ptr es:[edi]"] }]
F366A7;[{ "Type": "RepeCmpsW", "Operands": ["word ptr ds:[esi]", "word ptr es:[edi]"] }]
F3AE;[{ "Type": "RepScasB", "Operands": ["al", "byte ptr es:[edi]"] }]
F3AF;[{ "Type": "RepScasD", "Operands": ["eax", "dword ptr es:[edi]"] }]
F366AF;[{ "Type": "RepScasW", "Operands": ["ax", "word ptr es:[edi]"] }]
# REPNE/REPNZ prefix with string instructions
F2A6;[{ "Type": "RepneCmpsB", "Operands": ["byte ptr es:[esi]", "byte ptr es:[edi]"] }]
F2A7;[{ "Type": "RepneCmpsD", "Operands": ["dword ptr es:[esi]", "dword ptr es:[edi]"] }]
F266A7;[{ "Type": "RepneCmpsW", "Operands": ["word ptr es:[esi]", "word ptr es:[edi]"] }]
F2A6;[{ "Type": "RepneCmpsB", "Operands": ["byte ptr ds:[esi]", "byte ptr es:[edi]"] }]
F2A7;[{ "Type": "RepneCmpsD", "Operands": ["dword ptr ds:[esi]", "dword ptr es:[edi]"] }]
F266A7;[{ "Type": "RepneCmpsW", "Operands": ["word ptr ds:[esi]", "word ptr es:[edi]"] }]
F2AE;[{ "Type": "RepneScasB", "Operands": ["al", "byte ptr es:[edi]"] }]
F2AF;[{ "Type": "RepneScasD", "Operands": ["eax", "byte ptr es:[edi]"] }]
F266AF;[{ "Type": "RepneScasW", "Operands": ["eax", "byte ptr es:[edi]"] }]
F2AF;[{ "Type": "RepneScasD", "Operands": ["eax", "dword ptr es:[edi]"] }]
F266AF;[{ "Type": "RepneScasW", "Operands": ["ax", "word ptr es:[edi]"] }]

Can't render this file because it contains an unexpected character in line 6 and column 7.